Главная · Болезни уха · Функция гладкой эпс. Строение клетки

Функция гладкой эпс. Строение клетки

Эндоплазматическую сеть (ЭПС), или эндоплазматический ретикулум (ЭПР) , удалось обнаружить только с появлением электронного микроскопа. ЭПС есть только в эукариотических клетках и представляет собой сложную систему мембран, образующих уплощенные полости и трубочки. Все вместе это выглядит как сеть. ЭПС относится к одномембранным органоидам клетки.

Мембраны ЭПС отходят от внешней мембраны ядра и по строению сходны с ней.

Эндоплазматическая сеть делится на гладкую (агранулярную) и шероховатую (гранулярную). Последняя усеяна прикрепленными к ней рибосомами (из-за этого и возникает «шероховатость»). Основная функция обоих типов связана с синтезом и транспортом веществ. Только шероховатая отвечает за белок, а гладкая - за углеводы и жиры.


По своему строению ЭПС представляет собой множество парных параллельных мембран, пронизывающих почти всю цитоплазму. Пара мембран образует пластинку (полость внутри имеет разную ширину и высоту), однако гладкая эндоплазматическая сеть в большей степени имеет трубчатое строение. Такие уплощенные мембранные мешочки называют цистернами ЭПС .

Рибосомы, расположенные на шероховатой ЭПС, синтезируют белки, которые поступают в каналы ЭПС , созревают (приобретают третичную структуру) там и транспортируются. У таких белков сначала синтезируется сигнальная последовательность (состоящая преимущественно из неполярных аминокислот), конфигурация которой соответствует специфическому рецептору ЭПС. В результате рибосома и эндоплазматическая сеть связываются. При этом рецептор образует канал для перехода синтезируемого белка в цистерны ЭПС.

После того, как белок оказывается в канале эндоплазматического ретикулума сигнальная последовательность от него отделяется. После этого он свертывается в свою третичную структуру. При транспортировке по ЭПС белок приобретает ряд других изменений (фосфорилирование, образование связи с углеводом, т. е. превращение в гликопротеин).

Большинство белков, оказавшихся в шероховатой ЭПС, далее попадают в аппарат (комплекс) Гольджи. Оттуда белки либо секретируются из клетки, либо поступают в другие органоиды (обычно лизосомы), либо откладываются как гранулы запасных веществ.

Следует иметь в виду, что не все белки клетки синтезируются на шероховатой ЭПС. Часть (обычно меньшая) синтезируется свободными рибосомами в гиалоплазме, такие белки используются самой клеткой. У них сигнальная последовательность не синтезируется за ненужностью.

Основной функцией гладкой эндоплазматической сети является синтез липидов (жиров). Например, ЭПС эпителия кишечника синтезирует их из жирных кислот и глицерола, всасывающихся из кишечника. Затем липиды попадают в комплекс Гольджи. Кроме клеток кишечника, гладкая ЭПС хорошо развита в клетках, секретирующих стероидные гормоны (стероиды относятся к липидам). Например, в клетках надпочечников, интерстициальных клетках семенников.

Синтез и транспорт белков, жиров и углеводов не единственные функции ЭПС. В печение эндоплазматический ретикулум участвует в процессах детоксикации. Особая форма гладкой ЭПС - саркоплазматический ретикулум – присутствует в мышечных клетках и обеспечивает сокращение за счет перекачки ионов кальция.

Структура, объем и функциональность эндоплазматической сети клетки не является постоянной на протяжении клеточного цикла, а подвержены тем или иным изменениям.

Среди органелл клетки самыми разнообразными есть одномембранных органеллы. Это окружены мембранами отсеки цитоплазмы в виде пузырьков, трубочек, мешочков. К одно мембранных органелл относят эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли, пероксисомы и тому подобное. В целом они могут занимать до 17% объема клетки. Одномембранных органеллы образуют систему синтеза, сегрегации (отделения) и внутриклеточного транспорта макромолекул.

Эндоплазматическая сеть , или эндоплазматический ретикулум (от лат. Reticulum - сетка ) - одномембранных органеллы эукариотических клеток в виде замкнутой системы канальцев и плоских мембранных мешочков-цистерн. Впервые ЭПС была открыта американским ученым К. Портером в 1945 году с помощью электронного микроскопа. ЭПС является органелл, которая делит цитоплазму на компартменты и связана с плазмалемме и ядерными мембранами. С участием ЭПС формируется ядерная оболочка в период между делениями клеток.

Строение . ЭПС образуют цистерны, трубчатые мембранные канальцы, мембранные пузырьки-везикулы (транспортируют вещества, синтезируемые) и внутреннее вещество - матрикс с большим количеством ферментов. Ретикулум содержит белки и липиды, среди которых много фосфолипидов, а также ферменты синтеза липидов, углеводов. Мембраны ЭПС, подобно компонентов цитоскелета, полярные: с одного конца они наращиваются, а с другой - распадаются на отдельные фрагменты. Различают два вида эндоплазматической сети: шероховатую (гранулярную ) и гладкую (агра- нулярну ). Шероховатая ЭПС имеет рибосомы, которые образуют комплексы с иРНК (полири- боссом, или полисомы), и присутствует во всех живых эукариотических клетках (за исключением сперматозоидов и зрелых эритроцитов), однако степень ее развития разный и зависит от специализации клеток. Так, сильно развитую шероховатую ЭПС имеют железистые клетки поджелудочной железы, гепатоциты, фибробласты (клетки соединительной ткани, продуцирующие белок коллаген), плазмоциты (продуцируют иммуноглобулины). Гладкая ЭПС не имеет рибосом и является производной от шероховатой. Она преобладает в клетках надпочечников (осуществляет синтез стероидных гормонов), в мышечных клетках (участвует в обмене кальция), клетках основных желез желудка (участие в выделении соляной кислоты).

Функции . Гладкая и шероховатая ЭПС выполняют совместные функции: 1) разграничительную - обеспечивает упорядоченное распределение цитоплазмы; 2) транспортную - осуществляется перенос в клетке необходимых веществ; 3) синтезируя - образования мембранных липидов. Кроме того, каждый из разновидностей ЭПС выполняет свои специальные функции.

Строение ЭПС 1 - свободные рибосомы; 2 - полости ЭПС; С - рибосомы на мембранах ЭПС; 4 - гладкая ЭПС

Виды и функции ЭПС

вид ЭПС

функции

агранулярная

1) депонированных (например, в поперечнопосмугований мышечной ткани существует специализированная гладкая ЭПС, названная саркоплазматического ретикулума, что является резервуаром Са 2+)

2) синтез липидов и углеводов - образуются холестерин, стероидные гормоны надпочечников, половые гормоны, гликоген и др.;

3) детоксицирующие - обезвреживание токсинов

гранулярная

1) биосинтез белков - образуются мембранные белки, секреторные белки, которые поступают в внеклеточное пространство и др.;

2) модифицирующая - происходит модификация белков, которые образовались после трансляции;

3) участие в образовании комплекса Гольджи

Строение эндоплазматической сети

Определение 1

Эндоплазматическая сеть (ЭПС, эндоплазматический ретикулум) – сложная ультрамикроскопическая, очень разветвлённая, взаимосвязанная система мембран, которая более или менее равномерно пронизывает массу цитоплазмы всех эукариотических клеток.

ЭПС – мембранная органелла, состоящая из плоских мембранных мешочков – цистерн, каналов и трубочек. Благодаря такому строению эндоплазматическая сеть значительно увеличивает площадь внутренней поверхности клетки и делит клетку на секции. Внутри она заполнена матриксом (умеренно плотный рыхлый материал (продукт синтеза)). Содержание различных химических веществ в секциях неодинаково, потому в клетке как одновременно, так и в определённой последовательности могут происходить различные химические реакции в незначительном объёме клетки. Эндоплазматическая сеть открывается в перинуклеарное пространство (полость между двумя мембранами кариолемы).

Мембрана эндоплазматической сети состоит из белков и липидов (в основном фосфолипидов), а так же ферментов: аденозинтрифосфатазы и ферментов синтеза мембранных липидов.

Различают два вида эндоплазматической сети:

  • Гладкую (агранулярную, аЭС), представленную трубочками, которые анастамозируют между собой и не имеют на поверхности рибосом;
  • Шероховатую (гранулярную, грЭС), состоящую так же из соединённых между собой цистерн, но они покрыты рибосомами.

Замечание 1

Иногда выделяют ещё переходящую, или транзиторную (тЭС) эндоплазматическую сеть, которая находится в участке перехода одной разновидности ЭС в другую.

Гранулярная ЭС свойственна всем клеткам (кроме сперматозоидов), но степень её развития разная и зависит от специализации клетки.

Сильно развита грЭС эпителиальных железистых клеток (поджелудочной железы, вырабатывающих пищеварительные ферменты, печени – синтезирующих альбумины сыворотки крови), фибробластов (клеток соединительной ткани, продуцирующих белок коллаген), плазматических клеток (продуцирование иммуноглобулинов).

Агранулярная ЭС преобладает в клетках надпочечников (синтез стероидных гормонов), в клетках мышц (обмен кальция), в клетках фундальных желез желудка (выделение ионов хлора).

Другим видом мембран ЭПС являются разветвлённые мембранные трубочки, содержащие внутри большое количество специфических ферментов, и везикулы – маленькие, окружённые мембраной пузырьки, в основном находящиеся рядом с трубочками и цистернами. Они обеспечивают перенесение тех веществ, которые синтезируются.

Функции ЭПС

Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.

Замечание 2

Функции обоих типов ЭПС связаны с синтезом и транспортом веществ. Эндоплазматическая сеть является универсальной транспортной системой.

Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:

  • разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
  • трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
  • синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
  • благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.

Кроме того, каждой из разновидностей сети свойственны свои специфические функции.

Функции гладкой (агранулярной) эндоплазматической сети

Агранулярная эндоплазматическая сеть, кроме названных функций, общих для обоих видов ЭС, выполняет ещё и свойственные только для неё функции:

  • депо кальция . Во многих клетках (в скелетных мышцах, в сердце, яйцеклетках, нейронах) существуют механизмы, способные изменять концентрацию ионов кальция. Поперечнополосатая мышечная ткань содержит специализированную эндоплазматическую сеть, называемую саркоплазматическим ретикулумом. Это резервуар кальций-ионов, а мембраны этой сети содержат мощные кальциевые помпы, способные выбрасывать в цитоплазму большое количество кальция или транспортировать его в полости каналов сети за сотые доли секунды;
  • синтез липидов , веществ типа холестерина и стероидных гормонов. Стероидные гормоны синтезируются в основном в эндокринных клетках половых желез и надпочечников, в клетках почек и печени. Клетки кишечника синтезируют липиды, которые выводятся в лимфу, а потом в кровь;
  • детоксикационная функция – обезвреживание єкзогенных и эндогенных токсинов;

    Пример 1

    В почечных клетках (гепатоцитах) содержатся ферменты оксидазы, способные разрушать фенобарбитал.

    ферменты органеллы берут участие в синтезе гликогена (в клетках печени).

Функции шероховатой (гранулярной) эндоплазматической сети

Для гранулярной эндоплазматической сети, кроме перечисленных общих функций, свойственны ещё и специальные:

  • синтез белков на грЭС имеет некоторые особенности. Начинается он на свободных полисомах, которые в дальнейшем связываются с мебранами ЭС.
  • Гранулярная эндоплазматическая сеть синтезирует: все белки клеточной мембраны (кроме некоторых гидрофобных белков, белков внутренних мембран митохондрий и хлоропластов), специфические белки внутренней фазы мембранных органелл, а так же секреторные белки, которые транспортируются по клетке и поступают во внеклеточное пространство.
  • пострансляционная модификация белков : гидроксилирование, сульфатирование, фосфориллирование. Важным процессом является гликозилирование, которое происходит под действием связанного с мембраной фермента гликозилтранферазы. Гликозилирование происходит перед секрецией или транспортом веществ к некоторым участкам клетки (комплексу Гольджи, лизосомам или плазмолемме).
  • транспорт веществ по внутримембранной части сети. Синтезированные белки по промежуткам ЭС перемещаются к комплексу Гольджи, который выводит вещества из клетки.
  • благодаря участию гранулярной эндоплазматической сети образуется комплекс Гольджи.

Функции зернистой эндоплазматической сети связаны с транспортом белков, которые синтезируются в рибосомах и расположены на её поверхности. Синтезированные белки поступают внутрь ЭПС, скручиваются и приобретают третичную структуру.

Белок, который транспортируется к цистернам, значительно изменяется на своём пути. Он может, например, фосфорилироваться или превращаться в гликопротеид. Обычный путь для белка – это путь через зернистую ЭПС в аппарат Гольджи, откуда он или выходит наружу клетки, или поступает к другим органеллам той же клетки, например, к лизосомам), или откладывается в виде запасных гранул.

В клетках печени как зернистая, так и незернистая эндоплазматическая сетка берут участие в процессах детоксикации ядовитых веществ, которые потом выводятся из клетки.

Как и внешняя плазматическая мембрана, эндоплазматическая сетка имеет избирательную проницаемость, вследствие чего концентрация веществ внутри и снаружи каналов сетки неодинакова. Это имеет значение для функции клетки.

Пример 2

В эндоплазматической сетке мышечных клеток больше ионов кальция, чем в её цитоплазме. Выходя из каналов эндоплазматической сетки, ионы кальция запускают процесс сокращения мышечных волокон.

Образование эндоплазматической сети

Липидные компоненты мембран эндоплазматической сети синтезируются ферментами самой сети, белковый – поступает из рибосом, расположенных на её мембранах. В гладкой (агранулярной) эндоплазматической сети нет собственных факторов синтеза белка, потому считается, что эта органелла образуется в результате потери рибосом гранулярной эндоплазматической сетью.

Важной функцией ПАК является функция индивидуализации . Она проявляется в различии клеток по химическому строению компонентов гликокаликса. Эти различия могут касаться структуры надмембранных доменов нескольких интегральных и полуинтегральных белков. Большое значение в реализации функции индивидуализации имеют различия по углеводным компонентам гликокаликса (олигосахариды гликолипидов и гликопротеинов ПАК). Эти различия могут касаться гликокаликса одинаковых клеток разных организмов. Различный состав гликокаликса характерен и для различных клеток одного многоклеточного организма. Молекулы, ответственные за функцию индивидуализации, получили название антигенов . Структура антигенов контролируется определенными генами. Каждый ген может определять несколько вариантов одного антигена. Организм имеет большое количество разных систем антигенов. В результате он имеет уникальный набор вариантов различных антигенов. В этом проявляется функция индивидуализации ПАК.

Для ПАК характерна локомоторная функция. Она реализуется в виде передвижения отдельных участков ПАК или всей клетки. Эта функция осуществляется на основе субмембранного опорно-сократительный аппарата. С помощью взаимного скольжения и полимеризации – деполяризации микрофибрилл и микротрубочек в определенных районах ПАК образуются выпячивания участков плазмолеммы. На этой основе происходит эндоцитоз. Согласованное перемещение многих участков ПАК приводит к движению всей клетки. Высокой подвижностью обладают клетки иммунной системы макрофаги. Они способны к фагоцитозу чужеродных веществ и даже целых клеток и передвигаются практически по всему организму. Нарушение локомоторной функции макрофагов вызывает повышенную чувствительность организма к возбудителям инфекционных заболеваний. Это обусловлено участием макрофагов в иммунных реакциях.

Кроме рассмотренных универсальных функций ПАК эта субсистема клетки может выполнять и другие, специализированные функции.

6. Строение и функции эпс.

Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы . Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида.

Функции эндоплазматической сети:

    Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков.

    Гладкая ЭПС участвует в синтезе липидов, углеводов.

    Транспорт органических веществ в клетку (по каналам ЭПС).

    Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

Гладкая ЭПС является полифункциональной. В ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са 2+ . Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Са 2+ в гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС.

Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины . Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез белков.

В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.

7. Комплекс Гольджи и лизосомы. Строение и функции .

Комплекс Гольджи является универсальным мембранным органоидом эукариотических клеток. Структурная часть комплекса Гольджи представлена системой мембранных цистерн , образуя стопку цистерн. Эту стопку называют диктиосомой. От них отходят мембранные трубочки и мембранные пузырьки.

Строение мембран комплекса Гольджи соответствует жидкостно-мозаичной структуре. Мембраны различных полюсов разделяются по количеству гликолипидов и гликопротеинов. На проксимальном полюсе происходит образование новых цистерн диктиосомы. От участков гладкой ЭПС отрываются мелкие мембранные пузырьки и передвигаются в зону проксимального полюса. Здесь они сливаются и образуют более крупную цистерну. В результате этого процесса в цистерны комплекса Гольджи могут транспортироваться вещества, которые синтезируются в ЭПС. От боковых поверхностей дистального полюса отрываются пузырьки, которые участвуют в энджоцитозе.

Комплекс Гольджи выполняет 3 общих клеточных функции:

    Накопительную

    Секреторную

    Агрегационную

В цистернах комплекса Гольджи протекают определенные биохимические процессы. В результате осуществляется химическая модификация компонентов мембраны цистерн комплекса Гольджи и молекул внутри этих цистерн. В мембранах цистерн проксимального полюса имеются ферменты, которые осуществляют синтез углеводов (полисахаридов) и их присоединение к липидам и белкам, т.е. происходит гликозилирование. Наличие этого, или другого углеводного компонента у гликозилированных белков определяет их судьбу. В зависимости от этого белки попадают в разные районы клетки и секретируются. Гликозилирование является одним из этапов созревания секрета. Кроме того, белки в цистернах комплекса Гольджи могут фосфорилироваться и ацетилироваться. В комплексе Гольджи могут синтезироваться свободные полисахариды. Часть их подвергается сульфатированию с образованием мукополисахаридов (гликозаминогликанов). Еще одним вариантом созревания секрета является конденсация белков. Этот процесс заключается в удалении молекул воды из секреторных гранул, что приводит к уплотнению секрета.

Так же универсальность комплекса Гольджи в эукариотичсеких клетках является его участие в формировании лизосом.

Лизосомы являются мембранными органоидами клетки. Внутри лизосом находится лизосомальный матрикс из мукополисахаридов и белки ферменты.

Мембрана лизосом производной мембраны ЭПС, но имеет свои особенности. Это касается структуры билипидного слоя. В мембране лизосом он не сплошной (не непрерывный), а включает липидные мицеллы. Эти мицеллы составляют до 25% поверхности лизосомальной мембраны. Такое строение называется пластинчато-мицеллярное. В мембране лизосом локализуются разнообразные белки. К ним относятся ферменты: гидролазы, фосфолипазы; и низкомолекулярные белки. Гидролазы являются специфическими для лизосом ферментами. Они катализируют реакции гидролиза (расщепления) высокомолекулярных веществ.

Функции лизосом:

    Переваривание частиц при фагоцитозе и пиноцитозе.

    Защитная при фагоцитозе

    Аутофагия

    Аутолиз в онтогенезе.

Основной функцией лизосом является участие в гетерофаготических циклах (гетерофагия) и в аутофаготических циклах (аутофагия). При гетерофагии расщепляются чужеродные для клетки вещества. Аутофагия связана с расщеплением собственных веществ клетки. Обычный вариант гетерофагии начинается с эндоцитоза и образования эндоцитарного пузырька. В этом случае пузырек называют гетерофагосомой. В другом варианте гетерофагии отсутствует этап эндоцитоза чужеродных веществ. В этом случае первичная лизосома сразу включается в экзоцитоз. В результате гидролазы матрикса оказываются в гликокаликсе клетки и способны расщеплять внеклеточные чужеродные вещества.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) - система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

Шероховатая ЭПС

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка.

Гладкая ЭПС

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи).

Комплекс Гольджи

Пластинчатый комплекс Гольджи - это упаковочный центр клетки. Представляет собой совокупность диктиосом (от нескольких десятков до сотен и тысяч на одну клетку). Диктиосома - стопка из 3-12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более крупные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, в которых содержатся вещества, предназначенные для вывода из клетки. При этом просекрет, поступающий в вакуоль из зоны синтеза, (ЭПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.

Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гликопротеиды и гликолипиды, которые затем идут на построение цитоплазматических мембран.

Строение и функции немембранных структур клетки

В эту группу органоидов входят рибосомы, микротрубочки и микрофиламенты, клеточный центр.

Рибосома

Рибосомы (рис. 1) присутствуют в клетках как эукариот, так и прокариот, поскольку выполняют важную функцию вбиосинтезе белков. В каждой клетке имеются десятки, сотни тысяч (до нескольких миллионов) этих мелких округлых органоидов. Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20-30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити м-РНК (матричной, или информационной, РНК). Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называетсяполисомой . Эти структуры либо свободно расположены в цитоплазме, либо прикреплены к мембранам гранулярной ЭПС (в обоих случаях на них активно протекает синтез белка).

Рис.1. Схема строения рибосомы, сидяшей на мембране эндоплазматической сети: 1 - малая субъединииа; 2 иРНК; 3 - аминоацил-тРНК; 4 - аминокислота; 5 - большая субъединица; 6 - - мембрана эндоплазматической сети; 7 - синтезируемая полипептидная цепь

Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма (например, пищеварительные ферменты, белки женского грудного молока). Кроме этого, рибосомы присутствуют на внутренней поверхности мембран митохондрий, где также принимают активное участие в синтезе белковых молекул.

Микротрубочки

Это трубчатые полые образования, лишенные мембраны. Внешний диаметр составляет 24 нм, ширина просвета - 15 нм, толщина стенки - около 5 нм. В свободном состоянии представлены в цитоплазме, также являются структурными элементами жгутиков, центриолей, веретена деления, ресничек. Микротрубочки построены из стереотипных белковых субъединиц путем их полимеризации. В любой клетке процессы полимеризации идут параллельно процессам деполимеризации. Причем соотношение их определяется количеством микротрубочек. Микротрубочки имеют различную устойчивость к разрушающим их факторам, например, к колхицину (это химическое вещество, вызывающее деполимеризацию). Функции микротрубочек:

1) являются опорным аппаратом клетки;

2) определяют формы и размеры клетки;

3) являются факторами направленного перемещения внутриклеточных структур.

Микрофиламенты

Это тонкие и длинные образования, которые обнаруживаются по всей цитоплазме. Иногда образуют пучки. Виды микро-филаментов:

1) актиновые. Содержат сократительные белки (актин), обеспечивают клеточные формы движения (например, амебоидные), играют роль клеточного каркаса, участвуют в организации перемещений органелл и участков цитоплазмы внутри клетки;

2) промежуточные (толщиной 10 нм). Их пучки обнаруживаются по периферии клетки под плазмалеммой и по окружности ядра. Выполняют опорную (каркасную) роль. В разных клетках (эпителиальных, мышечных, нервных, фибробластах) построены из разных белков.

Микрофиламенты, как и микротрубочки, построены из субъединиц, поэтому их количество определяется соотношением процессов полимеризации и деполимеризации.

Клетки всех животных, некоторых грибов, водорослей, высших растений характеризуются наличием клеточного центра.

Клеточный центр обычно располагается рядом с ядром.

Он состоит из двух центриолей, каждая из которых представляет собой полый цилиндр диаметром около 150 нм, длиной 300-500 нм.

Центриоли расположены взаимоперпендикулярно. Стенка каждой центриоли образована 27 микротрубочками, состоящими из белка тубулина. Микротрубочки сгруппированы в 9 триплетов.

Из центриолей клеточного центра во время деления клетки образуются нити веретена деления.

Центриоли поляризуют процесс деления клетки, чем достигается равномерное расхождение сестринских хромосом (хроматид) в анафазе митоза.

Клеточные включения. Так называются непостоянные компоненты в клетке, присутствующие в основном веществе цитоплазмы в виде зерен, гранул или капелек. Включения могут быть окружены мембраной или же не окружаются ею.

В функциональном отношении выделяют три вида включений: запасные питательные вещества (крахмал, гликоген, жиры, белки), секреторные включения (вещества, характерные для железистых клеток, продуцируемые ими, - гормоны желез внутренней секреции и т. п.) и включения специального назначения (в узкоспециализированных клетках, например гемоглобин в эритроцитах).