Главная · Простудные заболевания · Использование высоких энергий ультразвука, лазера, плазмы в хирургии. Особенности применения ультразвука в хирургии Ускорение рассасывания отеков

Использование высоких энергий ультразвука, лазера, плазмы в хирургии. Особенности применения ультразвука в хирургии Ускорение рассасывания отеков

Поиск и разработка методов снижения травматичности, кровопотери и болевых ощущений при хирургических операциях, методов, позволяющих ускорить заживление послеоперационных ран и рассасывание рубцов, а также методов, облегчающих труд хирурга-оператора, - важные задачи современной хирургии, решению которых способствует применение ультразвука.

Можно выделить две основные области использования ультразвука в оперативной хирургии. Это инструментальная ультразвуковая хирургия и локальные разрушения в глубине тканей с помощью фокусированного ультразвука.

ИНСТРУМЕНТАЛЬНАЯ УЛЬТРАЗВУКОВАЯ ХИРУРГИЯ

За последние годы в практику стали широко внедряться физические методы хирургического воздействия с применением электрокоа- гуляционной, лазерной, криогенной и ультразвуковой техники.

Принцип действия ультразвуковых инструментов

Рабочая часть ультразвукового хирургического ножа имеет традиционную форму лезвия скальпеля, соединенного волноводом с магни- тострикционным или пьезокерамическим преобразователем. Рабочая часть может иметь и другую форму в соответствии с требованиями выполняемой операции. Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может быть изменена от 1 до 350 мкм, а частота выбирается в диапазоне от 20 до 100 кГц. Как известно, трение покоя больше, чем трение скольжения, поэтому трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует от хирурга меньших усилий.

Характер разрушения тканей под действием ультразвукового хирургического инструмента зависит от строения его рабочей части, амплитуды и направления колебаний. Зависит он и от вязкоупругих свойств и однородности ткани.

При рассечении мягких тканей ультразвуковым ножом, лезвие которого совершает продольные ультразвуковые колебания, взаимодействует с тканью лишь кромка лезвия, обеспечивая процесс микрорезания, существенно усиливающего режущие свойства инструмента. Кроме того, у кромки лезвия колеблющегося инструмента выделяется теплота, локально повышающая температуру ткани и обусловливающая гемостатический эффект в результате термокоагуляции крови.

Так, применение ультразвукового скальпеля, амплитуда колебаний кромки которого лежит в интервале 15...20 мкм при частоте 44 кГц, в 6-8 раз уменьшает кровотечение из мелких и средних сосудов, в 4-6 раз снижает усилие резания, а также существенно облегчает строго послойное разделение кожи, подкожной жировой клетчатки и рубцовоизмененного хряща. Очевидно, что если на инструмент наложены лишь продольные колебания, то его воздействие на стенки раневого канала минимально.

Для разрушения некоторых патологических образований используют специальные волноводы - дезинтеграторы, рабочий конец которых помимо продольных совершает и поперечные колебания. Такие инструменты оказывают существенное влияние на окружающие ткани и по мере введения инструмента разрушают их.

Ультразвуковые инструменты обладают явными преимуществами перед электро- или криохирургическими, так как не прилипают к ткани и поверхности раневого канала и не испытывают дополнительных травм. Ультразвуковой скальпель не уступает в ряде случаев и лазерному хирургическому инструменту, так как, ощущая сопротивление ткани при операции, хирург лучше контролирует процесс ее рассечения.

В зависимости от поставленной задачи ультразвуковые инструменты могут иметь самые разные размеры и форму.

Следует отметить, что при использовании ультразвукового хирургического инструмента наряду с гемостатическим эффектом наблюдаются также анальгетический и бактерицидный и/или бактериостатический эффекты.

Бактерицидный эффект позволяет использовать простую и оригинальную методику самостерилизации хирургического инструмента. Рабочую часть инструмента опускают в раствор дезинфектанта и включают генератор. Ультразвуковые колебания вызывают интенсивные микротечения жидкости вблизи инструмента, очищающие его поверхность. Кроме того, увеличивая проницаемость мембран клеток болезнетворных бактерий по отношению к дезинфицирующему веществу, ультразвук повышает эффективность его действия, что позволяет в 10-100 раз снизить концентрацию этого вещества в растворе. Если, например, лезвие ультразвукового скальпеля погрузить в бульон со стандартной культурой гемолитического плазмокоагулирующего стафилококка, после этого включенный инструмент подвергнуть двухминутной самостерилизации в разбавленном (0,025...0,5 %) растворе диоцида, выключить его и привести в соприкосновение с поверхностью кровяного агара, то число выросших микробных колоний окажется тем меньшим, чем выше была амплитуда колебаний инструмента (табл. 4.1).

Таблица 4.1

Число микробных колоний на агаре через 24 ч после соприкосновения с ультразвуковым инструментом, прошедшим двухмииутную обработку в 0,05%-ном растворе диоцида

Контрольный смыв водой с ультразвукового лезвия, кантамини- рованного Е. coli, уже через 3 ч инкубации дает в питательной среде бурный рост культуры.

Если же загрязненный Е. coli нож, колеблющийся с ультразвуковой частотой и амплитудой 20...30 мкм, поместить на 1...2 мин хотя бы в дистиллированную воду, то последующий смыв с него не даст заметного роста культуры в течение 6...Э ч.

Чем выше амплитуда колебаний, тем более выражен эффект задержки роста культуры. Обработка вибрирующего с амплитудой 30 мкм лезвия в растворе диоцида (0,025 %) в течение 1,5 мин приводит к стерилизации инструмента.

Аналогичные данные были получены при стерилизации в растворе диоцида ультразвуковых инструментов, загрязненных средой, содержащей Вас. micoides.

На практике для стерилизации ультразвуковой инструмент, колеблющийся с максимальной амплитудой, опускают на несколько секунд в сосуд с любым дезинфицирующим раствором, например перекиси водорода.

Для разрушения тканей в УЗ-хирургии существуют два метода. Первый из них основан на действии самого ультразвука, второй – на приведении в ультразвуковые колебания хирургического инструмента. Ультразвуком можно рассекать ткани, для чего хирургические инструменты соединяют с магнитострикционными преобразователями. Преимущества этого метода: снижение усилия резания, уменьшение болевого ощущения при операции, кровоостанавливающий и стерилизующий эффект ультразвука.

Ультразвуковой скальпель применяют для рассечения любых мягких тканей, позволяет проводить операции без вскрытия грудной клетки в дыхательных органах, пищеводе, на кровеносных сосудах. УЗ используют для удаления опухолей в мозговой ткани без вскрытия черепной коробки. Вводя ультразвуковой инструмент в вену, можно разрушать холестериновые утолщения. В урологии ультразвук используется для дробления камней в почках и мочевом пузыре.

Ультразвук позволяет не только разрезать, но и сваривать мягкие ткани, поврежденные или трансплантируемые костные ткани (ультразвуковой остеосинтез). Область перелома заполняют костной щебенкой, смешанной и жидкими пластмассами (например, с циакрином), которые под действием ультразвука быстро полимеризуются, создавая прочный шов, который постепенно рассасывается и заменяется костной мозолью.

В фармацевтической промышленности используется способность ультразвука дробить твердые тела в жидкой среде – для получения различных препаратов в виде порошков, суспензий, аэрозолей и т.п. При стерилизации используется способность ультразвука губительно влиять на жизнедеятельность микроорганизмов. Портативные звуковые локаторы способны существенно облегчить слепым ориентирование в пространстве.

5.5.3. Новые направления лечебного использования ультразвука.

В настоящее время в практической медицине расширяется область применения фокусированного ультразвука с целью создания в глубине тканей высокой интенсивности. Медико-биологические аспекты использования фокусированного УЗ состоят в разрушении биологических тканей (нейрохирургия, офтальмология, нефрология, урология); раздражении нервных структур (неврология, аудиологическая диагностика и слухопротезирование), воздействии на биологически активные точки (акупунктура), получении аэрозолей (ультразвуковая аэрозольтерапия), непосредственном воздействии на внутренние органы (внутриорганная УЗ-терапия).

Среди путей оптимизации воздействия УЗ наиболее перспективным представляется путь биоуправления, основанный на использовании обратной связи в системе «пациент - физический фактор». Биосинхронизация - наиболее простой вариант биоуправляемой физиотерапии. В настоящее время проводятся исследования и разработка устройств, позволяющих перестраивать параметры (частоту, интенсивность, скважность) ультразвуковой терапии в соответствии с характером реакции организма и изменением деятельности его систем на лечебное воздействие.

Дальнейшие перспективы расширения медицинских применений ультразвука связано с внедрением новых технологий – таких как ультразвуковая голография, позволяющая получать трехмерные изображения биообъектов в процессе их жизнедеятельности.

Основная идея применения ультразвука в хирургии заключается в сообщении хирургическим инструментам ультразвуковых колебаний, что существенно увеличивает их эффективность, облегчает проведение операций и уменьшает травматические повреждения окружающих тканей. При этом выделяется несколько направлений: ультразвуковое резание мягких ткачей; ультразвуковая резка, сверление, трепанация, сварка и наплавка костной ткани: ультразвуковая эндартерэктомия (проведение восстановительных операций на пораженных атеросклерозом крупных сосудах).

Можно выделить две основные области использования ультразвука в оперативной хирургии. Это инструментальная ультразвуковая хирургия и локальные разрушения в глубине тканей с помощью фокусированного ультразвука.

За последние годы в практику стали широко внедряться физические методы хирургического воздействия с применением электрокоагуляционной, лазерной, криогенной и ультразвуковой техники.

Рабочая часть ультразвукового хирургического ножа имеет традиционную форму лезвия скальпеля, соединенного волноводом с магнитострикционным или пьезокерамическим преобразователем. Рабочая часть может иметь и другую форму в соответствии с требованиями выполняемой операции. Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может быть изменена от 1 до 350 мкм, а частота выбирается в диапазоне от 20 до 100 кГц. Как известно, трение покоя больше, чем трение скольжения, поэтому трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует от хирурга меньших усилий.

Характер разрушения тканей под действием ультразвукового хирургического инструмента зависит от строения его рабочей части, амплитуды и направления колебании. Зависит он и от вязкоупругих свойств и однородности ткани. ультразвук хирургия диагностика техника

При рассечении мягких тканей ультразвуковым ножом, лезвие которого совершает продольные ультразвуковые колебания, взаимодействует с тканью лишь кромка лезвия, обеспечивая процесс микрорезания, существенно усиливающего режущие свойства инструмента. Кроме того, у кромки лезвия колеблющегося инструмента выделяется теплота, локально повышающая температуру ткани и обусловливающая гемостатический эффект в результате термокоагуляции крови.

Так, применение ультразвукового скальпеля, амплитуда колебаний кромки которого лежит в интервале 15...20 мкм при частоте 44 кГц, в 6-8 раз уменьшает кровотечение из мелких и средних сосудов, в 4-6 раз снижает усилие резания, а также существенно облегчает строго послойное разделение кожи, подкожной жировой клетчатки и рубцовоизмененного хряща. Очевидно, что если на инструмент наложены лишь продольные колебания, то его воздействие на стенки раневого канала минимально.

Для разрушения некоторых патологических образований используют специальные волноводы -- дезинтеграторы, рабочий конец которых, помимо продольных, совершает и поперечные колебания. Такие инструменты оказывают существенное влияние па окружающие ткани и по мере введения инструмента разрушают их.

Ультразвуковые инструменты обладают явными преимуществами перед электро- или криохирургическими, так как не прилипают к ткани и поверхности раневого канала и не вызывают дополнительных травм. Ультразвуковой скальпель не уступает в ряде случаев и лазерному хирургическому инструменту, так как, ощущая сопротивление ткани при операции, хирург лучше контролирует процесс ее рассечения.

Давно известно, что ультразвук, действуя на ткани, вызывает в них биологические изменения . Интерес к изучению этой проблемы обусловлен, с одной стороны, естественным опасением, связанным с возможным риском применения ультразвуковых диагностических систем для визуализации, а с другой - возможностью вызвать изменения в тканях для достижения терапевтического эффекта.

По ультразвуковой терапии существует обширная литература, хотя, к сожалению, большинство работ не отличается высоким качеством и содержит мало строгой научной информации. В этой главе обсуждение ограничено работами, имеющими прочную научную основу.

Терапевтический ультразвук может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях основная цель - вызвать управляемое избирательное разрушение в тканях.

Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

Ультразвук, применяемый в медицине, может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей (0,125 - 3,0 Вт/см2) - неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях (> 5 Вт/см2) основная цель - вызвать управляемое избирательное разрушение в тканях. Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

Применение ультразвука в хирургии.

Существуют две основные области применения ультразвука в хирургии. В первой из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях, а во второй механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, механических наконечников.

Хирургия с помощью фокусированного ультразвука.

Хирургическая техника должна обеспечивать управляемость разрушения тканей, воздействовать только на четко ограниченную область, быть быстродействующей, вызывать минимальные потери крови. Мощный фокусированный ультразвук обладает большинством из этих качеств. Возможность использования фокусированного ультразвука для создания зон поражения в глубине органа без разрушения вышележащих тканей изучено в основном в операциях на мозге. Позже операции проводились на печени, спинном мозге, почках и глазе.

Применение ультразвука в физиотерапии

Ускорение регенерации тканей.

Одно из наиболее распространенных применений ультразвука в физиотерапии - это ускорение регенерации тканей и заживления ран. Восстановление тканей можно описать с помощью трех перекрывающихся фаз. В течение воспалительной фазы фагоцитарная активность макрофагов и полиморфнонуклеарных лейкоцитов ведет к удалению клеточных фрагментов и патогенных частиц. Переработка этого материала происходит главным образом при помощи лизосомальных ферментов макрофагов. Известно, что ультразвук терапевтических интенсивностей может вызвать изменения в лизосомальных мембранах, тем самым ускоряя прохождение этой фазы. Вторая фаза в залечивании ран - пролиферация или фаза разрастания. Клетки мигрируют в область поражения и начинают делиться. Фибробласты начинают синтезировать коллаген. Интенсивность заживления начинает увеличиваться, и специальные клетки, миофибробласты, заставляют рану стягиваться. Показано, что ультразвук значительно ускоряет синтез коллагена фибробластами как in vitro, так и in vivo. Если диплоидные фибробласты человека облучить ультразвуком частотой 3 МГц и интенсивностью 0,5 Вт/см2 in vitro, то количество синтезированного белка увеличится. Исследование таких клеток в электронном микроскопе показало, что по сравнению с контрольными клетками в них содержится больше свободных рибосом, шероховатой эндоплазматической сети. Третья фаза - восстановление. Эластичность нормальной соединительной ткани обусловлена упорядоченной структурой коллагеновой сетки, позволяющей ткани напрягаться и расслабляться без особых деформаций. В рубцовой ткани волокна часто располагаются нерегулярно и запутанно, что не позволяет ей растягиваться без разрывов. Рубцовая ткань, формировавшаяся при воздействии ультразвука, прочнее и эластичнее по сравнению с "нормальной" рубцовой тканью.

Лечение трофических язв.

При облучении хронических варикозных язв на ногах ультразвуком частотой 3 МГц и интенсивностью 1 Вт/см2 в импульсном режиме 2 мс: 8 мс были получены следующие результаты: после 12 сеансов лечения средняя площадь язв составляла примерно 66,4% от их первоначальной площади, в то время как площадь контрольных язв уменьшилась всего до 91,6%. Ультразвук может также способствовать приживлению пересаженных лоскутов кожи на края трофических язв.

Ускорение рассасывания отеков.

Ультразвук может ускорить рассасывание отеков, вызванных повреждениями мягких тканей, что скорее всего обусловлено увеличением кровотока или местными изменениями в тканях под действием акустических микропотоков.

Заживление переломов.

При экспериментальном исследовании переломов малой берцовой кости у крыс было обнаружено, что ультразвуковое облучение во время воспалительной и ранней пролиферативной фаз ускоряет и улучшает выздоровление. Костная мозоль у таких животных содержала больше костной ткани и меньше хрящей. Однако в поздней пролиферативной фазе приводило к негативным эффектам - усиливался рост хрящей и задерживалось образование костной ткани.

Светолечение

Светолечение - это метод физиотерапии, заключающийся в дозированном воздействии на организм больного инфракрасного, видимого или ультрафиолетового излучения.

Инфракрасное излучение

Механизм действия :

  1. местная гипертермия;
  2. спазм сосудов, сменяющийся их расширением, усиление кровотока;
  3. увеличение проницаемости стенок капилляров;
  4. усиление тканевого обмена, активация окислительно-восстановительных процессов;
  5. высвобождение биологически-активных веществ, в том числе гистаминоподобных, что также приводит к увеличению проницаемости капилляров;
  6. противовоспалительный эффект;
  7. ускорение обратного развития воспалительных процессов;
  8. ускорение тканевой регенерации;
  9. увеличение местной сопротивляемости тканей к инфекции;
  10. рефлекторное снижение тонуса поперечно-полосатой и гладкой мускулатуры - уменьшение болей, связанных с их спазмом.

Показания :

  1. не гнойные хронические и подострые местные воспалительные процессы;
  2. ожоги;
  3. обморожения;
  4. плохо заживающие раны и язвы;
  5. спаечный процесс в брюшной полости;
  6. миозиты;
  7. невралгии;
  8. последствия травм опорно-двигательного аппарата.

Противопоказания :

  1. злокачественные новообразования;
  2. тенденция к кровотечениям;
  3. острые гнойно-воспалительные заболевания.

Ультрафиолетовое излучение

Механизм действия :

  1. нервно-рефлекторный: лучистая энергия как раздражитель действует через кожу с ее мощным рецепторным аппаратом на центральную нервную систему, а через нее на все органы и ткани организма человека;
  2. часть поглощенной лучистой энергии превращается в теплоту, под ее влияние в тканях происходит ускорение физико-химических процессов, что сказывается на повышении тканевого и общего обмена;
  3. фотоэлектрический эффект - отщепленные при этом электроны и появившиеся положительно заряженные ионы влекут за собой изменения "ионной конъюнктуры" в клетках и тканях, а следовательно и изменение электрических свойств коллоидов; в результате этого увеличивается проницаемость клеточных мембран и увеличивается обмен между клеткой и окружающей средой;
  4. возникновение вторичного электромагнитного излучения в тканях;
  5. бактерицидное действие света, зависящее от спектрального состава, интенсивности излучения; бактерицидное действие складывается из непосредственного действия лучистой энергии на бактерий и повышение реактивности организма (образование БАВ, повышение иммунологических свойств крови);
  6. прямое разрушение токсинов: дифтерийного и столбнячного;
  7. при воздействии ультрафиолетового излучения появляется пигментация кожи, повышающая устойчивость кожи к повторным облучениям;
  8. изменение физико-химических свойств кожи (снижение рН за счет снижения уровня катионов и повышения уровня анионов).