Главная · Бронхит · Молекулярный уровень организации жизни представлен. Основные уровни организации жизни

Молекулярный уровень организации жизни представлен. Основные уровни организации жизни

Биология как наука. Методы научного познания. Уровни организации живого.

Требования к уровню подготовки выпускников:

Знать и понимать методы научного познания, признаки живых систем, уровни организации живой природы;

Уметь объяснять роль биологических теорий, законов, принципов, гипотез в формировании современной естественнонаучной картины мира.

Обмен веществ - одно из основных свойств живых систем, он характеризуется тем, что происходит

1. Избирательное реагирование на внешние воздействия окружающей среды

2. Изменение интенсивности физиологических процессов и функций с различными периодами колебаний

3. Передача из поколения в поколение признаков и свойств

4. Поглощение необходимых веществ и выделение продуктов жизнедеятельности

5. Поддержание относительно постоянного физико-химического состава внутренней среды

В цитологии НЕ используют следующие методы:

1. Генетическое клонирование

2. Культуры клеток и тканей

3. Микроскопия

4. Нанобиотехнологии

5. Центрифугирование

Процессы деления клеток изучают с помощью методов

1. Дифференциального центрифугирования

2. Культуры клеток

3. Микроскопии

4. Микрохирургии

5. Фото- и киносъемки

Онтогенез, метаболизм, гомеостаз, размножение происходят на... уровнях организации жизни.

1. Клеточном

2. Молекулярном

3. Организменном

4. Органном

5. Тканевом

Клеточную теорию сформулировали

2. А. Левенгук

3. Дж. Уотсон

4. Т. Шванн

5. М. Шлейден

Изучение биологических объектов, процессов в различных специально созданных условиях осуществляют с помощью методов

1. Абстрагирования

2. Клонирования

3. Моделирования

4. Обобщения

5. Эксперимента

Разделами ботаники являются

1. Альгология

2. Бриология

3. Ихтиология

4. Экология

5. Этология

1. Биохимия

2. Гистология

3. Морфология

4. Физиология

5. Цитология

Модель структуры ДНК в виде двойной спирали создали

2. А. Левенгук

3. Ф. Мюллер

4. Дж. Пристли

5. Д. Уотсон

Разделами зоологии являются

1. Альгология

2. Вирусология

3. Лихенология

4. Териология

5. Этология

Развитие - всеобщее свойство материи - представлено

1. Гомеостазом

2. Метаболизмом

3. Онтогенезом

4. Тропизмами

5. Филогенезом

В синтезе АТФ участвуют

1. Вакуоли

2. Митохондрии

3. Лизосомы

4. Хлоропласты

5. Хромопласты

1. Изготовил первый микроскоп

2. Открыл клеточное ядро

3. Ввел термин "клетка"

4. Описал пластиды и хроматофоры

5. Усовершенствовал микроскоп

Электронный микроскоп сконструировали

1. Р. Вирхов

2. М. Кнолль

3. Н. И. Лунин

4. И. И. Мечников

5. Е. Руска

Метод центрифугирования позволяет

1. Определять качественный и количественный состав веществ клетки

2. Определять пространственную конфигурацию и некоторые физические свойства макромолекул

5. Разделить органоиды клетки

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

Задания №2.

1. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие уровни организации живой природы представлены биокосными системами, включающими не только живое вещество, но и неживое?

1. Организменный

2. Популяционно-видовой

3. Биоценотический

4. Биогеоценотический

5. Биосферный

2. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Цитогенетический метод позволяет

1. Обнаружить генные мутации

2. Обнаружить хромосомные мутации

3. Обнаружить геномные мутации

4. Оценить роль внешней среды в формировании фенотипа

5. Прогнозировать вероятность передачи потомкам наследственных заболеваний

3. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие биологические науки изучают сообщества живых организмов?

1. Экология

2. Морфология

3. Генетика

4. Ветеринария

5. Биогеография

4. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие биологические науки изучают развитие жизни?

1. Анатомия

2. Палеонтология

3. Биохимия

4. Эволюционное учение

5. Биотехнология

5. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Выберите самый простой и самый сложный уровни организации живой природы из ниже перечисленных.

1. Органно-тканевый

2. Популяционно-видовой

3. Молекулярно-генетический

4. Биоценотический

5. Субклеточный

6. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие из свойств живого вещества связаны с развитием?

1. Онтогенез

2. Филогенез

3. Наследственность

4. Изменчивость

5. Раздражимость

7. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие из свойств живого не присущи вирусам?

1. Клеточное строение

2. Обмен веществ

3. Способность к размножению

4. Наследственность

5. Изменчивость

8. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие биологические науки не изучают эукариот?

1. Вирусология

2. Микология

3. Ботаника

4. Бактериология

5. Протистология

9. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие биологические науки изучают молекулярный уровень развития жизни?

1. Молекулярная биология

2. Экология

3. Биохимия

4. Цитология

5. Гистология

10. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие биологические науки изучают отдельные уровни организации всего живого?

1. Ботаника

2. Гистология

3. Генетика

4. Цитология

5. Эволюционное учение

11. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие классификационные единицы организмов являются специфическим объектом изучения селекции?

3. Семейство

12. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Укажите уровни организации жизни, являющиеся сферой изучения экологии.

1. Молекулярно-генетический

2. Клеточный

3. Органный

4. Организменный

5. Популяционно-видовой

13. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие ученые внесли значительный вклад в развитие эволюционного учения, предложив свои варианты теории эволюции живого мира?

1. Фрэнсис Крик

2. Маттиас Якоб Шлейден

3. Томас Морган

4. Жан-Батист Ламарк

5. Чарльз Дарвин

14. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие российские ученые внесли значительный вклад в развитие физиологии?

1. Иван Сеченов

2. Николай Вавилов

3. Николай Миклухо-Маклай

4. Иван Павлов

5. Владимир Вернадский

15. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Методы селекции позволили создать культурыне разновидности дикой капусты. Какие из них представлены в списке?

3. Кольраби

5. Брокколи

16. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

С помощью светового микроскопа в клетке арбуза невозможно увидеть

1. Оболочку

2. Включения

4. Вакуоли

5. Рибосомы

17. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Собственную ДНК содержат

1. Вакуоли

2. Рибосомы

3. Хлоропласты

5. Митохондрии

18. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

На молекулярном уровне организации живой природы происходят процессы

1. Деление

2. Метаболизм

3. Транскрипция

4. Онтогенез

5. Трансляция

19. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Круговорот веществ и превращение энергии происходят на... уровнях организации жизни.

1. Биогеоценотическом

2. Биосферном

3. Клеточном

4. Организменном

5. Популяционно-видовом

20. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Модель структуры ДНК в виде двойной спирали создали:

2. А. Левенгук

3. Д. Уотсон

4. Т. Шванн

5. М. Шлейден

21. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Биогенетический закон сформулировали

1. Вавилов Н. И.

2. Вайнберг В.

3. Геккель Э.

4. Либих Ю.

5. Мюллер Ф.

22. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

В селекции растений применяют следующие методы

1. Искусственное осеменение

2. Искусственный мутагенез

3. Испытание производителей по потомству

4. Массовый отбор

5. Полиэмбрионию

23. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Организменный уровень организации живого изучают

1. Анатомия

2. Биохимия

3. Генетика

4. Гистология

5. Цитология

24. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

На популяционно-видовой уровне организации живой природы происходят:

1. Гомеостаз

2. Изменение генофонда

3. Круговорот веществ и превращение энергии

4. Размножение

5. Элементарные эволюционные изменения

25. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Разделами зоологии являются

1. Альгология

2. Бриология

3. Ихтиология

4. Лихенология

5. Энтомология

26. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

И. В. Мичурин в селекционной работе использовал следующие методы:

1. Искусственного мутагенеза

2. Клонирования

3. Ментора

4. Полиэмбрионии

5. Посредника

27. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

С помощью цитогенетического метода изучают:

1. Генетический состав популяций

2. Количество хромосом

3. Роль среды и наследственности в формировании признаков

4. Структуру хромосом

5. Характер и тип наследования признаков

28. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Методы физиологии человека позволяют изучить

1. Биотоки головного мозга

2. Биотоки сердца

3. Патологические изменения в строении органов

4. Строение органов и тканей

5. Тонкую структуру органов и тканей

29. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

В биотехнологии используют следующие методы:

2. Микробиологический синтез

3. Пасынкование

4. Пикировка

5. Соматическая гибридизация клеток

30. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Методы электрофореза и хроматографии позволяют

1. Определить качественный и количественный состав веществ клетки

2. Определить пространственную конфигурацию и некоторые физические свойства макромолекул

3. Очистить макромолекулы, выделенные из клетки

4. Разделить смеси веществ, выделенные из клетки

5. Разделить органоиды клетки

31. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Укажите формулировки положений клеточной теории.

1. Оболочка грибной клетки состоит из углеводов.

2. В клетках животных отсутствует клеточная стенка.

3. Клетки всех организмов содержат ядро.

4. Клетки организмов сходны по химическому составу.

5. Новые клетки образуются путем деления исходной материнской клетки.

32. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Генеалогический метод исследования используют для установления

1. Доминантного характера наследования признака

2. Последовательности этапов индивидуального развития

3. Наследственного характера заболеваний

4. Типа высшей нервной деятельности

5. Сцепленности признака с полом

33. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие методы исследования используют в цитологии?

1. Центрифугирование

2. Культура ткани

3. Хроматография

4. Генеалогический

5. Гибридологический

34. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

На каких уровнях организации живого изучают особенности реакций фотосинтеза у высших растений?

1. Биосферном

2. Клеточном

3. Популяционно-видовом

4. Молекулярном

5. Экосистемном

35. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

На каких уровнях организации живого изучают особенности реакций фотосинтеза?

1. Биосферном

2. Клеточном

3. Биогеоценотическом

4. Молекулярном

5. Тканево-органном

36. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие признаки служат исходными для живых и неживых объектов природы?

1. Клеточное строение

2. Изменение температуры тела

3. Наследственность

4. Раздражимость

5. Перемещение в пространстве

37. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Гибридологический метод исследования используют

1. Эмбриологи

2. Селекционеры

3. Генетики

4. Экологи

5. Биохимики

38. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Исторический метод исследования используют для изучения

1. Внутреннего строения организмов

2. Эволюции органического мира

3. Химического состава живого

4. Происхождения групп организмов на Земле

5. Онтогенеза организма

39. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Близнецовый метод исследования используют

1. Цитологи

2. Зоологи

3. Генетики

4. Селекционеры

5. Биохимики

40. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Генетики, используя генеалогический метод исследования, составляют

1. Генетическую карту хромосом

2. Схему скрещивания

3. Родословное дерево

4. Схему предковых родителей и их родственные связи в ряде поколений

5. Вариационную кривую

41. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Вклад биотехнологии в медицину состоит в

1. Использовании химического синтеза для получения лекарственных препаратов

2. Создании лечебных сывороток на основе плазмы крови иммунизированных животных

3. Синтезе гормонов человека в бактериальных клетках

4. Изучении родословных человека для выявления наследственных заболеваний

5. Культивировании штаммов бактерий и грибов для производства антибиотиков в промышленных масштабах

42. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие из перечисленных объектов существуют на субклеточном уровне?

1. Спирогира

2. Бактериофаг

3. Стрептококк

4. Митохондрии

5. Лейкопласты

43. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие признаки характерны только для живых систем?

1. Способность к передвижению

2. Обмен веществ и энергии

3. Зависимость от температурных колебаний

4. Рост, развитие и способность к самовоспроизведению

5. Устойчивость и относительно слабая изменчивость

44. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

По каким принципам организованы биологические системы?

1. Закрытость системы

2. Высокая энтропия системы

3. Низкая упорядоченность

4. Иерархичность - соподчинение элементов и частей

5. Оптимальность конструкции

45. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

К эмпирическим методам биологических исследований относят

1. Сравнение

2. Абстрагирование

3. Обобщение

4. Экспериментальный метод

5. Наблюдение

46. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Что из нижеперечисленного можно установить экспериментальным методом?

1. Сроки весенней линьки у белки

2. Влияние удобрений на рост комнатного растения

3. Сроки прилета и отлета перелетных птиц

4. Высоту комнатного растения

5. Условия прорастания семян

47. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

К теоретическим методам биологических исследований относят

1. Сравнение

2. Экспериментальный метод

3. Обобщение

4. Измерение

5. Наблюдение

48. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие методы исследования позволили установить пространственную структуру молекулы ДНК?

1. Цитогенетический метод

2. Рентгеноструктурный анализ

3. Метод культуры клеток

4. Метод моделирования

5. Центрифугирование

49. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Какие методы исследования помогают изучить процесс фотосинтеза в клетке?

1. Экспериментальный метод

2. Метод микроскопирования

3. Метод меченых атомов

4. Метод клеточных культур

5. Метод центрифугирования

50. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

На каком уровне организации происходят такие процессы, как раздражимость и обмен веществ?

1. Популяционно-видовой

2. Организменный

3. Молекулярно-генетический

4. Биогеоценотический

5. Клеточный

51. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

К генетическим относят термины

2. Филогенез

3. Фенотип

4. Консумент

5. Дивергенция

52. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Клеточному уровню организации жизни соответствуют

1. Амеба обыкновенная

2. Кишечная палочка

3. Бактериофаг

4. Гидра пресноводная

5. Вирус гриппа

53. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

К методам цитологии относят

1. Микроскопирование

2. Мониторинг

3. Центрифугирование

4. Инбридинг

5. Гетерозис

54. Выберите два верных ответ из пяти и запишите в таблицу цифры, под которыми они указаны.

Молекулярно-генетический . Элементарная единица организации – ген. Элементарное явление – редупликация ДНК, перенос генетической информации в дочернюю клетку. Молекулярный уровень организации жизни является предметом изучения молекулярной биологии. Она изучает строение белков, их функции (в том числе как ферментов), роль нуклеиновых кислот в хранении, репликации и реализации генетической информации, т.е. процессы синтеза ДНК, РНК, белков.

Клеточный уровень. Этот уровень организации живого представлен клетками – самостоятельными организмами (бактерии, простейшие и др.), а также клетками многоклеточных организмов. Главнейшая специфическая черта клеточного уровня заключается в том, что с этого уровня начинается жизнь , так как возникающий на молекулярном уровне матричный синтез происходит в клетках. Будучи способными к жизни, росту и размножению, клетки являются основной формой организации живой материи, ее элементарными единицами, из которых построены все живые существа. Характерной особенностью клеточного уровня является специализация клеток. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и времени.

Тканевый уровень. Ткань – совокупность клеток, имеющих общее происхождение, сходное строение и выполняющих одинаковые функции. У млекопитающих, например, выделяют четыре основных типа тканей: эпителиальная, соединительная, мышечная и нервная.

Организменный (онтогенетический) уровень. На организменном уровне изучают особь и свойственные ей как целому черты строения, физиологические процессы, в том числе дифференцировку, механизмы адаптации и поведения. Элементарная неделимая единица организации жизни на этом уровне – особь. Жизнь всегда представлена в виде дискретных индивидуумов. Это могут быть и одноклеточные индивидуумы, и многоклеточные, состоящие из миллионов и миллиардов клеток.

Популяционно-видовой уровень. Основной элементарной, структурной единицей на этом уровне является популяция. Популяция – локальная, географически отделенная в той или иной степени от других группа особей одного вида, свободно скрещивающихся друг с другом и имеющих общий для них генетический фонд. Элементарное явление популяционно-видового уровня – изменение генотипического состава популяции, а элементарный материал – мутация. На популяционно-видовом уровне изучают факторы, влияющие на численность популяций, проблемы сохранения исчезающих видов, динамику генетического состава популяций.

Биоценотический уровень. Популяции разных видов всегда образуют в биосфере Земли сложные сообщества. Такие сообщества в конкретных участках биосферы называют биоценозами. Биоценоз – комплекс, складывающийся из растительного сообщества (фитоценоза), населяющего его животного мира (зооценоза), микроорганизмов и соответствующего участка земной поверхности. Все компоненты биоценоза связаны между собой круговоротом веществ. Биоценоз – продукт совместного исторического развития видов, различающихся по систематическому положению.

Многие микроскоп нам тайн открыл - невидимых частиц, жил в теле, других см.

Ломоносов

ОРГАНИЗАЦИЯ КЛЕТОК

Клеточный уровень организации жизни

Клеточный уровень жизни - это уровень организации, свойства которого определяются клетками с их составными компонентами и их участием в процессах превращения веществ, энергии и информации.

Клетка биологической системой с характерными особенностями структуры, функций и свойств.

Структурная организация. Клетка является основной структурной единицей для колониальных и многоклеточных организмов, а у одноклеточных существ она является одновременно и самостоятельным целостным организмом. Основными структурными частями клетки являются поверхностный аппарат, цитоплазма и ядро (нуклеоид в прокариотических организмов), построенные по определенным подсистем и элементов, которыми являются органеллы. Существуют два типа организации клеток - прокариотических и эукариотический. Базовым уровнем организации для клеток является молекулярный уровень.

Функциональная организация. Клеток, чтобы выжить, необходимо: а) получать энергию из окружающая ища и трансформировать в нужную ей форму; б) избирательно пропускать, перемещать и выводить вещества; в) хранить, реализовывать и передавать генетическую информацию следующему поколению; г) постоянно поддерживать химические реакции, необходимые для поддержания внутреннего равновесия; д) распознавать сигналы среды и определенным образом реагировать на них; е) образовывать новые молекулы и структуры взамен срок жизни которых истек.

Каждая живая клетка представляет собой систему, которая превращает вещества, энергию и информацию, которые поступают к ней, и таким образом обеспечивает процессы жизнедеятельности организма. Клетка является функциональной единицей для осуществления таких функций, как опора, движение, питание, дыхание, кровообращение, выделения, размножения, движение, регуляция процессов и тому подобное. Клетки одноклеточных организмов выполняют все эти жизненные функции, а большинство клеток многоклеточного организма специализированные на выполнении одной главной жизненной функции. Но в обоих случаях любая функция клетки является следствием согласованной работы всех ее компонентов. Организация и функционирование всех компонентов клетки связаны прежде всего с биологическими мембранами. Внешние взаимосвязи между клетками поддерживаются путем выделения химических веществ и установления контактов, внутренние взаимосвязи между элементами клетки обеспечиваются гиалоплазмы.

Свойства . Клетка является элементарной биосистемой, поскольку именно на уровне клеток проявляются все свойства жизни. Основными свойствами клетки являются открытость, обмен веществ, иерархичность, целостность, саморегуляция, самообновления, самовоспроизведения, ритмичность и др. Определяются эти свойства структурно-функциональной организацией биомембран, цитоплазмы и ядра.

Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

2. Фундаментальные свойства живой материи

Обмен веществ (метаболизм)

Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле. Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым "строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений.

Самовоспроизведение (репродукция)

Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.

Наследственность и изменчивость

Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система "записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они "подхватываются" и "закрепляются" естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции. При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.

Индивидуальное развитие организмов

Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

Раздражимость

Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

4. Центральная догма молекулярной биологии - обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку , но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

Общий - встречающиеся у большинства живых организмов;

Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента ;

Неизвестные - не обнаружены.

Репликация ДНК (ДНК → ДНК)

ДНК - основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин , затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК → РНК)

Транскрипция - биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК . Транскрипцию осуществляют факторы транскрипции и РНК-полимераза . В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом .

Трансляция (РНК → белок)

Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы ) ядерной мембраной , поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

5. Обратная транскрипция - это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК . Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии , которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов , например, ВИЧ и в случае ретротранспозонов .

Трансдукция (от лат. transductio - перемещение) - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом . Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов . К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Векторная молекула ДНК - это молекула ДНК, которая выступает в роли носителя. Молекулу-носитель должен отличать ряд особенностей:

Способность к автономной репликации в клетке хозяина (чаще бактериальной или дрожжевой)

Наличие селективного маркера

Наличие удобных сайтов рестрикции

В роли векторов чаще всего выступают бактериальные плазмиды.

Уровни организации живых систем. Клеточный уровень. Основные положения

современной клеточной теории.

Молекулярно-генетический уровень(элементарная единица- ген)

Клеточный уровень (клетка)

Организменный уровень, по-другому онтогенетический (особь)

Популяционно-видовой (популяция)

Биогеоценотический (биогеоценозы)

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов).элементарные явления представлены реакциями клеточного метаболизма. Благодаря деятельности клетки поступающие извне вещества превращаются в субстраты и энергию,которые утилизируются в процессе биосинтеза белков в соответствии с существующей информацией. таким образом на клеточном уровне сопрягаются механизмы передачи информации и превращения веществ и энергии. Элементарные явления на этом уровне создают энергетическую и вещественную основу жизни на других уровнях. Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология Современная клеточная теория включает следующие основные положения:

№1 Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет;.

№2 Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование;

№3 Клетки всех организмов сходны по своему химическому составу, строению и функциям;

№4 Новые клетки образуются только в результате деления исходных клеток;

№5 Клетки многоклеточных организмов образуют ткани, из тканей органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток;

№6 Клетки многоклеточных организмов имеют полный набор генов, но отличаются друг от друга тем, что у них работают различные группы генов, следствием чего является морфологическое и функциональное разнообразие клеток – дифференцировка.

Структурно-функциональная организация про- и эукариотических клеток.

Клетки прокариотического типа имеют особенно малые размеры (не более 0,5-3,0мкм в диаметре) . у них нет морфологически обособленного ядра, т.к. ядерный материал в виде ДНК не отграничен от цитоплазмы оболочкой. В клетке отсутствует развитая система мембран. Генетический аппарат образован единственной кольцевой хромосомой, которая лишена основных белков- гистонов. У прокариот отсутствует клеточный центр. Для них не типичны внутриклеточные перемещения цитоплазмы и амебоидное движение. Время, необходимое для образования двух дочерних клеток (время генерации), сравнительно мало и исчесляется десятками минут. Прокариотические клетки не делятся митозом. К этому типу клеток относятся бактерии и сине-зеленые водоросли. Эукариотический тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших является то, что они (исключая колониальные формы) соответствуют в структурном отношении уровню одной клетки, а в физиологическом - полноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме миниатюрных образований, выполняющих на клеточном уровне функции жизненно важных органов многоклеточного организма. Таковы (например, у инфузорий) цитостом, цитофарингс и порошица, аналогичные пищеварительной системе, и сократительные вакуоли, аналогичные выделительной системе. Клетки многоклеточных организмов имеют оболочку. Плазмолемма (клеточная оболочка) образована мембраной покрытой снаружи слоем гликокаликса. В клетке выделяют ядро и цитоплазму. В ядре есть оболочка, ядерный сок, ядрышко, хроматин. Цитоплазма представлена основным веществом(матрикс, гиалоплазма), в котором распределены включения и органеллы(шероховатая и гладкая эпс, пластинчатый комплекс, митохондрии, рибосомы, полисомы, лизосомы, периксисомы, микрофибриллы, микротрубочки, центриоли клеточного центра. В растительных клетках выделяют еще и хлоропласты.
В традиционном изложении клетку растительного или животного организма описывают как объект, отграниченный оболочкой, в котором выделяют ядро и цитоплазму. В ядре наряду с оболочкой и ядерным соком обнаруживаются ядрышко и хроматин. Цитоплазма представлена ее основным веществом (матриксом, гиалоплазмой), в котором распределены включения и органеллы.

Жизненный цикл клетки. Его периоды для клеток с разной степенью

Дифференцировки.

ЖЦК- это период жизни клетки от ее образования (путем деления материнской клетки) до ее деления или смерти.

ЖЦК способных к делению клеток:

Митотический цикл: -автокаталитическая фаза-подготовка к делению. состоит из G1 периода(синтетический), S(синтетический) , G2(постсинтетический).

В многоклеточном организме есть клетки которые после своего рождения вступают в период покоя G0 (это клетки выполняющие специфические функции в составе той или иной функции)

ЖЦК не способных к делению клеток:

Гетерокаталитическая интерфаза

Митотический цикл. Митоз. Биологическое значение митоза. Возможная

патология митоза.

Митотический цикл состоит из автокаталитической интерфазы (G1-хромосомы деконденсированные, накапливаются белки и РНК, увеличивается число митохондрий, ;S- репликация ДНК, продолжается синтез белков и РНК;,G2- остановка синтеза ДНК, накапливается энергия, синтезируются РНК и белки, формирующие нити веретена деления) и митоза :

Профаза 2n4c – ядерная мембрана растворяется, ядрышко исчезает, происходит конденсация и деспирализация хромосом.

Метафаза 2n4c- хромосомы на экваторе клетки.

Анафаза 4n4c- хроматиды расходятся к полюсам клетки.

Телофаза 2n2c- формирование ядрышка, цитотомия, образование двух дочерних клеток. Биологическое значение митоза.

Биологическое значение митоза огромно. Постоянство строения и правильность функционирования органов и тканей многоклеточного организма было бы невозможным без сохранения идентичного набора генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает важные явления жизнедеятельности, как эмбриональное развитие, рост, восстановление органов и тканей после повреждения, поддержание структурной целостности тканей при постоянной утрате клеток в процессе их функционирования (замещение погибших эритроцитов, слущившихся клеток кожи и прочее). Патологии митоза:

Нарушение конденсации хромосом ведет к набуханию и слипанию хромосом

Повреждение веретена деления является причиной задержки митоза в метафазе и рассеиванию хромосом

Нарушение расхождения хроматид в анафазу митоза ведет к появлению клеток с различным количеством хромосом

При отсутствии цитотомии в конце телофазы образуются двух- и многоядерные клетки.

Воспроизведение на молекулярном уровне. Репликация ДНК у про- и эукариот.

Одна из основных функций ДНК- сохранение и передача наследственной информации. В основе этой функции лежит способность ДНК к самокопированию- репликация. В результате репликации из одной материнской молекулы ДНК образуются две дочерние молекулы ДНК- копии материнской.

Геликаза-расплетает двойную спираль ДНК

Дестабилизирующие белки – выпрямляют цепи ДНК

ДНК-топоизомераза- разрывает фосфодиэфирные связи в одной из цепей ДНК, снимает напряжение спирали.

РНК-праймаза- обеспечивает синтез РНК-затравки для фрагментов Оказаки

ДНК-полимеразы- синтез полинуклеотидной цепи в направлении 5-3

ДНК-лигаза –сшивает фрагменты Оказаки после удаления ДНК-затравки.

Понятие о репарации ДНК.

Cперматогенез

Фазы сперматогенеза, их сущность. Место сперматогенеза в онтогенезе человека.

Полигенное наследование. Понятие о МФБ. Пример полигенно наследуемой болезни в стоматологии.

Наследование признаков при полимерном взаимодействии генов. В том случае, когда сложный признак определяется несколькими парами генов в генотипе и их взаимодействие сводится к накоплению эффекта действия определенных аллелей этих генов, в потомстве гетерозигот наблюдается разная степень выраженности признака, зависящая от суммарной дозы соответствующих аллелей. Например, степень пигментации кожи у человека, определяемая четырьмя парами генов, колеблется от максимально выраженной у гомозигот по доминантным аллелям во всех четырех парах (Р 1 Р 1 Р 2 Р 2 Р 3 Р 3 Р 4 Р 4) до минимальной у гомозигот по рецессивным аллелям (р 1 р 1 р 2 р 2 р 3 р 3 р 4 р 4) (см. рис. 3.80). При браке двух мулатов, гетерозиготных по всем четырем парам, которые образуют по 2 4 = 16 типов гамет, получается потомство, 1/256 которого имеет максимальную пигментацию кожи, 1/256 - минимальную, а остальные характеризуются промежуточными показателями экспрессивности этого признака. В разобранном примере доминантные аллели полигенов определяют синтез пигмента, а рецессивные - практически не обеспечивают этого признака. В клетках кожи организмов, гомозиготных по рецессивным аллелям всех генов, содержится минимальное количество гранул пигмента.

В некоторых случаях доминантные и рецессивные аллели полигенов могут обеспечивать развитие разных вариантов признаков. Например, у растения пастушьей сумки два гена одинаково влияют на определение формы стручочка. Их доминантные аллели образуют одну, а рецессивные - другую форму стручочков. При скрещивании двух дигетерозигот по этим генам (рис. 6.16) в потомстве наблюдается расщепление 15:1, где 15/16 потомков имеют от 1 до 4 доминантных аллелей, а 1/16, не имеет доминантных аллелей в генотипе.

Многим наследственным признакам нельзя дать достаточно точного качественного описания. Между особями наблюдаются постепенные малозаметные переходы» а при расщеплении нет ясно разграниченных фенотипических классов. Такие признаки изучают путем измерений или подсчетов позволяющих дать признаку цифровую характеристику. Например, вес и размеры тела, плодовитость, урожайность, продуктивность, скороспелость» содержание белков и жиров и т. п. Это и есть количественные признаки.

И хотя четкой границы между качественными и количественными признаками нет (некоторые количественные признаки можно описать как качественные: высокий - карликовый» скороспелый - позднеспелый, а качественные можно выразить количественно, например, различия в окраске - количеством пигмента), можно выделить три важные особенности количественных признаков:

1) непрерывное варьирование;

2) зависимость от большого числа взаимодействующих генов;

3) зависимость от внешней среды, т. е сильная подверженность влиянию модификационной изменчивости, результат которой непрерывен, что еще не смазывает фенотипические различия между генотипическими классами.

Основная масса признаков» с которыми приходится иметь дело селекционеру, - количественные.

Важная особенность полигенного наследования - чем больше генон, влияющих на признак, тем более непрерывной будет изменчивость этого признака. Л изменчивость за счет влияния внешних условий делает распределение количественных признаков еще более плавным и непрерывным. В итоге распределение изменчивости количественных признаков близко к нормальному, те, генотипов, определяющих промежуточные варианты, больше, чем генотипов, определяющих крайние варианты.

Цитогенетический метод

Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.
Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.
В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом:
22 пар аутосом и одной пары половых хромосом (XX - у женщин, XY - у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.

Цитологический контроль необходим для диагностики хромо- сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского - Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови - хроническому миелолейкозу.

При цитологических исследованиях интерфазных ядер соматических клеток можно обнаружить так называемое тельце Барра, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.

Выявление многих наследствен- ных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.

Адаптация (от лат. adaptatio -- приспособление) - это динамический процесс, благодаря которому подвижные системы живых организмов, несмотря на изменчивость условий, поддерживают устойчивость, необходимую для существования, развития и продолжения рода. Именно механизм адаптации, выработанный в результате длительной эволюции, обеспечивает возможность существования организма в постоянно меняющихся условиях среды.

1.Биологическая адаптация человека акклиматизаций

2.Социальная адаптация - процесс активного приспособления индивида (группы индивидов) к социальной среде, проявляющийся в обеспечении условий, способствующих реализации его потребностей, интересов, жизненных целей. Социальная адаптация включает в себя приспособление прежде всего к условиям и характеру труда (учебы), а также к характеру межличностных отношений, экологической и культурной среде, условиям проведения досуга, быту. Процесс социальной адаптации тесно связан с процессом социализации индивида, интериоризации общественных и групповых норм. Социальная адаптация предполагает как приспособление индивида к условиям жизнедеятельности (пассивная адаптация), так и активное целенаправленное их изменение (активная адаптация). Эмпирически установлено, что доминирование у индивида второго из названных типов адаптационного поведения обуславливает более успешное протекание социальной адаптации. Выявлена также зависимость между характером ценностных ориентаций личности и типом адаптационного поведения. Так, у людей, ориентированных на проявление и совершенствование своих способностей, доминирует установка на активно-преобразовательное взаимодействие с социальной средой, у ориентированных на материальное благополучие - избирательность, целевая ограниченность социальной активности, у ориентированных на комфорт - приспособительное поведение. Ценностные ориентации определяют также требования индивида к характеру и условиям труда, быта, досуга, характеру межличностного общения. Например, монотонный труд на конвейере, как правило, угнетающе воздействует на людей с высоким образовательным уровнем, но удовлетворяет работников с низким уровнем образования и квалификации.

Акклиматиза́ция - приспособление организмов к новым условиям существования после территориального, искусственного или естественного перемещения с образованием стабильных воспроизводящихся групп организмов (популяций); частным случаем акклиматизации является.

Акклиматизация в жарком климате может сопровождаться потерей аппетита, расстройством деятельности кишечника, нарушением сна, понижением сопротивляемости к инфекционным заболеваниям. Отмеченные функциональные отклонения обусловливаются нарушением водно-солевого обмена. Снижается мышечный тонус, увеличивается потоотделение, понижается мочевыделение, учащаются дыхание, пульс и др. По мере увеличения влажности воздуха напряжение механизмов адаптации возрастает.

Климатическую экстремальность для условий проживания населения в экстремально-холодных климатах создают:

· Большая повторяемость (45-65 % дней за год) низких отрицательных температур.

· Недостаток или полное отсутствие (полярная ночь) солнечной радиации зимой.

· Преобладание пасмурной погоды (140-150 дней за год).

· Сильный ветер с частыми низовыми метелями.

36. Биологическая адаптация. Механизмы срочной и долговременной адаптации.

Понятие о конституциональных типах.

Биологическая адаптация человека - эволюционно возникшее приспособление организма человека к условиям среды, выражающееся в изменении внешних и внутренних особенностей органа, функции или всего организма к изменяющимся условиям среды. В процессе приспособления организма к новым условиям выделяют два процесса - фенотипическую или индивидуальную адаптацию, которую более правильно называть акклиматизаций (см.) и генотипическую адаптацию, осуществляемую путем естественного отбора полезных для выживания признаков. При фенотипической адаптации организм непосредственно реагирует на новую среду, что выражается в фенотипических сдвигах, компенсаторных физиологических изменениях, которые помогают организму сохранить в новых условиях равновесие со средой. При переходе к прежним условиям восстанавливается и прежнее состояние фенотипа, компенсаторные физиологические изменения исчезают. При генотипической адаптации в организме происходят глубокие морфо-физиологические сдвиги, которые передаются по наследству и закрепляются в генотипе в качестве новых наследственных характеристик популяций, этнических групп и рас.

Специфические адаптивные механизмы, свойственные человеку, дают ему возможность переносить определенный размах отклонений факторов от оптимальных значений без нарушения нормальных функций организма.

· Срочный этап адаптации возникает непосредственно после начала действия раздражителя на организм и может быть реализован лишь на основе ранее сформировавшихся физиологических механизмов. Примерами проявления срочной адаптации являются: пассивное увеличение теплопродукции в ответ на холод, увеличение теплоотдачи в ответ на тепло, рост легочной вентиляции и минутного объема кровообращения в ответ на недостаток кислорода. На этом этапе адаптации функционирование органов и систем протекает на пределе физиологических возможностей организма, при почти полной мобилизации всех резервов, но не обеспечивая наиболее оптимальный адаптивный эффект. Так, бег нетренированного человека происходит при близких к максимуму величинах минутного объема сердца и легочной вентиляции, при максимальной мобилизации резерва глюкогена в печени. Биохимические процессы организма, их скорость, как бы лимитируют эту двигательную реакцию, она не может быть ни достаточно быстрой, ни достаточно длительной;

· Долговременная адаптация к длительно воздействующему стрессору возникает постепенно, в результате длительного, постоянного или многократно повторяющегося действия на организм факторов среды. Основными условиями долговременной адаптации являются последовательность и непрерывность воздействия экстремального фактора. По существу, она развивается на основе многократной реализации срочной адаптации и характеризуется тем, что в результате постоянного количественного накопления изменений организм приобретает новое качество - из неадаптированного превращается в адаптированный. Такова адаптация к недостижимой ранее интенсивной физической работе (тренировка), развитие устойчивости к значительной высотной гипоксии, которая ранее была несовместима с жизнью, развитие устойчивости к холоду, теплу, большим дозам ядов. Таков же механизм и качественно более сложной адаптации к окружающей действительности.

В настоящее время отсутствует общепринятая теория и классифи­кация конституций.Многообразие подходов,предлагаемых разными специалистами,по­рождает множество оценок, определений конституции,отражает сложность проблем, стоящих перед конституциологией.На сегодняшний день наиболее удачным и полным опреде­лением конституции является следующее.Конституция(лат. constitutia - установление,организация)- это комплекс индивидуальных относительно устойчивых морфологичес­ких,физиологических и психических свойств организма,обусловленных наследственнос­тью,а также длительными и интенсивными влияниями окружающей среды, проявляющи­мися в его реакциях на различные воздействия(в том числе социальные и болезнетворные).

В нашей стране наибольшее распространение получила классификация,прдложенная М.В.Черноруцким.Он выделил три типа конституции:

1) астенический;

2) нормостенический;

3) гиперстенический

Отнесение к тому или иному типу производилось на основании величины индекса Пинье (длина тела - (масса+ объем груди в покое). У астеников индекс Пинье больше 30, у гиперстеников- меньше 10, у нормостеников находится в пределах от10 до 30. Эти три типа конституции характеризуются не только особенностями внешних морфологических признаков, но и функциональных свойств.

37. Экологическая дифференциация человечества. Понятие о расах и адаптивных

типах людей.

38. Адаптивные типы людей. Морфофункциональная характеристика

представителей высокогорного и аридного типов.

Адаптивный тип
представляет собой норму биологической реакции на комплекс условий окружающей
среды и проявляется в развитии морфофункциональных, биохимических и
иммунологических признаков, обеспечивающих оптимальную приспособленность к
данным условиям обитания.

В комплексы признаков адаптивных типов из разных географических зон входят общие и специфические элементы. К первым относят, например, показатели
костно-мускульной массы тела, количество иммунных белков сыворотки крови
человека. Такие элементы повышают общую сопротивляемость организма к
неблагоприятным условиям среды. Специфические элементы отличаются разнообразием
и тесно связаны с преобладающими условиями в данном месте обитания - гипоксией, жарким или холодным климатом.
Именно их сочетание служит основанием к выделению адаптивных типов:
арктического, тропического, зоны умеренного климата, высокогорного, пустынь и
др.

Разберем особенности условий жизни человеческих популяций в различных
климатогеографических зонах и адаптивные типы людей, сформировавшиеся в них.

Условия высокогорья для человека во многих отношениях экстремальны. Их характеризуют низкое атмосферное давление, сниженное парциальное давление кислорода, холод,относительное однообразие пищи. Основным экологическим фактором формирования горного адаптивного типа явилась,по-видимому, гипоксия. У жителей высокогорья независимо от климатической зоны,расовой и этнической принадлежности наблюдаются повышенный уровень основногообмена, относительное удлинение длинных трубчатых костей скелета, расширениегрудной клетки, повышение кислородной емкости крови за счет увеличенияколичества эритроцитов, содержания гемоглобина и относительной легкости егоперехода в оксигемоглобин.

Аридный адаптивный тип сформировался у жителей пустынь. Для пустыни главным вредным фактором является воздействие сухого воздуха, имеющего большую испаряющую способность. Кроме того, в тропических пустынях наблюдается круглогодичное сильное тепловое воздействие, а во внетропической зоне резкие сезонные перепады температуры – жара летом и холод зимой. В этих условиях, так же как и в тропиках, больше распространены длиннотелые морфотипы (до 70 %), мускульный и жировой компоненты развиваются слабо, однако общие размеры тела у жителей пустынь больше. Уровень основного обмена у них невысок, количество холестерина в крови снижено

46. Трансмиссивные и нетрансмиссивные природно-очаговые заболевания.

Экологические основы их выделения.

47. Предмет медицинской гельминтологии. Понятие о гео- и биогельминтах,

антропонозах и зоонозах.

46. ПРИРОДНО-ОЧАГОВЫЕ ЗАБОЛЕВАНИЯ

1) возбудители циркулируют в природе от одного животного к другому независимо от человека;

2) резервуаром возбудителя служат дикие животные;

3) болезни распространены не повсеместно, а на ограниченной территории с определенным ландшафтом, климатическими факторами и биогеоценозами.

Компонентами природного очага являются:

1) возбудитель;

2) восприимчивые к возбудителю животные - резервуары:

3) соответствующий комплекс природно-климатических условий, в котором существует данный биогеоценоз.

Особую группу природно-очаговых заболеваний составляют трансмиссивные болезни , такие, как лейшманиоз, трипаносомоз, клещевой энцефалит и т.д. Поэтому обязательным компонентом природного очага трансмиссивного заболевания является также наличие переносчика.

Трансмиссивные болезни - заразные болезни человека, возбудители которых передаются кровососущими членистоногими (насекомыми и клещами).

Трансмиссивные болезни включают более 200 нозологических форм, вызываемых вирусами, бактериями, риккетсиями, простейшими и гельминтами. Часть из них передаётся только с помощью кровососущих переносчиков (облигатные трансмиссивные болезни, например сыпной тиф, малярия и др.), часть различными способами, в том числе и трансмиссивно (например, туляремия, заражение которой происходит при укусах комаров и клещей, а также при снятии шкурок с больных животных).

Переносчики

инфицированных вирусами, у клещей, инфицированных вирусами, риккетсиями и спирохетами, и у москитов, инфицированных флебовирусами.

В организме механических переносчиков возбудители не развиваются и не размножаются. Попавший на хоботок, в кишечник или на поверхность тела механического переносчика возбудитель передается непосредственно (при укусе) либо путем контаминации ран, слизистых оболочек хозяина или пищевых продуктов.

Характеристика переносчика и механизм передачи возбудителя

Область распространения и особенности эпидемиологии

Профилактика

Профилактика большинства трансмиссивных болезней проводится путем уменьшения численности переносчиков. С помощью этого мероприятия в СССР удалось ликвидировать такие трансмиссивные антропонозы, как вшиный возвратный тиф, москитная лихорадка, городской кожный лейшманиоз. Большое значение имеют проведение мелиоративных работ, создание вокруг населённых пунктов зон, свободных от диких грызунов и переносчиков возбудителей трансмиссивных болезней.

Некоторые природно-очаговые заболевания характеризуются эндемизмом , т.е. встречаемостью на строго ограниченных территориях. Это связано с тем, что возбудители соответствующих заболеваний, их промежуточные хозяева, животные-резервуары или переносчики встречаются только в определенных биогеоценозах.

Небольшое количество природно-очаговых заболеваний встречается практически повсеместно. Это такие заболевания, возбудители которых, как правило, не связаны в цикле своего развития с внешней средой и поражают самых разнообразных хозяев. К заболеваниям такого рода относятся, например, токсоплазмоз и трихинеллез. Этими природно-очаговыми болезнями человек может заразиться в любой природно-климатической зоне и в любой экологической системе.

Абсолютное же большинство природно-очаговых болезней поражает человека только в случае попадания его в соответствующий очаг (на охоте, рыбной ловле, в туристических походах, в геологических партиях и т.д.) при условиях его восприимчивости к ним. Так, таежным энцефалитом человек заражается при укусе инфицированным клещом, а описторхозом - съев недостаточно термически обработанную рыбу с личинками кошачьего сосальщика.

Профилактика природно-очаговых заболеваний представляет особые сложности. В связи с тем, что в циркуляцию возбудителя бывает включено большое количество хозяев, а часто и переносчиков, разрушение целых биогеоценотических комплексов, возникших в результате эволюционного процесса, экологически неразумно, вредно и даже технически невозможно. Лишь в тех случаях, если очаги являются небольшими и хорошо изученными, возможно комплексное преобразование таких биогеоценозов в направлении, исключающем циркуляцию возбудителя. Так, рекультивация опустыненных ландшафтов с созданием на их месте орошаемых садоводческих хозяйств, проводящаяся на фоне борьбы с пустынными грызунами и москитами, может резко снизить заболеваемость населения лейшманиозами. В большинстве же случаев природно-очаговых болезней профилактика их должна быть направлена в первую очередь на индивидуальную защиту (предотвращение от укусов кровососущими членистоногими, термическая обработка пищевых продуктов и т.д.) в соответствии с путями циркуляции в природе конкретных возбудителей.

Черви- это многоклеточные, трехслойные, первичноротые, двусторонне-симметричные животные. Их тело имеет удлиненную форму, а кожно-мускульный мешок состоит из гладких или поперечно-полосатых мышц и покровных тканей.

Гельминты могут обитать у человека практически во всех органах. В соответствии с этим различны пути проникновения их в организм человека, симптоматика заболеваний и методы диагностики.