Главная · Простудные заболевания · Географическая оболочка как результат длительного взаимодействия литосферы, гидросферы, атмосферы и биосферы. Проблема загрязнения атмосферы, гидросферы и литосферы

Географическая оболочка как результат длительного взаимодействия литосферы, гидросферы, атмосферы и биосферы. Проблема загрязнения атмосферы, гидросферы и литосферы

Одной из характерных особенностей Земли является её географическая (ландшафтная) сфера, заключающая в себе, несмотря на малую относительную толщину самые яркие индивидуальные черты нашей планеты. В пределах этой сферы происходит не только тесное соприкосновение трёх геосфер - нижних разделов , и , но и частичное перемешивание и обмен твёрдыми, жидкими и газообразными компонентами. Ландшафтная сфера поглощает основную часть лучистой энергии Солнца в пределах волн видимого диапазона и воспринимает все прочие космические влияния. В ней же проявляются , обязанные энергии радиоактивного распада в , перекристаллизации и т.д.

Энергия различных источников (главным образом Солнца) претерпевает в пределах ландшафтной сферы многочисленные трансформации, превращаясь в тепловую, молекулярную, химическую, кинетическую, потенциальную, электрическую формы энергии, в результате чего здесь сосредоточивается тепло, притекающее от Солнца, и создаются разнообразные условия для живых организмов. свойственны целостность, обусловленная связями между её компонентами, и неравномерность развития во времени и пространстве.

Неравномерность развития во времени, выражается в присущих этой оболочки направленных ритмичных (периодических - суточных, месячных, сезонных, годовых и т.п.) и неритмичных (эпизодических) изменениях. Знание основных закономерностей развития географической оболочки позволяет во многих случаях прогнозировать природные процессы.

Благодаря разнообразию условий, создаваемых , водами, и жизнью, ландшафтная сфера пространственно дифференцирована сильнее, чем во внешних и внутренних геосферах (кроме верхней части земной коры), где материя в горизонтальных направлениях отличается относительным однообразием.

Неравномерность развития географической оболочки в пространстве выражается, прежде всего, в проявлениях горизонтальной зональности и . Местные особенности (условия экспозиции, барьерная роль хребтов, степень удаления от океанов, специфика развития органического мира в том или ином районе Земли) усложняют структуру географической оболочки, способствуют образованию азональных, интразональных, различий и приводят к неповторимости, как отдельных регионов, так и их сочетаний.

Типы , которые выделяются в ландшафтной сфере, различны по рангам. Наиболее крупное деление связано с существованием и размещением . Далее оно обязано шарообразной и проявляется в разном количестве тепловой энергии, поступающей на её поверхность. Благодаря этому образуются тепловые пояса: жаркий, 2 и 2 холодных. Однако термические различия определяют собой не все существенные черты ландшафта. Сочетание сферической формы Земли с её вращением вокруг оси создают, помимо термических, заметные динамические различия, возникающие, прежде всего в атмосфере и гидросфере, но распространяющие своё влияние и на сушу. Так складываются климатические пояса, каждому из которых свойственны особый режим тепла, свои , особенности их и, как следствие этого, - своеобразная выраженность и ритмика ряда процессов: биогеохимических, испаряемости, вегетации , животных, круговоротов органического и минерального вещества и др.

Членение Земли на широтные оказывает столь существенное влияние на прочие стороны ландшафта, что деление природы Земли по всему комплексу признаков на пояса физико-географические почти соответствует климатическим поясам, в основном совпадая с ними по числу, конфигурации и названиям. Географические пояса существенно различаются по многим признакам в Северном и Южном , что позволяет говорить об асимметрии географической оболочки.

Дальнейшее выявление горизонтально- различий происходит в прямой зависимости от размеров, конфигурации суши и от связанных с этим различий в количестве влаги и режиме увлажнения. Здесь наиболее резко выступает влияние секторных различий между приокеаническими, переходными и континентальными частями (секторами) материков. Именно в конкретных условиях отдельных секторов формируются разнородные участки географических поясов суши, именуемые физико-географическими зонами. Многие из них одноимённы с зонами растительности ( , и др.), но это отражает лишь физиономическую представленность растительного покрова в облике ландшафта.

Это я знаю

2. Вспомните из курса географии 5 класса: 1) что означает слово «география»; 2) что изучает география; 3) для чего география необходима человеку.

География – наука о Земле. Объект изучения географии - земная поверхность со всем ее природным и общественным наполнением. Географические знания для человека имеют огромное практическое значение. В начале своего развития наука давала человеку описание разных территорий и простейшие знания об окружающем мире. Сейчас географические знания неотъемлемая часть многих сфер жизнедеятельности человека. Каждый день все мы слушаем прогноз погоды, в сельском хозяйстве определяют культуры в зависимости от климата и почв, в транспорте прокладывают маршруты и определяют координаты, в добывающей промышленности ведут разведку полезных ископаемых. Для выполнения всех этих и многих других задач необходимы географические знания.

3. Повторите материал одной из тем (по выбору): «План и карта», «Гидросфера». Какие источники информации вы будете использовать при подготовке ответа?

План и карта

План - чертеж, изображающий в условных знаках на плоскости (масштаб крупнее или 1: 10 000) небольшую часть земной поверхности. К элементам плана относят условные знаки, определение направлений, масштаб.

Условные знаки - символы, которые обозначают на плане предметы местности. Для удобства рассмотрения и использования их обычно делают похожими на сами объекты. Направление на север по компасу обозначают стрелкой С-Ю, но если ее нет, то верхний край плана считается северным.

Масштаб - отношение длины линии на чертеже, плане или карте к длине соответствующей линии на местности. Масштаб обозначается в виде дроби, числитель которой равен 1 (единице), а знаменатель - числу, показывающему степень уменьшения длин линий, например М 1: 80 000. Такой масштаб называется числовым и показывает, что уменьшение сделано в 80 тысяч раз. Если сравнить его с масштабом 1: 20 000, при котором уменьшение сделано в 20 тысяч раз, то получим, что во втором масштабе уменьшение сделано в меньшее количество раз, т.е. он является более крупным по сравнению с первым. На физических картах используется линейный масштаб (на горизонтальной линейке откладываются отрезки длиной 1 см, над делением указывают, что размер расстояния на местности соответствует определенному расстоянию на карте).

Неровности земной поверхности, т.е. рельеф и воды на картах отображают двумя способами: с помощью горизонталей - показывают линии с одинаковой абсолютной высотой и изобат - показывают линии одинаковой глубины. Для определения абсолютных высот и глубин на физических картах помещают шкалу высот и глубин. Следует отметить, что при повышении высот от 0 м и более, цвет поверхности на физической карте меняет оттенок со светло-зеленого (равнины) до темно-коричневого (высокие горы). При увеличении глубины цвет поверхности также меняется с голубоватого (0 м) до темно-синего (глубочайшие впадины и желоба). Следовательно, высоту или глубину на физической карте определяют по оттенку цвета, находящемуся в спектре.

Географическая карта - изображение земной поверхности, на котором показано размещение, состояние и взаимосвязь природы и общества, их изменение во времени, развитие и перемещения.

По территориальному охвату различают карты мировые и полушарий; материков, океанов и их частей; государств и их частей.

По содержанию: общегеографические, тематические (посвященные отдельным природным явлениям), социально-экономические. В общегеографических картах выделяют математическую основу (проекция, масштаб, геодезическая основа) и непосредственно картографические изображения (гидрография, рельеф, растительность и почвы, населенные пункты, коммуникации, инфраструктура, политико-административное деление, экономика и культурные объекты). В тематических картах выделяют картографические изображения {географическая основа, т.е. гидрография, границы, населенные пункты, пути сообщения; тематическое содержание) и пояснительные условные знаки (условные знаки, текстовые пояснения, таблица).

По назначению: справочные, учебные, туристские, сельскохозяйственные и др.

По масштабу: мелкомасштабные (мельче 1: 1 ООО ООО), среднемасштабные (от 1: 200 ООО до 1: 1 ООО ООО) и крупномасштабные (масштаб от 1: 200 000 и крупнее). По объекту: материковые, морские, астрономические, планетарные.

4. Какие общие признаки, свойственные литосфере, гидросфере, атмосфере, биосфере, проявляются в особенностях природы вашей местности?

В природе нашей местности (города) можно наблюдать общие признаки всех оболочек. В городе можно наблюдать антропогенные формы рельефа (дороги, каналы, карьеры) свойственные современной литосфере. Мы видим круговорот воды (сток реки, осадки, испарение). Есть овраги – проявление работы текучих вод. Атмосферные изменения – сезонное изменение температуры, давления, осадков, направления ветров.

Табл. 1. Оболочки Земли

Название

АТМОСФЕРА

ГИДРОСФЕРА

БИОСФЕРА

Описание

Воздушная оболочка, нижние границы которой проходят по поверхности гидросферы и литосферы, а верхняя находится на расстоянии около 1 тыс. км. В состав входит ионосфера, стратосфера и тропосфера.

Занимает 71 % поверхности Земли. Средняя соленость - 35 г/л, температура колеблется от 3-32 °С. Солнечные лучи проникают на глубину до 200 м, а ультрафиолетовые - до 800 м.

Включает в себя все живые организмы, которые заселяют атмосферу, гидросферу и литосферу.

Название

ЛИТОСФЕРА

ПИРОСФЕРА

ЦЕНТРОСФЕРА

Описание

Твердая, каменная оболочка, высотой 5-80 км.

Огненная оболочка, которая находится непосредственно под литосферой.

Называют еще ядром Земли. Находится на глубине 1800 км. Состоит из металлов: железа (Fe), никеля (Ni).

Определение. Литосфера - это твердая оболочка Земли, состоящая из земной коры и верхнего слоя - мантии. Толщина ее различна, например, на материках - от 40-80 км, а под морями и океанами - 5-10 км. В состав земной коры входит восемь элементов (табл. 2, рис. 2-9).

Табл. 2. Состав земной коры

Наименование

Изображение

Наименование

Изображение

Кислород (О 2)

Рис. 2. Кислород ()

Железо (Fe)

Кремний (Si)

Магний (Mg)

Водород (Н 2)

Кальций (Ca)

Алюминий (Al)

Рис. 5. Алюминий ()

Натрий (Na)

Литосфера Земли неоднородна. Многие ученые считают, что она разделена глубоководными разломами на отдельные кусочки - плиты. Эти плиты находятся в постоянном движении. Благодаря смягченному слою мантии это движение не заметно человеку, поскольку происходит оно очень медленно. Но, когда плиты сталкиваются, появляются землетрясения, могут образовываться вулканы, горные хребты. В целом, общая площадь суши Земли составляет 148 млн км 2 , из которых 133 млн км 2 пригодны для жизни.

Определение. Почва - это верхний плодородный слой земли, который является средой обитания для многих живых организмов. Почва - это связующее звено между гидро-, лито- и атмосферой. Литосфера необходима растениям, грибам, животным и человеку, поэтому так важно ее оберегать и охранять. Рассмотрим основные источники загрязнения литосферы (Табл. 3, рис. 10-14).

Табл. 3. Источники загрязнения литосферы

Описание

Изображение

Жилые дома и коммунальные предприятия , от которых остается большое количество строительного мусора, пищевых отходов.

Рис. 10. Мусор, отходы ()

Негативное воздействие оказывают и промышленные предприятия , потому что их жидкие, твердые и газообразные отходы попадают в литосферу.

Рис. 11. Отходы промышленных предприятий ()

Воздействие сельского хозяйства , выражается в загрязнении биологическими отходами и ядохимикатами.

Рис. 12. Отходы сельского хозяйства ()

Радиоактивные отходы, в результате Чернобыльской катастрофы и продукты выброса и полураспада радиоактивных веществ пагубно сказываются на любом живом организме.

Рис. 13. Радиоактивные отходы ()

Выхлопные газы , исходящие от транспорта, которые оседают в почве и попадают в круговорот веществ.

Рис. 14. Выхлопные газы ()

Выхлопные газы содержат много тяжелых металлов. Так, ученые подсчитали, что наибольшее количество тяжелых металлов приходится на те почвы, которые находятся в непосредственной близости от автомобильных дорог, в них концентрация тяжелых металлов может быть больше нормы в 30 раз. Примеры тяжелых металлов: свинец (Pb), медь (Cu), кадмий (Cd).

Каждый человек должен понимать то, как важно сохранить среду обитания живых организмов максимально чистой. С этой целью многими учеными разрабатываются методы борьбы с загрязнителями (Табл. 4).

Табл. 4. Методы борьбы с загрязнителями

Характеристика метода

Организация санкционированных свалок , которые занимают огромные площади, а те отходы, что на них находятся, требуют длительной переработки с участием микроорганизмов и кислорода. Соответственно, в атмосферу Земли выделяются вредные токсичные вещества.

Также это приводит к размножению грызунов и насекомых, которые являются переносчиками заболеваний.

Более эффективным способом является организация мусоросжигательных заводов , хотя при сжигании отходов в атмосферу Земли также выделяются токсины. Их пробовали очищать с помощью воды, но тогда эти вещества попадают в гидросферу.

Самым лучшим методом является организация мусороперерабатывающих заводов , при этом часть отходов перерабатывается в компост, который может быть использован в сельском хозяйстве. Часть некомпостируемых веществ может вторично использоваться. Примеры: пластмассы, стекла.

Таким образом, утилизация отходов - проблема всего человечества: как отдельных государств, так и каждого человека.

Определение. Гидросфера - водная оболочка Земли (Схема 1).

Схема 1. Состав гидросферы

95,98 % - моря и океаны;

2 % - ледники;

2 % - подземные воды;

0,02 % - воды суши: реки, озера, болота.

Гидросфера играет важнейшую роль в жизни планеты. Она накапливает тепло и распределяет его по всем материкам. Также с поверхности Мирового океана образуются газообразные пары воды, которые впоследствии выпадают вместе с осадками на сушу. Таким образом, гидросфера взаимодействует и с атмосферой, образуя облака, и с литосферой, выпадая вместе с осадками на землю.

Вода - уникальное вещество, без которого не может обойтись ни один организм, поскольку она участвует во всех обменных процессах. Вода на земле может быть в разных агрегатных состояниях.

Когда-то давно именно в воде зародились самые первые живые организмы. И даже в наши дни все живые организмы находятся в тесной взаимосвязи с водой.

Производства и промышленные предприятия стараются сосредоточить в непосредственной близости от водоемов: рек или крупных озер. В современном мире вода - основной фактор, определяющий производство, а зачастую и участвующий в нем.

Важность гидросферы трудно переоценить, особенно сейчас, когда темпы роста водоснабжения и водопотребления увеличиваются с каждым днем. Многие государства не имеют питьевой воды в требуемом количестве, поэтому наша задача - сохранить воду чистой.

Рассмотрим основные источники загрязнения гидросферы (табл. 5).

Табл. 5. Источники загрязнения гидросферы

Табл. 6. Меры сохранности чистой воды

На сегодня человеческий фактор является основным воздействующим звеном на природу, на все без исключения живые организмы. Но мы не должны забывать, что биосфера сможет обойтись и без нас, а вот мы без нее жить не сможем. Нам нужно научиться жить в гармонии с природой, а для этого необходимо воспитать экологическое мышление.

Следующий урок будет посвящен мерам, которые предпринимают для сохранения жизни на Земле.

Список литературы

  1. Мельчаков Л.Ф., Скатник М.Н., Природоведение: учеб. для 3, 5 кл. сред. шк. - 8-е изд. - М.: Просвещение, 1992. - 240 с.: ил.
  2. Пакулова В.М., Иванова Н.В. Природа: неживая и живая 5. - М.: Дрофа.
  3. Еськов К.Ю. и др./ под ред. Вахрушева А.А. Природоведение 5. - М.: Баласс.
  1. Referat.znate.ru ().
  2. Miteigi-nemoto.livejournal.com ().
  3. Dinos.ru ().

Домашнее задание

  1. Мельчаков Л.Ф., Скатник М.Н., Природоведение: Учеб. для 3, 5 кл. сред. шк. - 8-е изд. - М.: Просвещение, 1992. - с. 233, вопросы задания. 1 - 3.
  2. Расскажите о том, что вам известно о методах борьбы с загрязнителями литосферы.
  3. Расскажите о методах сохранности чистой гидросферы.
  4. * Подготовьте реферат

Для того чтобы определить основные свойства биосферы, необходимо сначала понять с чем мы имеем дело. Какова форма его организации и существования? Как она устроена и взаимодействует с внешним миром? В конечном счете, что это?

С появления термина в конце XIX века и до создания целостного учения биогеохимиком и философом В.И. Вернадским, определение понятия «биосфера» претерпело значительные изменения. Оно перешло из разряда места или территории, где обитают живые организмы в разряд системы, состоящей из элементов или частей, функционирующей по определенным правилам для достижения конкретной цели. Именно от того, в как рассматривать биосферу, и зависит, какие свойства ей присущи.

В основу термина положены древнегреческие слова: βιος - жизнь и σφαρα - сфера или шар. То есть это некоторая оболочка Земли, где есть жизнь. Земля, как самостоятельная планета, по утверждению ученых возникла около 4,5 млрд. лет назад, а еще через миллиард лет на ней появилась жизнь.

Архей, протерозой и фанерозой эон. Эоны состоят из эр. Последний состоит из палеозойской, мезозойской и кайнозойской. Эры из периодов. Кайнозойская из палеогена и неогена. Периоды из эпох. Нынешняя – голоценовая – началась 11,7 тысяч лет назад.

Границы и слои распространения

Биосфера имеет вертикальное и горизонтальное распространение. Вертикально ее принято условно разделять на три слоя, где существует жизнь. Это литосферу, гидросферу и атмосферу. Нижняя граница литосферы достигает 7,5 км от поверхности Земли. Гидросфера располагается между литосферой и атмосферой. Ее максимальная глубина 11 км. Атмосфере покрывает планету сверху и жизнь в ней существует, предположительно, на высоте до 20 км.

Кроме вертикальных слоев, биосфера имеет горизонтальное деление или зональность. Это изменение природной среды от экватора Земли к ее полюсам. Планета имеет форму шара и потому количество поступающих на ее поверхность света и тепла различно. Наиболее крупные зоны — это географические пояса. Начиная от экватора, идет сначала экваториальный, выше тропический, затем умеренный и, наконец, возле полюсов — арктический или антарктический. Внутри поясов располагаются природные зоны: лесов, степи, пустынь, тундры и так далее. Эти зоны характерны не только для суши, но и для Мирового океана. В горизонтальном расположении биосферы есть своя высотность. Она определяется поверхностным строением литосферы и различается от подножия горы к ее вершине.

На сегодняшний день флора и фауна нашей планеты насчитывает порядка 3000000 видов, а это всего лишь 5% от всего количества видов, которые успели «пожить» на Земле. В науке нашли свое описание около 1,5 млн. видов животных и 0,5 млн. видов растений. Есть не только неописанные виды, но и неизведанные области Земли, видовое наполнение которых, неизвестно.

Таким образом, биосфера обладает временной и пространственной характеристикой, а видовой состав живых организмов, ее наполняющий, меняется как во времени, так и в пространстве — по вертикали и горизонтали. Это и привело ученых к выводу, что биосфера не является плоскостной структурой и обладает признаками временной и пространственной изменяемостью. Осталось определить, под влиянием, какого внешнего фактора, она изменяется во времени, пространстве и структуре. Этим фактором является солнечная энергия.

Если принять, что виды всех живых организмов вне зависимости от пространственных и временных рамок, — это части, а их совокупность — целое, то их взаимодействие друг с другом и с внешней средой, является системой. Л фон Берталанфи и Ф.И. Перегудов, давая определение системы, утверждали, что она это комплекс взаимодействующих компонентов, или совокупность элементов, состоящих во взаимоотношениях друг с другом и со средой, или множество взаимосвязанных элементов, обособленных от среды и взаимодействующих с ней, как целое.

Система

Биосферу как единую целостную систему можно условно разделить на составные части. Самое распространенное такое делений – это видовое. Каждый вид животных или растений принимается за составную часть системы. Его также можно признать системой, со своей структурой и составом. Но вид не существует обособленно. Его представители живут на определенной территории, где они взаимодействуют не только между собой и окружающей средой, но и с другими видами. Такое проживание видов, на одной местности, называют экосистемой. Самая маленькая экосистема, в свою очередь, входит в большую. Та в еще большую и так до глобальной – до биосферы. Таким образом, биосферу, как систему, можно рассматривать состоящей из частей, которыми являются либо виды, либо биосферы. Разница лишь в том, что вид можно идентифицировать, потому, как он обладает признаками, отличающими его от других. Он самостоятелен и в другие виды – части не входит. С биосферами такое разграничение невозможно – одна часть другой.

Признаки

Система обладает еще двумя существенными признаками. Она создана для достижения определенной цели и функционирование целой системы эффективнее каждой ее части в отдельности.

Таким образом, свойства как системы, в ее целостности, синергетичности и иерархичности. Целостность заключается в том, что связи между ее частями или внутренние связи гораздо сильнее, чем с окружающей средой или внешние. Синергетичность или системный эффект в том, что возможности всей системы гораздо больше суммы возможностей ее частей. И, хотя каждый элемент системы сам система, тем не менее, он лишь часть общей и большей. В этом ее иерархичность.

Биосфера — это динамическая система, которая изменяет свое состояние под внешним воздействием. Она открыта, потому что обменивается веществом и энергией с внешней средой. У нее сложная структура, так как состоит из подсистем. И, наконец, она естественная система — образовалась в результате природных изменений на протяжении многих лет.

Благодаря этим качествам она может сама себя регулировать и организовывать. Это и есть основные свойства биосферы.

В середине XX века понятие саморегулирования впервые применил американский физиолог Уолтер Кеннон, а английский психиатр и кибернетик Уильям Росс Эшби ввел термин самоорганизации и сформулировал закон о требуемом разнообразии. Этот кибернетический закон формально доказывал, необходимость большого видового разнообразия для устойчивости системы. Чем разнообразие больше, тем вероятность системы удержать свою динамическую стабильность перед большими внешними воздействиями, выше.

Свойства

Реагировать на внешнее влияние, сопротивляться ему и преодолевать, воспроизводить себя и восстанавливать, то есть сохранять свое внутреннее постоянство, такова цель системы под названием биосфера. Эти качества всей системы построены на способности ее части, какой является вид, поддерживать определенную численность или гомеостаз, а также каждой отдельной особи или живого организма сохранять свои физиологические кондиции — гомеостат.

Как видно, эти свойства выработались у нее под влиянием и для противодействия внешним факторам.

Основным внешним фактором является солнечная энергия. Если количество химических элементов и соединений ограничено, то энергия Солнца поступает постоянно. Благодаря ей и происходит миграция элементов по пищевой цепи от одного живого организма к другому и превращение из неорганического состояния в органическое и обратно. Энергия ускоряет протекание этих процессов внутри живых организмов и по скорости реакции они происходят гораздо быстрее, чем во внешней среде. Количество энергии стимулирует к росту, размножению и увеличению численности видов. Разнообразие, в свою очередь, дает возможность дополнительного сопротивления внешнему влиянию, так как возникает возможность дублирования, подстраховки или замены видов в пищевой цепи. Миграция элементов, таким образом, будет дополнительно обеспечена.

Влияние человека

Единственной частью биосферы незаинтересованной в увеличении видового разнообразия системы является человек. Он всячески стремится упростить экосистемы, потому что так он сможет эффективнее за ней следить и регулировать в зависимости от своих потребностей. Потому все биосистемы, искусственно созданные человеком или степень его воздействия, на которые существенна, очень скудны в видовом плане. А их устойчивость и способность к самовосстановлению и саморегулированию стремится к нулю.

С появлением первых живых организмов, они начали менять условия существования на Земле под свои потребности. С появлением человека, уже он стал изменять биосферу планеты так, чтобы его жизнь была максимально комфортной. Именно комфортной, потому что о выживании или сохранении жизни речь не идет. Следуя логике, должно появиться нечто, что будет менять в своих целях уже самого человека. Интересно, что это будет?

Видео — Биосфера и ноосфера

Разберём более подробно составляющие биосферы.

Земная кора – это преобразованная в ходе геологического времени твёрдая оболочка, слагающая верхнюю часть литосферы Земли . Целый ряд минералов земной коры (известняки, мел, фосфориты, нефть, уголь и др.) возникли из тканей погибших организмов. Парадоксальный факт, что сравнительно небольшие живые организмы смогли вызвать явления геологического масштаба, что объясняется их высочайший способностью к размножению. Например, холерный вирион при благоприятных условиях может создать массу вещества, равную массе земной коры всего за 1,75 суток! Можно предположить, что в биосферах прежних эпох колоссальные массы живого вещества перемещались по планете, образуя в результате гибели запасы нефти, угля и т.п.

Биосфера существует, используя многократно одни и те же атомы. При этом на долю 10 элементов, расположенных в первой половине периодической системы (кислород – 29,5%, натрий, магний – 12,7%, алюминий, кремний – 15,2%, сера, калий, кальций, железо – 34,6%) приходится 99% всей массы нашей планеты (масса Земли – 5976*10 21 кг), а 1% на долю остальных элементов . Однако значение этих элементов очень велико – они играют существенную роль в живом веществе.

В.И. Вернадский разделил все элементы биосферы на 6 групп, каждая из которых выполняет определенные функции в жизни биосферы . Первая группа инертные газы (гелий, криптон, неон, аргон, ксенон). Вторая группа благородные металлы (рутений, палладий, платина, осмий, иридий, золото). В земной коре элементы этих групп химически малоактивны, их масса незначительна (4,4*10 -4 % от массы земной коры), а участие в образовании живого вещества слабо изучено. Третья группа – лантаноиды (14 химических элементов - металлов) составляют 0,02% от массы земной коры и их роль в биосфере не изучена. Четвертая группа радиоактивные элементы являются основным источником образования внутреннего тепла Земли и оказывают влияние на рост живых организмов (0,0015% массы земной коры). Некоторые элементы пятой группы – рассеянные элементы (0,027% земной коры) – играют существенную роль в жизни организмов (например, йод и бром). Самую большую шестую группу составляют циклические элементы , которые, пройдя ряд превращений в геохимических процессах, возвращаются к исходным химическим состояниям. К этой группе относятся 13 легких элементов (водород, углерод, азот, кислород, натрий, магний, алюминий, кремний, фосфор, сера, хлор, калий, кальций) и один тяжелый элемент (железо) .

Биота – это совокупность всех видов растений, животных и микроорганизмов. Биота является активной частью биосферы, определяющей все важнейшие химические реакции, в результате которых создаются основные газы биосферы (кислород, азот, окись углерода, метан) и устанавливаются между ними количественные соотношения. Биота непрерывно образует биогенные минералы и поддерживает постоянный химический состав океанических вод. Её масса составляет не более 0,01% от массы всей биосферы и ограничивается количеством углерода в биосфере. Основную биомассу составляют зеленые растения суши – около 97%, а биомасса животных и микроорганизмов – 3%.

Биота в основном состоит из циклических элементов. Особенно велика роль таких элементов, как углерод, азот и водород, процентное содержание которых в биоте выше, чем в земной коре (углерода в 60 раз, азота и водорода в 10 раз) . На рисунке приведена схема замкнутого углеродного цикла. Только благодаря круговороту основных элементов в таких циклах (прежде всего углерода) возможно существование жизни на Земле.

Загрязнение литосферы. Жизнь, биосфера и важнейшее звено и в ее механизме – почвенный покров, привычно называемый землей, – составляют уникальность нашей планеты во вселенной. И в эволюции биосферы, в явлениях жизни на Земле значение почвенного покрова (суши, мелководий и шельфа) как особой планетарной оболочки неизменно возросло.

Почвенный покров – важнейшее природное образование. Его роль в жизни общества определяется тем, что почва представляет собой основной источник продовольствия, обеспечивающий 95-97% продовольственных ресурсов для населения планеты . Особое свойство почвенного покрова – его плодородие , под которым понимается совокупность свойств почвы, обеспечивающих урожай сельскохозяйственных культур . Естественное плодородие почвы связано с запасом питательных веществ в ней и ее водным, воздушным и тепловым режимами. Почва обеспечивает потребность растений в водном и азотном питании, являясь важнейшим агентом их фотосинтетической деятельности. Плодородие почвы зависит также от величины аккумулированной в ней солнечной энергии. Почвенный покров принадлежит к саморегулирующейся биологической системе, являющейся важнейшей частью биосферы в целом. Живые организмы, растения и животные, населяющие Землю, фиксируют солнечную энергию в форме фито– или зоомассы. Продуктивность наземных экосистем зависит от теплового и водного балансов земной поверхности, который определяет многообразие форм обмена энергией и веществом в пределах географической оболочки планеты.

Особое внимание нужно уделить земельным ресурсам. Площадь земельных ресурсов мира составляет 149 млн. км 2 , или 86,5% площади суши . Пашня и многолетние насаждения в составе сельскохозяйственных угодий в настоящее время занимают около 15 млн. км 2 (10% суши), сенокосы и пастбища – 37.4 млн. км 2 (25%) .Общая площадь пахотнопригодных земель оценивается различными исследователями по-разному: от 25 до 32 млн. км 2. Земельные ресурсы планеты позволяют обеспечить продуктами питания больше населения, чем имеется в настоящее время и будет в ближайшем будущем. Вместе с тем в связи с ростом населения, особенно в развивающихся странах, количество пашни на душу населения сокращается. Еще 10-15 лет назад душевная обеспеченность пашней населения Земли составляла 0,45-0,5га, в настоящее время она составляет уже 0,35-37 га .

Все пригодные для употребления вещественные составляющие литосферы, используемые в хозяйстве как сырье или источники энергии, называются минеральными ресурсами . Минеральное сырье может быть рудным , если из него извлекаются металлы, и нерудным , если из него извлекаются неметаллические компоненты (фосфор и т.д.) или используются как строительные материалы .

Если же минеральное богатство используется как топливо (уголь, нефть, газ, горючие сланцы, торф, древесина, атомная энергия) и одновременно как источник энергии в двигателях для получения пара и электричества, то их называют топливно-энергетическими ресурсами .

Гидросфера . Вода занимает преобладающую часть биосферы Земли (71% земной поверхности) и составляет около 4% массы земной коры. Её средняя мощность равна 3,8 км, средняя глубина – 3554м, площадь: 1350 млн. км 2 – океаны, 35 млн. км 2 – пресные воды .

На массу океанической воды приходится 97% массы всей гидросферы (2*10 21 кг). Роль океана в жизни биосферы огромна: в нем протекают основные химические реакции, обуславливающие производство биомассы и химическую очистку биосферы. Так, за 40 дней поверхностный пятисотметровый слой воды в океане проходит через фильтрационный аппарат планктона, следовательно (с учетом перемешивания) в течение года вся океаническая вода океана подвергается очистке. Все составляющие гидросферы (водяные пары атмосферы, воды морей, рек, озер, ледников, болот, подземные воды) находятся в непрерывном движении и обновлении.

Вода – основа биоты (живое вещество на 70% состоит из воды) и ее значение в жизни биосферы является определяющим. Можно назвать такие важнейшие функции воды, как:

1. производство биомассы;

2. химическая очистка биосферы;

3. обеспечение углеродного баланса;

4. стабилизация климата (вода выполняет роль буфера в тепловых процессах на планете).

Огромное значение мирового океана состоит в том, что он продуцирует своим фитопланктоном почти половину всего кислорода атмосферы, т.е. является своего рода «легкими» планеты. При этом растения и микроорганизмы океана в процессе фотосинтеза усваивают ежегодно значительно большую часть углекислого газа, чем поглощают растения на суше.

Живые организмы океана гидробионаты – подразделяются на три основные экологические группы: планктон, нектон и бентос . Планктон – совокупность пассивно плавающих и переносимых морскими течениями растений (фитопланктон), живых организмов (зоопланктон) и бактерий (бактериопланктон). Нектон – это группа активно плавающих живых организмов, перемещающихся на значительные расстояния (рыбы, китообразные, тюлени, морские змеи и черепахи, кальмары осьминоги и др.). Бентос – это организмы, обитающие на морском дне: сидячие (кораллы, водоросли, губки); роющие (черви, моллюски); ползающие (ракообразные, иглокожие); свободно плавающие у самого дна. Наиболее богаты бентосом прибрежные районы океанов и морей .

Мировой океан – источник огромных минеральных ресурсов. Уже сейчас из него добывается нефть, газ, 90% брома, 60% магния, 30% поваренной соли и т.д . В океане имеются огромные запасы золота, платины, фосфоритов, окислов железа и марганца, других минералов. Уровень добычи полезных ископаемых в океане постоянно растет.

Загрязнение гидросферы. Во многих регионах мира состояние водоемов вызывает большую тревогу. Загрязнение водных ресурсов не без основания рассматривается сейчас как самая серьезная угроза окружающей среде. Речная сеть фактически функционирует как естественная канализационная система современной цивилизации.

Наиболее загрязненными оказываются внутренние моря . Они имеют более длинную береговую линию и поэтому больше подвержены загрязнениям. Накопленный опыт борьбы за чистоту морей свидетельствует о том, что это несравнимо более трудная задача, чем охрана рек и озер.

Процессы загрязнения вод обусловлены различными факторами. Основные из них: 1) сброс в водоёмы неочищенных сточных вод; 2) смыв ядохимикатов ливневыми осадками; 3) газодымовые выбросы; 4) утечка нефти и нефтепродуктов .

Наибольший вред водоёмам причиняет выпуск в них неочищенных сточных вод – промышленных, коммунально-бытовых, коллекторно-дренажных и др. Промышленные сточные воды загрязняют экосистемы различными компонентами в зависимости от специфики отраслей промышленности.

Уровень загрязнения российских морей (за исключением Белого моря), по данным Государственного доклада «О состоянии окружающей среды Российской Федерации», в 1998г. превышал ПДК по содержанию углеводородов, тяжелых металлов, ртуть; поверхностно активных веществ (ПАВ) в среднем в 3-5 раз .

Попадание загрязнений на дно океана оказывает серьезное влияние на характер биохимических процессов. В связи с этим приобретает особое значение оценка экологической безопасности при планируемой добычи полезных ископаемых со дна океана, прежде всего железно-марганцевых конкреций, содержащих марганец, медь, кобальт и другие ценные металлы. В процессе сгребания дна на длительный период будет уничтожена сама возможность жизни на дне океана, а попадание на поверхность извлеченных со дна веществ может вредно отразиться на воздушной атмосфере региона.

Огромный объем Мирового океана свидетельствует о неисчерпаемости природных ресурсов планеты. Кроме того, Мировой океан является коллектором речных вод суши, ежегодно принимая около 39 тыс. км 3 воды . Наметившееся загрязнение Мирового океана грозит нарушить естественный процесс влагооборота в его наиболее ответственном звене – испарении с поверхности океана.

В Водном Кодексе Российской Федерации понятие «водные ресурсы » определяется как «запасы поверхностных и подземных вод, находящиеся в водных объектах, которые используются или могут быть использованы» . Вода является важнейшим компонентом окружающей среды, возобновляемым, ограниченным и уязвимым природным ресурсом, используется и охраняется в Российской Федерации как основа жизни и деятельности народов, проживающих на ее территории, обеспечивают экономическое, социальное, экологическое благополучие населения, существование животного и растительного мира.

Всякий водоем или водный источник связан с окружающей его внешней средой. На него оказывают влияние условия формирования поверхностного или подземного водного стока, разнообразные природные явления, индустрия, промышленное и коммунальное строительство, транспорт, хозяйственная и бытовая деятельность человека. Последствием этих влияний является привнесение в водную среду новых, несвойственных ей веществ – загрязнителей, ухудшающих качество воды. Загрязнения, поступающие в водную среду, классифицируют по-разному, в зависимости от подходов, критериев и задач. Так, обычно выделяют химическое, физическое и биологическое загрязнения. Химическое загрязнение представляет собой изменение естественных химических свойств воды за счет увеличения содержания в ней вредных примесей как неорганической (минеральные соли, кислоты, щелочи, глинистые частицы), так и органической природы (нефть и нефтепродукты, органические остатки, поверхностно активные вещества, пестициды) .

Несмотря на огромные средства, затрачиваемые на строительство очистных сооружений, многие реки по-прежнему остаются грязными, особенно на урбанизированных территориях. Процессы загрязнения коснулись даже Мирового океана. И это не кажется удивительным, так как все попавшие в реки поллютанты в конечном счете устремляются в океан и достигают его, если являются трудно разлагаемыми .

Экологические последствия загрязнения морских экосистем выражаются в следующих процессах и явлениях :

    нарушение устойчивости экосистем;

    прогрессирующий эвтрофикации;

    появление «красных приливов»;

    накопление химических токсикантов в биоте;

    снижение биологической продуктивности;

    возникновение мутагенеза и канцерогенеза в морской среде;

    микробиологическое загрязнение прибрежных районов мира.

Защита водной экосистемы сложная и очень важная проблема. С этой целью предусматриваются следующие экозащитные мероприятия:

– развитие безотходных и безводных технологий; внедрение систем оборотного водоснабжения;

– очистка сточных вод (промышленных, коммунально-бытовых и др.);

– закачка сточных вод в глубокие водоносные горизонты;

– очистка и обеззараживание поверхностных вод, используемых для водоснабжения и других целей .

Главный загрязнитель поверхностных вод – сточные воды, поэтому разработка и внедрение эффективных методов очистки сточных вод представляется весьма актуальной и экологически важной задачей. Наиболее действенным способом защиты поверхностных вод от загрязнения их сточными водами является разработка и внедрение безводной и безотходной технологии производства, начальным этапом которой является создание оборотного водоснабжения.

При организации системы оборотного водоснабжения в неё включают ряд очистных сооружений и установок, что позволяет создать замкнутый цикл использования производственных и бытовых сточных вод. При таком способе водоподготовки сточные воды все время находятся в обороте и попадание их в поверхностные водоемы полностью исключено.

Ввиду огромного многообразия состава сточных вод существуют различные способы их очистки: механический, физико-химический, химический, биологический и др. В зависимости от степени вредности и характера загрязнений очистка сточных вод может производиться каким-либо одним способом или комплексом методов (комбинированный способ). В процессе очистки предусматривают обработку осадка (или избыточной биомассы) и обеззараживание сточных вод перед сбросом их в водоем .

В последние годы активно разрабатываются новые эффективные методы, способствующие экологичности процессов очистки сточных вод:

– электрохимические методы, основанные на процессах анодного окисления и катодного восстановления, электрокоагуляции и электрофлотации;

– мембранные процессы очистки (ультрафильтры, электродиализ, и другие);

– магнитная обработка, позволяющая улучшить флотацию взвешенных частиц;

– радиационная очистка воды, позволяющая в кратчайшие сроки подвергать загрязняющие вещества окислению, коагуляции и разложению;

– озонирование, при котором в сточных водах не образуется веществ, отрицательно воздействующих на естественные биохимические процессы;

– внедрение новых селективных типов для избирательного выделения полезных компонентов из сточных вод с целью вторичного использования, и другие .

Известно, что роль в заражении водных объектов играют пестициды и удобрения, смываемые поверхностным стоком с сельскохозяйственных угодий. Для предотвращения попадания загрязняющих стоков в водоемы необходим комплекс мероприятий, включающих:

    соблюдение норм и сроков внесения удобрений и ядохимикатов;

    очаговую и ленточную обработку пестицидами вместо сплошной;

    внесение удобрений в виде гранул и по возможности вместе с поливной водой;

    замену ядохимикатов биологическими способами защиты растений.

Мероприятия по охране вод и морей и Мирового океана заключаются в устранении причин ухудшения качества и загрязнения вод . Особые меры по предупреждению загрязнения морской воды следует предусматривать при разведке и освоении нефтяных и газовых месторождений на материковых шельфах. Необходимо ввести запрет на захоронение токсичных веществ в океане, сохранять мораторий на испытание ядерного оружия.

Атмосфера –воздушная средавокруг Земли, ее масса около 5,15*10 18 кг. Она имеет слоистое строение и состоит из нескольких сфер, между которыми располагаются переходные слои – паузы. В сферах изменяется количество воздуха и температура .

В зависимости от распределения температуры атмосферу подразделяют на:

тропосферу (протяженность её по высоте в средних широтах составляет 10-12 км над уровнем моря, на полюсах – 7-10, над экватором – 16-18 км, здесь сосредоточено более 4/5 массы земной атмосферы; из-за неравномерности нагрева земной поверхности в тропосфере образуются мощные вертикальные токи воздуха, отмечаются неустойчивость температуры, относительной влажности, давления, температура воздуха в тропосфере по высоте уменьшается на 0,6 о С на каждые 100м и колеблется от +40 до –50 о С);

стратосферу (имеет протяженность около 40 км, воздух в ней разрежен, влажность невысокая, температура воздуха от –50 до 0 о С на высотах около 50 км; в стратосфере под воздействием космического излучения и коротковолновой части ультрафиолетового излучения солнца молекулы воздуха ионизируются, в результате чего образуется озоновый слой, находящийся на высоте 25-40 км);

мезосферу (от 0 до –90 о С на высотах 50-55 км);

термосферу (для неё характерно непрерывное повышение температуры с увеличением высоты – на высоте 200км 500 о С, а на высоте 500-600 км превышает 1500 о С; в термосфере газы очень разрежены, их молекулы движутся с большой скоростью, но редко сталкиваются между собой и поэтому не могут вызвать даже небольшого нагревания находящегося здесь тела);

экзосферу (от нескольких сотен км).

Неравномерность нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли.

Газовый состав атмосферы следующий: азот (79,09%), кислород (20,95%), аргон (0,93%), углекислый газ (0,03%) и незначительное количество инертных газов (гелий, неон, криптон, ксенон), аммиака, метана, водорода и др. . В нижних слоях атмосферы (20 км) содержится водяной пар, количество которого с высотой быстро убывает. На высоте 110-120 км кислород почти весь становится атомарным. Предполагается, что выше 400-500 км и азот находится в атомарном состоянии. Кислородно-азотный состав сохраняется примерно до высоты 400-600 км . Слой озона, предохраняющий живые организмы от вредного коротковолнового излучения, расположен на высоте 20-25 км. Выше 100 км растет доля легких газов, и на очень больших высотах преобладают гелий и водород; часть молекул газов распадаются на атомы и ионы, образуя ионосферу . Давление и плотность воздуха с высотой убывают.

Загрязнение атмосферы. Атмосфера оказывает огромное влияние на биологические процессы на суше и в водоемах. Содержащийся в ней кислород используется в процессе дыхания организмов и при минерализации органического вещества, углекислый газ расходуется в ходе фотосинтеза автотрофными растениями, озон снижает вредное для организмов ультрафиолетовое излучение солнца. Кроме того, атмосфера способствует сохранению тепла Земли, регулирует климат, воспринимает газообразные продукты обмена веществ, переносит водяные пары по планете и т.д. Без атмосферы невозможно существование сколько-нибудь сложных организмов. Поэтому вопросы предотвращения загрязнения атмосферы всегда были и остаются актуальными.

Для оценки состава и загрязнения атмосферы используется понятие концентрации (С, мг/м 3).

Чистый естественный воздух имеет следующий состав (в % об): азот 78,8 %; кислород 20,95 %; аргон 0,93 %; СО 2 0,03 %; прочие газы 0,01 %. Считается, что такому составу должен соответствовать воздух на высоте 1м над поверхностью океана вдали от берегов .

Как и для всех других составляющих биосферы, для атмосферы существуют два главных источника загрязнения: естественный и антропогенный (искусственный). Вся классификация источников загрязнения может быть представлена по вышеприведенной структурной схеме: промышленность, транспорт, энергетика – основные источники загрязнения воздушного бассейна. По характеру воздействия на биосферу загрязнители атмосферы можно разделить на 3 группы:1) влияющие на глобальное потепление климата; 2) разрушающие биоту; 3) разрушающие озоновый слой.

Отметим краткие характеристики некоторых загрязнителей атмосферы.

К загрязнителям первой группы следует отнести СО 2 , закись азота, метан, фреоны . В создание «парникового эффекта » главный вклад вносит углекислый газ, концентрация которого ежегодно возрастает на 0,4% (более подробно о парниковом эффекте рассматривается в главе 3.3). По сравнению с серединой XIX века содержание СО 2 возросло на 25%, закиси азота на 19%.

Фреоны – химические соединения, несвойственные атмосфере, используемые в качестве хладагентов – повинны на 25% в создании парникового эффекта в 90-е годы. Расчеты показывают, что, несмотря на Монреальское соглашение 1987г. об ограничении использования фреонов, к 2040г. концентрация основных фреонов существенно возрастёт (хлорфторуглерода с 11 на 77%, хлорфторуглерода – с 12 на 66%), что приведет к усилению парникового эффекта на 20% . Возрастание содержания метана в атмосфере произошло незначительно, однако удельный вклад этого газа примерно в 25 раз выше, чем углекислого газа. Если не прекратить поступление в атмосферу «парниковых» газов, среднегодовые температуры на Земле к концу XXI века поднимутся в среднем на 2,5-5°С. Необходимо: сократить сжигание углеводородного топлива и сведение лесов. Последнее опасно, кроме того, что приведет к увеличению углерода в атмосфере, также вызовет снижение ассимилирующей способности биосферы.

К загрязнителям второй группы следует отнести двуокись серы, взвешенные твердые частицы, озон, окись углерода, окись азота, углеводороды . Из этих веществ в газообразном состоянии наибольший ущерб биосфере наносят двуокись серы и окислы азота, которые в процессе химических реакций преобразуются в мелкие кристаллы солей серной и азотной кислоты. Наиболее острой является проблема загрязнения атмосферы серосодержащими веществами. Диоксид серы оказывает вредное действие на растения. Поступая внутрь листа при дыхании, SO 2 угнетает жизнедеятельность клеток. При этом листья растений сначала покрываются бурыми пятнами, а потом засыхают.

Диоксид серы и другие ее соединения раздражают слизистую оболочку глаз и дыхательные пути. Продолжительное действие малых концентраций SO 2 ведет к возникновению хронического гастрита, гепатопатии, бронхита, ларингита и других болезней. Есть сведения о связи между содержанием SO 2 в воздухе и уровнем смертности от рака легких .

В атмосфере SO 2 окисляется до SO 3 . Окисление происходит каталитически под воздействием следов металлов, главным образом марганца. Кроме того, газообразный и растворенный в воде SO 2 может окисляться озоном или пероксидом водорода. Соединяясь с водой, SO 3 образует серную кислоту, которая с металлами, имеющимися в атмосфере, образует сульфаты. Биологическое действие кислых сульфатов при равенстве концентраций более выражено по сравнению с SO 2 . Диоксид серы существует в атмосфере от нескольких часов до нескольких дней в зависимости от влажности и других условий.

Вообще аэрозоли солей и кислот проникают в чувствительные ткани легких, опустошают леса и озера, снижают урожай, разрушают постройки, архитектурные и археологические памятники. Взвешенные твердые частицы представляют опасность для здоровья населения, превосходящую опасность кислотных аэрозолей. В основном это опасность больших городов. Особенно вредные твердые вещества содержатся в выхлопных газах дизелей и двухтактных бензиновых двигателей. Большинство твердых частиц в воздухе промышленного происхождения в развитых странах успешно улавливаются всевозможными техническими средствами.

Озон в приземном слое появляется в результате взаимодействия углеводородов, образующихся при неполном сгорании топлива в автомобильных двигателях и выделяющихся при многих производственных процессах, с окислами азота. Это один из наиболее опасных загрязнителей, поражающих органы дыхания. Он наиболее интенсивен в жаркую погоду.

Окись углерода, окислы азота и углеводороды в основном поступают в атмосферу с выхлопными газами автомобилей. Все перечисленные химические соединения оказывают разрушительное действие на экосистемы при концентрациях даже более низких, чем допустимые для человека, а именно: закисляют водные бассейны, убивая в них живые организмы, губят леса, снижают урожаи сельскохозяйственных культур (особенно опасен озон). Исследования в США показали, что современные концентрации озона снижают урожай сорго и кукурузы на 1%, хлопка и соевых бобов – на 7%, люцерны – более чем на 30% .

Из загрязнителей разрушающих стратосферный озоновый слой следует отметить фреоны, азотные соединения, выхлопы сверхзвуковых самолетов и ракет.

Основным источником хлора в атмосфере считаютсяфторхлороуглеводороды, широко используемые в качестве холодильных агентов. Они используются не только в холодильных установках, но и в многочисленных бытовых аэрозольных баллонах с красками, лаками, инсектицидами. Молекулы фреонов отличаются стойкостью и способны практически без изменений переноситься с атмосферными массами на огромные расстояния. На высотах 15–25км (зона максимального содержания озона) они подвергаются воздействию ультрафиолетовых лучей и распадаются с образованием атомарного хлора.

Установлено, что за последнее десятилетие потери озонового слоя составили 12–15% в полярных и 4–8% в средних широтах . В 1992 году были установлены ошеломляющие результаты: на широте Москвы обнаружены участки с потерей озонового слоя до 45%. Уже сейчас по причине усиления ультрафиолетовой инсоляции наблюдается снижение урожаев в Австралии и Новой Зеландии, увеличение заболеваний раком кожи .

Техногенные вещества биосферы, оказывающие вредное воздействие на биоту, классифицируются следующим образом (приводится общая классификация, справедливая не только для газообразных веществ) . По степени опасности все вредные вещества разделены на четыре класса (табл.2):

I – чрезвычайно опасные вещества;

II – высоко опасные вещества;

III – умеренно опасные вещества;

IV – малоопасные вещества.

Отнесение вредного вещества к классу опасности производят по показателю, значение которого соответствует наиболее высокому классу опасности.

Здесь: А) – концентрация, которая при ежедневной (кроме выходных дней) работе в течение 8ч, или другой продолжительности, но не более 41ч в неделю, в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений;

Б) – доза вещества, вызывающая гибель 50% животных при однократном введении в желудок;

В) – доза вещества, вызывающая гибель 50% животных при однократном нанесении на кожу;

Г) – концентрация вещества в воздухе, вызывающая гибель 50% животных при 2-4 часовом ингаляционном воздействии;

Д) – отношение максимально допустимой концентрации вредного вещества в воздухе при 20 о С к средней смертельной концентрации для мышей;

Е) – отношение средней смертельной концентрации вредного вещества к минимальной (пороговой) концентрации, вызывающей изменение биологических показателей на уровне целостного организма, выходящих за пределы приспособительных физиологических реакций;

Ж) – Отношение минимальной (пороговой) концентрации, вызывающей изменение биологических показателей на уровне целостного организма, выходящих за пределы приспособительных физиологических реакций, к минимальной (пороговой) концентрации, вызывающей вредное действие в хроническом эксперименте по 4ч, 5раз в неделю на протяжении не менее 4-х месяцев.

Таблица 2 Классификация вредных веществ

Показатель

Норма для класса опасности

(А) Предельно допустимая концентрация (ПДК) вредных веществ в воздухе рабочей зоны, мг/м 3

(Б) Средняя смертельная доза при введении в желудок (ССДЖ), мг/кг

более 5000

(В) Средняя смертельная доза при нанесении на кожу (ССДК), мг/кг

более 2500

(Г) Средняя смертельная концентрация в воздухе (ССКВ), мг/м 3

более 50000

(Д) Коэффициент возможности ингаляционного отравления (КВИО)

(Е) Зона острого действия (ЗОД)

(Ж) Зона хронического действия (ЗХД)

более 10,0

Опасность загрязняющих атмосферу веществ для здоровья человека, зависит не только от их содержания в воздухе, но и от класса опасности. Для сравнительной оценки атмосферы городов, районов с учетом класса опасности загрязняющих веществ используется индекс загрязнения атмосферы.

Единичный и комплексный индексы загрязнения атмосферы могут рассчитываться для разных временных интервалов – за месяц, год. При этом в расчетах используются среднемесячная и среднегодовая концентрация загрязняющих веществ.

Для тех загрязняющих веществ, для которых не установлены ПДК (предельно допустимая концентрация ), устанавливается ориентировочно безопасные уровни воздействия (ОБУВ) . Как правило, это объясняется тем, что не накоплен опыт их применения, достаточный для суждения об отдаленных последствиях воздействия их на население. Если в технологических процессах выделяется и поступает в воздушную среду вещества, на которые нет утвержденных ПДК или ОБУВ, предприятия обязаны обращаться в территориальные органы Минприроды для установления временных нормативов. Кроме того, для некоторых веществ, загрязняющих воздух от случая к случаю, установлены только разовые ПДК (например, для формалина).

Для некоторых тяжелых металлов нормируются не только среднесуточное содержание в атмосферном воздухе (ПДК сс), но и предельно допустимая концентрация при разовых замерах (ПДК рз) в воздухе рабочей зоны (например, для свинца – ПДК сс =0,0003мг/м 3 , а ПДК рз =0,01мг/м 3) .

Нормируются также допустимые концентрации пылей и пестицидов в атмосферном воздухе. Так, для пылей, содержащих диоксид кремния, ПДК зависит от содержания в ней свободной SiO 2 при изменении содержания SiO 2 от 70% до 10% ПДК меняется от 1мг/м 3 до 4,0 мг/м 3 .

Некоторые вещества обладают однонаправленным вредным воздействием, которое называется эффектом суммации (например, ацетон, акролеин, фталевый ангидрид – 1 группа).

Антропогенные загрязнения атмосферы можно характеризовать по длительности присутствия в атмосфере, по скорости возрастания их содержания, по масштабу влияния, по характеру влияния.

Длительность присутствия одних и тех же веществ различна в тропосфере и стратосфере. Так, CO 2 присутствует в тропосфере 4 года, а в стратосфере – 2 года, озон – 30-40 суток в тропосфере, и 2 года в стратосфере, а окись азота – 150 лет (и там, и там) .

Различна скорость накопления загрязнений в атмосфере (вероятно, связанная с утилизационной способностью биосферы). Так содержание CO 2 возрастает по 0,4% в год, а окислов азота – по 0,2% в год .

Основные принципы гигиенического нормирования атмосферных загрязнителей.

В основе гигиенического нормирования атмосферных загрязнений лежат следующие критерии вредности атмосферных загрязнений :

1. Допустимой может быть признана только такая концентрация того или иного вещества в атмосферном воздухе, которая не оказывает на человека прямого или косвенного вредного и неприятного действия, не снижает его работоспособности, не влияет на самочувствие и настроение.

2. Привыкание к вредным веществам должно рассматриваться как неблагоприятный момент и доказательство недопустимости изучаемой концентрации.

3. Недопустимы такие концентрации вредных веществ, которые неблагоприятно влияют на растительность, климат местности, прозрачность атмосферы и бытовые условия жизни населения .

Решение вопроса о допустимом содержании атмосферных загрязнений основывается на представлении о наличие порогов в действии загрязнений.

При научном обосновании ПДК вредных веществ в атмосферном воздухе используют принцип лимитирующего показателя (нормирование по наиболее чувствительному показателю). Так, если запах, ощущается при концентрациях, не оказывающих вредного влияния на организм человека и внешнюю среду, нормирование осуществляют с учетом порога обоняния. Если вещество оказывает на окружающую среду вредное действие в меньших концентрациях, то при гигиеническом нормировании учитывают порог действия этого вещества на внешнюю среду .

Для веществ, загрязняющих атмосферный воздух, в России установлены два норматива: разовая и среднесуточная ПДК .

Максимальная разовая ПДК устанавливается для предупреждения рефлекторных реакций у человека (ощущения запаха, изменение биоэлектрической активности мозга, световой чувствительности глаз и др.) при кратковременном (до 20 минут) воздействии атмосферных загрязнений, а среднесуточная – с целью предупреждения их резорбтивного (общетоксичного, мутагенного, канцерогенного и др.) влияний.

Таким образом, все составляющие биосферы испытывают на себе колоссальное техногенное влияние человека. В настоящее время есть все основания говорить о техносфере как о «сфере неразумности».

Вопросы для самоконтроля

1. Групповая классификация элементов биосферы В.И. Вернадского.

2. Какими факторами определяется плодородие почвы?

3. Что такое «гидросфера»? Распределение и роль воды в природе.

4. В каких формах присутствуют вредные примеси в сточных водах, и как это отражается на выборе способов очистки сточных вод?

5. Отличительные особенности разных слоёв атмосферы.

6. Понятие вредного вещества. Классы опасности вредных веществ.

7. Что такое ПДК? Единицы измерения ПДК в воздухе и в воде. Где кон­тролируются ПДК вредных веществ?

8. Каким образом подразделяются источники выделения и выбросов вредных веществ в атмосферу?

3.3 Кругооборот веществ в биосфере . Биосферный цикл углерода. Парниковый эффект: механизм возникновения и возможные последствия.

Процессы фотосинтеза органических веществ продолжаются сотни миллионов лет. Но поскольку Земля конечное физическое тело, то любые химические элементы также физически конечны. За миллионы лет они должны, казалось бы, оказаться исчерпанными. Однако этого не происходит. Более того, человек постоянно интенсифицирует этот процесс, повышая продуктивность созданных им экосистем.

Все вещества на нашей планете находятся в процессе биохимического кругооборота веществ. Выделяют 2 основных кругооборота большой или геологический и малый или химический .

Большой кругооборот длится миллионы лет. Он заключается в том, что горные породы подвергаются разрушению, продукты разрушения сносятся потоками воды в Мировой океан или частично возвращаются на сушу вместе с осадками. Процессы опускания материков и поднятия морского дна в течение длительного времени приводят к возвращению на сушу этих веществ. И процессы начинаются вновь.

Малый кругооборот , являясь частью большого, происходит на уровне экосистемы и заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и жизненные процессы. Продукты распада почвенной микрофлоры вновь разлагаются до минеральных компонентов, доступных растениям и вновь вовлекаются в поток вещества.

Кругооборот химических веществ из неорганической среды через растения и животные обратно в неорганическую среду с использованием солнечной энергии химической реакций называется биохимическим циклом .

Сложный механизм эволюции на Земле определяется химическим элементом «углерод». Углерод – составная часть скальных пород и в виде диоксида углерода содержится в части атмосферного воздуха. Источниками СО 2 являются вулканы, дыхание, лесные пожары, сжигание топлива, промышленность и др.

Атмосфера интенсивно обменивается углекислым газом с мировым океаном, где его в 60 раз больше, чем в атмосфере, т.к. СО 2 хорошо растворяется в воде (чем ниже температура – тем выше растворимость, т.е. его больше в низких широтах) . Океан действует как гигантский насос: поглощает СО 2 в холодных областях и частично «выдувает» в тропиках.

Избыточное количество оксида углерода в океане соединяется с водой, образуя угольную кислоту. Соединяясь с кальцием, калием, натрием, образует стабильные соединения в виде карбонатов, которые оседают на дно.

Фитопланктон в океане в процессе фотосинтеза поглощает углекислый газ. Умершие организмы попадают на дно и становятся частью осадочных пород. Это показывает взаимодействие большого и малого кругооборота веществ.

Углерод из молекулы СО 2 в ходе фотосинтеза включается в состав глюкозы, а затем в состав более сложных соединений, из которых построены растения. В дальнейшем они переносятся по пищевым цепям и образуют ткани всех остальных живых организмов в экосистеме и возвращаются в окружающую среду в составе СО 2 .

Также углерод присутствует в нефти и угле. Сжигая топливо, человек также завершает цикл углерода, содержащегося в топливе – так возникает биотехнический кругооборот углерода .

Оставшаяся масса углерода находится в карбонатных отложениях дна океана (1,3-10т), в кристаллических породах (1-10т), в угле и нефти (3,4-10т) . Этот углерод принимает участие в экологическом кругообороте. Жизнь на Земле и газовый баланс атмосферы поддерживается относительно небольшим количеством углерода (5-10т) .

Есть распространённое мнение, что глобальное потепление климата и его последствия угрожает нам из-за промышленного выделения тепла. То есть вся энергия, расходуемая в быту, промышленности и на транспорте, нагревает Землю и атмосферу. Однако, простейшие расчеты показывают, что обогрев Земли Солнцем на много порядков выше результатов человеческой деятельности.

Ученые же вероятной причиной глобального потепления считают рост концентрации углекислого газа в атмосфере Земли. Именно он служит причиной так называемого « парникового эффекта ».

Что же такое парниковый эффект ? С подобным явлением мы очень часто сталкиваемся. Общеизвестно, что при одинаковой дневной температуре ночная бывает различной, в зависимости от облачности. Облачность укрывает землю, словно одеялом, и пасмурная ночь бывает градусов на 5-10 теплее безоблачной при той же дневной температуре. Однако, если облака, представляющие собой мельчайшие капельки воды, не пропускают тепло как наружу, так и от Солнца к Земле, то углекислый газ работает как диод – к Земле тепло от Солнца поступает, обратно – нет.

Человечество тратит огромное количество природных ресурсов, сжигает все больше и больше ископаемого топлива, в результате чего в атмосфере растет процентное содержание углекислого газа, и он не выпускает в космос инфракрасное излучение от нагретой поверхности Земли, создавая «парниковый эффект». Последствием дальнейшего увеличение концентрации углекислоты в атмосфере может стать глобальное потепление климата и увеличению температуры Земли, что, в свою очередь, приведёт к таким последствиям, как таянию ледников и подъём уровня мирового океана на десятки, а то и сотни метров, уйдут под воду многие прибрежные города мира.

Таков возможный сценарий развития событий и последствия глобального потепления климата, причиной которого является парниковым эффектом. Однако, даже если растают все ледники Антарктиды и Гренландии, уровень мирового океана поднимется максимум на 60 метров. Но это крайний, гипотетический случай, который может произойти только при внезапном таянии ледников Антарктиды. А для этого в Антарктиде должна установиться положительная температура, что может явиться только последствием катастрофы планетарного масштаба (например, изменением наклона земной оси).

Среди сторонников «парниковой катастрофы» нет единодушия о ее вероятных масштабах, и наиболее авторитетные из них не обещают ничего страшного . Предельное потепление, в случае удвоения концентрации углекислого газа, может составить максимум 4°С . Кроме того, вполне вероятно, что при глобальном потеплении и повышении температуры уровень океана не изменится, а то и, напротив, понизится. Ведь с повышением температуры усилятся и осадки, а таяние окраин ледников может компенсироваться повышенным выпадением снега в центральных их частях.

Таким образом, проблема парникового эффекта и вызываемого им глобального потепления климата, а также их возможные последствия, хотя и существует объективно, но масштабы этих явлений на сегодняшний день явно преувеличены. В любом случае, они требует очень тщательного исследования и длительного наблюдения.

Анализу возможных климатических последствий парникового эффекта был посвящен международный конгресс климатологов, проходивший в октябре 1985г. в Филлахе (Австрия) . Участники конгресса пришли к выводу, что даже незначительное потепление климата приведет к заметному увеличению испарения с поверхности Мирового океана, в результате чего возрастет количество летних и зимних осадков над континентами. Это увеличение не будет равномерным. Рассчитано, что через юг Европы от Испании до Украины протянется полоса, в пределах которой количество осадков останется таким же, как сейчас, или даже несколько уменьшится. Севернее 50° (это широта Харькова) и в Европе, и в Америке оно будет с колебаниями постепенно увеличиваться, что мы и наблюдаем за последнее десятилетие . Следовательно, сток Волги будет возрастать, и Каспийскому морю не грозит снижение уровня. Это был главный научный аргумент, который позволил, наконец, отказаться от проекта переброски в Волгу части стока северных рек .

Наиболее точные, убедительные данные о возможных последствиях парникового эффекта дают палеогеографические реконструкции, составляемые специалистами, изучающими геологическую историю Земли за последний миллион лет . Ведь в течение этого «новейшего» времени геологической истории климат Земли подвергался очень резким глобальным изменениям. В эпохи, более холодные, чем теперешняя, материковые льды, подобные тем, что сковывают сейчас Антарктиду и Гренландию, покрывали всю Канаду и весь север Европы, включая места, на которых стоят сейчас Москва и Киев . Стада северных оленей и лохматых мамонтов бродили по тундрам Крыма и Северного Кавказа, там сейчас находят останки их скелетов. А в промежуточные межледниковые эпохи климат Земли был значительно теплее, чем нынешний: материковые льды в Северной Америке и Европе таяли, в Сибири вечная мерзлота оттаивала на много метров, морские льды у наших северных берегов исчезали, лесная растительность, судя по ископаемым спорово-пыльцевым спектрам, распространялась на территорию современных тундр . По равнинам Средней Азии текли мощные речные потоки, заполнявшие водою котловину Аральского моря до отметки плюс 72 метра, многие из них несли воду и в Каспийское море. Пустыня Каракумы в Туркмении представляет собою развеянные песчаные наносы этих древних русел.

В целом физико-географическая обстановка в теплые межледниковые эпохи на всей территории бывшего СССР была более благоприятной, чем сейчас. Такой же она была в скандинавских странах и странах Центральной Европы .

К сожалению, до сих пор к обсуждению проблемы парникового эффекта не привлекались геологи, изучающие геологическую историю последнего миллиона лет эволюции нашей планеты. А геологи могли бы внести ценные дополнения в существующие представления. В частности, очевидно, что для правильной оценки возможных последствий парникового эффекта должны шире привлекаться палеографические данные по прошлым эпохам значительного глобального потепления климата. Анализ таких данных, известных сегодня, позволяет думать, что парниковый эффект в противоположность распространенному мнению не несёт никаких бедствий для народов нашей планеты. Наоборот, во многих странах, в том числе на территории России, он создаст более благоприятные, чем сейчас, климатические условия.

Вопросы для самоконтроля

1. Суть основных биохимических кругооборотов веществ.

2. Каков биохимический цикл углерода?

3. Что понимают под выражением «парниковый эффект» и с чем его связывают? Ваша краткая оценка проблемы.

4. Как Вы думаете, существует ли угроза глобального потепления климата? Свой ответ обоснуйте