Главная · Насморк · Что такое лучевая симметрия? Пресноводный полип-гидра, среда обитания и внешнее строение, лучевая симметрия, внутренние строение.

Что такое лучевая симметрия? Пресноводный полип-гидра, среда обитания и внешнее строение, лучевая симметрия, внутренние строение.

Что такое лучевая симметрия?





  1. Многоклеточные животные образуют самую многочисленную группу живых организмов планеты, насчитывающую более 1,5 млн. видов. Ведя свое происхождение от простейших, они претерпели в процессе эволюции существенные преобразования, связанные с усложнением организации.
    Одной из важнейших черт организации многоклеточных является морфологическое и функциональное различие клеток их тела. В ходе эволюции сходные клетки в теле многоклеточных животных специализировались на выполнении определенных функций, что привело к формированию тканей.
    Разные ткани объединились ворганы, а органы асистемы органов. Для осуществления взаимосвязи между ними и координации их работы образовалисьрегуляторные системы нервная и эндокринная. Благодаря нервной и гуморальной регуляции деятельности всех систем, многоклеточный организм функционирует как целостная биологическая система.
    Процветание группы многоклеточных животных связано с усложнением анатомического строения и физиологических функций. Так, увеличение размеров тела привело к развитию пищеварительного канала, что позволило им питаться крупным пищевым материалом, поставляющим большое количество энергии для осуществления всех процессов жизнедеятельности. Развившиеся мышечная и скелетная системы обеспечили передвижение организмов, поддержание определенной формы тела, защиту и опору для органов. Способность к активному передвижению позволила животным осуществлять поиск пищи, находить укрытия и расселяться.
    С увеличением размеров тела животных возникла необходимость в появлении внутритранспортных циркуляторных систем, доставляющих удаленным от поверхности тела тканям и органам средства жизнеобеспечения питательные вещества, кислород, а также удаляющих конечные продукты обмена веществ.
    Такой циркуляторной транспортной системой стала жидкая ткань кровь.
    Интенсификация дыхательной активности шла параллельно с прогрессивным развитием нервной системы и органов чувств. Произошло перемещение центральных отделов нервной системы в передний конец тела животного, в результате чего обособился головной отдел. Такое строение передней части тела животного позволило ему получать информацию об изменениях в окружающей среде и адекватно реагировать на них.
    По наличию или отсутствию внутреннего скелета животные подразделяются на две группы беспозвоночные (все типы, кроме Хордовых) и позвоночные (тип Хордовые) .
    В зависимости от происхождения ротового отверстия у взрослого организма выделяют две группы животных: первично- и вто-ричноротые. Первичноротые объединяют животных, у которых первичный рот зародыша на стадии гаструлы бластопор остается ртом взрослого организма. К ним относятся животные всех типов, кроме Иглокожих и Хордовых. У последних первичный рот зародыша превращается в анальное отверстие, а истинный рот закладывается вторично в виде эктодермального кармана. По этой причине их называют вторичноротыми животными.
    По типу симметрии тела выделяют группу лучистых, или радиально-симметричных, животных (типы Губки, Кишечнополостные и Иглокожие) и группу двусторонне-симметричных (все остальные типы животных) . Лучевая симметрия формируется под влиянием сидячего образа жизни животных, при котором весь организм поставлен по отношению к факторам среды в совершенно одинаковые условия. Эти условия и формируют расположение одинаковых органов вокруг главной оси, проходящей через рот до противоположного ему прикрепленного полюса.
    Двусторонне-симметричные животные подвижны, обладают одной плоскостью симметрии, по обе стороны которой располагаются различные парные органы. У них различают левую и правую, спинную и брюшную стороны, передний и задний концы тела.
    Многоклеточные животные чрезвычайно разнообразны по строению, особенностям жизнедеятельности, различны по размерам, массе тела и т. д. На основе наиболее существенных общих черт строения они подразделяются на 14 типов, часть из которых рассматривается в данном пособии.
  2. Лучевая (радиальная) симметрия форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определнной точки или прямой.
    Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) - верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно-гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.
    Лучевая симметрия характерна, в основном, для кишечнополостных животных. Кишечнополостным, как сидячим, так и пелагическим (медузы) , свойственна радиально-осевая симметрия, при которой сходственные части расположены вокруг оси вращения, причем эта симметрия может быть самого различного порядка в зависимости от того, на какой угол следует повернуть тело животного, чтобы новое положение совпало с исходным. Таким образом, может получаться 4-, 6-, 8лучевая симметрия и более, до симметрии порядка бесконечности. У радиолярий встречается радиально-осевая симметрия с одинаковыми полюсами, или, как говорят, гомополярная. У кишечнополостных гетерополярная осевая симметрия: один полюс симметрии несет рот и щупальца (оральный) , другой (а б о р а л ь н ы й) служит для прикрепления (стадия полипа) , или у плавающих форм несет орган чувств (ктенофоры) , или ничем не вооружен (медузы) .
    У некоторых медуз на этой аборальной стороне образуется стебелек для прикрепления к подводным предметам (Lucernariida). Нарушение радиал ьно-осевой симметрии возникает при уменьшении числа шупалец или изменении формы ротовой щели, пищевода и разветвлений пищеварительной системы. Количество щупалец может уменьшаться до одного (Мопоbrachium), и тогда их радиальное расположение сменяется двубоковым. Глотка может сплющиваться, и тогда тоже получается двубоковая симметрия, этому способствует и образование в глотке сифоноглифов (желобок вдоль глотки) .
    Наибольшее усложнение радиально-осевой симметрии наблюдается у ктенофор, где, помимо 8-лучевой симметрии, в расположении отдельных частей тела и органов наблюдается 4-лучевая и двубоковая симметрия. Это весьма существенный момент, так как большинство зоологов именно от ктенофорообразных предков выводит оба ствола высших животных, как первично-, так и вторичноротых.
    Гетерополярная радиальноосевая симметрия вполне соответствует образу жизни кишечнополостных неподвижному существованию в прикрепленном положении или медленному плаванию при помощи реактивного движения.
    С другой стороны, от сложного типа радиально-осевой симметрии ктенофор можно перейти к двусторонней симметрии, или, как говорят, симметрии зеркального изображения, единственного плана симметрии трехслойных животных, симметрии быстрого движения, с выработкой переднего по движению конца тела, с центральным мозговым скоплением и основными органами чувств, спинной и брюшной, правой и левой сторонами тела.
    ..подробнее - ссылка заблокирована по решению администрации проекта. berl. ru/article/ nauka/cimmetria_u_givotnyh.htm здесь (уберите про)

Каких только животных не встречается на нашей планете! Некоторые поражают своими размерами, кто-то удивляет повадками и образом жизни, другие отличаются невероятной окраской.

Но самыми поразительными по строению тела являются все-таки морские и океанские обитатели. Их форма тела может быть очень необычной, так как обладает особой симметрией, нехарактерной для наземных животных. Это лучевая симметрия.

Типы симметрии тела у животных

Всех животных по типам симметрии тела можно разделить на четыре группы:

  • Животные с билатеральной симметрией (двустороннесимметричные). К этой группе относится большинство видов наземных животных и значительная часть морских. Основная особенность - это расположение органов тела симметрично относительно одной проведенной через него плоскости. Например, левая и правая часть организма, задняя и передняя.
  • Радиальная симметрия тела (лучевая симметрия). Характерна для и океанских глубин. Основная особенность - строение тела таким образом, что через его центральную ось можно провести несколько воображаемых линий, относительно которых будут расположены симметрично. Например, лучи морских звезд.
  • Животные с асимметричной формой тела. Когда симметрия не характерна вообще, форма постоянно меняется в зависимости от условий окружающей среды или от движения животного. Типичный пример -
  • Отсутствие симметрии полностью. К таким организмам относятся губки. Они ведут прикрепленный образ жизни, могут разрастаться по субстрату на разные объемы и совершенно не имеют определенной симметричности в строении тела.

Каждая перечисленная группа организмов извлекает для себя определенную выгоду из своего строения. Так, например, билатеральные животные могут свободно передвигаться прямо, поворачиваясь в стороны. Животные с радиальной симметрией способны ловить добычу с разных сторон. Асимметричным организмам удобно так передвигаться и приспосабливаться к условиям среды.

Лучевая симметрия: что это

Основной отличительной чертой животных, обладающих радиальной симметрией, является их необычная форма тела. Они, как правило, куполообразные, цилиндрические или в форме звезды или шара.

Через тело таких организмов можно проводить много осей, относительно каждой из них найдутся две совершенно симметричные половинки. Такое приспособление дает им возможность иметь ряд преимуществ:

  1. Они свободно передвигаются в любом направлении, контролируя все стороны вокруг себя.
  2. Охота приобретает более масштабные размеры, так как добыча ощущается вокруг всего тела.
  3. Необычная форма тела позволяет приспосабливаться к окружающему пейзажу, вливаться в него и становиться незаметным.

Лучевая симметрия тела - одно из главных приспособлений для определенных классов животных океанского биоценоза.

Характеристика радиальной симметрии тела

История возникновения такого приспособления, как радиальная симметрия тела, уходит своими корнями к предкам животных Именно они вели совершенно сидячий, неподвижный образ жизни и были прикреплены к субстрату. Им была выгодна такая симметрия, и они дали ей начало.

То, что сейчас многие активно плавающие животные все равно лучевую симметрию имеют, говорит о ее нередуцированности в ходе эволюции. Однако свое прямое назначение данная особенность уже не выполняет.

Значение лучевой симметрии

Основное ее назначение у предковых форм, так же как и у современных, ведущих прикрепленный образ жизни - обеспечение защиты от нападений хищников и добыча пропитания.

Ведь животные, имеющие лучевую симметрию, не способны были себя защитить, убежав от хищника, не могли и спрятаться. Поэтому единственным вариантом защиты стало ощутить приближение опасности с любой стороны тела и вовремя отреагировать защитными механизмами.

Кроме того, добывать себе пропитание, когда ведешь сидячий образ жизни, довольно сложно. А радиальная симметрия позволяет улавливать малейшие источники пищи вокруг всего тела и быстро на них реагировать.

Таким образом, лучевая симметрия тела дает крайне важные механизмы самообороны и пропитания для животных, ею обладающих.

Примеры животных

Можно привести множество примеров животных, обладающих радиальной симметрией. Их огромное видовое и численное многообразие украшает собой морские и океанские днища и толщи воды, позволяет человеку восхищаться затейливостью природы и красотой подводного мира.

Какие животные имеют лучевую симметрию? Например, такие как:

  • морские ежи;
  • медузы;
  • голотурии;
  • офиуры;
  • змеехвостки;
  • гидры;
  • морские звезды;
  • гребневики;
  • неподвижные полипы;
  • некоторые виды губок.

Это самые распространенные примеры лучевой симметрии тела у животных. Существуют и другие животные, малоизученные, а, возможно, и вообще еще не открытые, для которых характерна такая особенность телосложения.

Кишечнополостные

Данный тип животных включает в себя три основных класса, общей особенностью представителей которых является то, что все они животные с лучевой симметрией. В жизненных циклах преобладает либо стадия свободноплавающей медузы, либо стадия прикрепленного к субстрату полипа. Отверстие одно, выполняет функцию ротового, анального и полового. Для защиты используют ядовитые

  1. Гидроидные. Основные представители: гидры, гидранты. Ведут прикрепленный образ жизни, имеют, как и все кишечнополостные, два слоя в строении тела: эктодерма и энтодерма. Срединный слой представляет собой студенистое вещество водянистого состава - мезоглею. Форма тела чаще всего бокаловидная. Основная часть жизни проходит в стадии полипа.
  2. Медузы (сцифоидные). Основные представители - все виды медуз. Форма тела необычная, в виде колокола или купола. Они также двухслойные животные, имеющие лучевую симметрию. Основная часть жизни проходит в стадии свободно движущейся медузы.
  3. Кораллы (полипы). Основные представители: актинии, кораллы. Основная особенность - это колониальный образ жизни. Многие кораллы образуют целые рифы из своих поселенческих колоний. Одиночные формы также встречаются, это разные виды актиний. Стадия медузы вообще не характерна для этих животных, только стадия полипов.

Всего насчитывают примерно 9000 видов представителей данного типа животных.

Иглокожие

Еще какие животные имеют лучевую симметрию? Конечно, всем известные и очень красивые, необычные и яркие иглокожие. Данный тип насчитывает порядка 7 тысяч видов этих удивительных представителей морской фауны. Выделяют пять основных классов:

  • Голотурии - напоминают червей, однако все же лучевую симметрию имеют. Ярко окрашены, передвигаются неохотно по морскому дну.
  • Офиуры - напоминают морских звезд, однако отличаются более высокой подвижностью и бедностью окраски - белые, молочные и бежевые цвета.
  • Морские ежи - могут иметь правильный, игольчатый наружный скелет, а могут и не иметь иголок. Форма тела практически всегда близка к шарообразной.
  • Морские звезды - пяти, восьми или двенадцатилучевые животные с явно выраженной радиальной симметрией. Очень красиво окрашены, образ жизни ведут малоподвижный, ползают по дну.
  • Морские лилии - сидячие красивые животные, имеют форму радиального цветка. Могут отделяться от субстрата и передвигаться на более богатые пищей места.

Образ жизни может быть как подвижным, так прикрепленным (морские лилии). Тело двухслойное, ротовое отверстие выполняет функцию анального и полового. достаточно прочный, известковый, красиво украшен цветными узорами.

Личинки этих животных имеют билатеральную симметрию тела, и только взрослые особи доращивают лучи до радиальности.

Гребневики

Чаще небольшие по размерам животные (до 20 см), у которых абсолютно белое, полупрозрачное тело, украшенное рядами гребенок. Этот тип животных считается одним из самых древних. Гребневики хищники, поедают рачков, мелких рыб и даже друг друга. Очень интенсивно размножаются.

В строении тела появляется третий Ротовое отверстие на верхней части тела, ведут свободноплавающий образ жизни. Самыми распространенными видами считаются:

  • берое;
  • платиктениды;
  • гастродес;
  • венерин пояс;
  • болинопсис;
  • тьяльфиелла.

Их радиальная симметрия, так же как и лучевая симметрия кишечнополостных некоторых видов, слабо выражена. Форма тела напоминает мешок или овал.

Обобщение

Таким образом, лучевая симметрия тела - это прерогатива водных животных, ведущих малоподвижный или прикрепленный образ жизни и дающая своим обладателям ряд преимуществ в охоте на добычу и уклонении от хищников.

Тип Плоские черви. Органы чувств. Половая система ленточных. Пищеварительная система ресничных. Газообмен и транспорт веществ. Ленточные черви. Класс Ленточные черви. Жизненные циклы ленточных червей. Строение плоских червей. Турбеллярия. Нервная система. Класс Ресничные черви. Пищеварительная система. Ресничные черви. Плоские черви. Движение. Класс Сосальщики. Половая система. Половая система сосальщиков.

«Особенности строения планарии» - Актуализация знаний. Нервная система планарии. Различные виды планарий. Кишечнополостные. Бурая планария. Общие признаки. Тип Плоские черви. Ответноя реакция организма на раздражение. Общая характеристика типа. Белая планария или молочная. Слои тела планарии и гидры. Численность рыбы. Пищеварительная система планарии. Белая планария. Общие признаки типа. Великолепный псевдобицерос. Ресничные черви.

«Строение планарии» - Движения планарии. Выделительная система. Плоские черви. Половая система. Пространство между органами. Яйца покрываются плотными оболочками. Внутреннее строение планарии. Признаки плоских червей. Тип Плоские черви. Однослойный эпителий. Нервная система. Пищеварительная система. Тип Ресничные черви. Кольцевые мышцы. Тело планарии. Молочная планария. Появление в процессе развития третьего зародышевого листка.

«Строение белой планарии» - Глотка и кишка. Строение. Нервная система белой планарии. Захват пищи белой планарией. Расположение мышц. Мускулатура. Разнообразие плоских червей. Питание и передвижение. Плоские черви. Класс Турбеллярии. Усложнение полости тела. Кольчатые черви. Нервная система и органы чувств. Строение планарии. Состав группы. Plathelminthes. Нефридии и почки накопления. Покровы тела.

Расположение частей тела и органов подчинено у кишечнополостных радиальноосевой симметрии*. Симметрией называется определенный геометрический порядок в расположении сходственных частей тела.

Элементами симметрии являются точка (центр), линия (ось) и плоскость. Прекрасный пример радиально-лучевой симметрии дают радиолярии (рис.). Сходственные части тела расположены вокруг центра симметрии в радиальном направлении. Радиально-лучевая симметрия свойственна организмам, взвешенным в воде и имеющим со всех сторон одинаковую среду, в силу чего и реакция организма «одинакова во все стороны».

*Симметрия-от греческих слов sym - вместе и metron - масса, в смысле часть тела.

Рис. Различные типы симметрии у животных. А - радиально-лучевая симметрия; Б - радиальноосевая симметрия у кишечнополостных; В - двусторонняя симметрия. соответствует биологии радиолярий.

Радиально-лучевую симметрию мы находим также у колониальных фитомонадовых (вольвокс, эвдорина, пандорина и др.) и некоторых колоний многоклеточных, например у колониальной коловратки Conochilus.

Однако радиально-лучевая симметрия некоторых простейших не является самой примитивной формой строения тела. В равной мере планктонное существование также нельзя считать самой примитивной биологической формой. Самые просто организованные формы саркодовых (АтоеЫпа) имеют асимметричное строение, и, видимо, оно соответствует примитивным формам организации и поведения
(псевдоподиальная форма движения и питания). Кроме того, можно думать, что все пелагические формы существования являются вторичными производными от придонных. Асимметричное строение свойственно и инфузориям, и жгутиковым. В частности, радиолярии обладают необыкновенным богатством планов симметрии своего скелета - радиально-осевой, как гомополярной, так и гетерополярной, двусторонней, двубоковой, с обычным отклонением всех этих типов симметрии в асимметрию. Следует отметить, что в подавляющем числе случаев при этом разные формы симметрии относятся только к скелету, что же касается протоплазмы, то она, как правило, имеет асимметричное расположение включений (ядро, пульсирующие и пищеварительные вакуоли и иные включения).

Кишечнополостным, как сидячим, так и пелагическим (медузы), свойственна радиально-осевая симметрия, при которой сходственные части расположены вокруг оси вращения, причем эта симметрия может быть самого различного порядка в зависимости от того, на какой угол следует повернуть тело животного, чтобы новое положение совпало с исходным. Таким образом, может получаться 4-, 6-, 8лучевая симметрия и более, до симметрии порядка бесконечности. У радиолярий встречается радиально-осевая симметрия с одинаковыми полюсами, или, как говорят, гомополярная. У кишечнополостных - гетерополярная осевая сим26 метрия: один полюс симметрии несет рот и щупальца (оральный), другой (а б о р а л ь н ы й) служит для прикрепления (стадия полипа), или у плавающих форм несет орган чувств (ктенофоры), или ничем не вооружен (медузы).

У некоторых медуз на этой аборальной стороне образуется стебелек для прикрепления к подводным предметам (Lucernariida). Нарушение радиал ьно-осевой симметрии возникает при уменьшении числа шупалец или изменении формы ротовой щели, пищевода и разветвлений пищеварительной системы. Количество щупалец может уменьшаться до одного (Мопоbrachium), и тогда их радиальное расположение сменяется двубоковым. Глотка может сплющиваться, и тогда тоже получается двубоковая симметрия, этому способствует и образование в глотке сифоноглифов (желобок вдоль глотки).

Наибольшее усложнение радиально-осевой симметрии наблюдается у ктенофор, где, помимо 8-лучевой симметрии, в расположении отдельных частей тела и органов наблюдается 4-лучевая и двубоковая симметрия. Это весьма существенный момент, так как большинство зоологов именно от ктенофорообразных предков выводит оба ствола высших животных, как первично-, так и вторичноротых.

Гетерополярная радиальноосевая симметрия вполне соответствует образу жизни кишечнополостных - неподвижному существованию в прикрепленном положении или медленному плаванию при помощи реактивного движения.

С другой стороны, от сложного типа радиально-осевой симметрии ктенофор можно перейти к двусторонней симметрии, или, как говорят, симметрии зеркального изображения, единственного плана симметрии трехслойных животных, симметрии быстрого движения, с выработкой переднего по движению конца тела, с центральным мозговым скоплением и основными органами чувств, спинной и брюшной, правой и левой сторонами тела.

Однако живых или ископаемых свидетелей этого перехода мы не знаем. Здесь можно пользоваться только более или менее достоверными гипотезами.

В 1880 г. знаменитый эмбриолог А. Ковалевский открыл своеобразный организм - ползающую ктенофору,-названный им Coeloplana metschnikowi.

Родовым названием Ковалевский хотел показать, что этот организм объединяет в себе признаки целентерат и планарий, т. е. плоских червей. В 1886 г. другой русский зоолог - А. Коротнев, работая на о. Яве, открыл другую подобную форму, которую назвал Ctenoplana kowalewskii, также указывая в названии объединение в этом организме особенностей ктенофоры и планарий.

В настоящее время в морях Юго-Восточной Азии описан целый ряд подобных форм, объединенных в группу Platyctenidae (плоских ктенофор), но изучение их показало, что не среди них надо искать предков плоских червей, что это просто ползающие ктенофоры без предковых черт организации плоских червей.

Вопрос этот приходится решать иным путем. Возможны два варианта. По одному допущению, ктенофорообразные предки первоначально были ориентированы ротовым полюсом ко дну, а аборальным вверх. Затем они испытали расплющивание по основной оси тела и сближение орального полюса с аборальным. В дальнейшем аборальный орган чувств, зачаток мозгового скопления, должен был сместиться на тот участок сплюснутого тела, который стал передним по направлению движения. Таким образом выработались спинная и брюшная поверхности, а ротовое отверстие, как и у многих турбеллярий, осталось в средней части брюшной поверхности. Однако допущение такого пути формирования тела плоских червей должно уступить место другому. Гораздо вероятнее допустить, что ктенофорообразные предки червей ориентировались к дну боком, в таком случае у них сразу формировалась передняя по движению сторона тела, а ротовое отверстие должно было несколько сместиться по брюшной стороне вперед.
Такое допущение больше соответствует расположению нервной системы турбеллярий.

Рис. 4. Различные формы движения у животных:
1 - движение трипаносомы при помощи ундулирующей мембраны; 2 - изгибательное движение полпхеты и 3 - рыбы. ной симметрии предков, особенно в строении нервной системы. Они сохраняют также мерцательный эпителий на поверхности тела, расположение рта на брюшной стороне и ряд других особенностей, заимствованных от целентератных предков.

Пока не сформировались рычажные конечности, основным механизмом движения оставалось изгибательное движение (рис. 4). Этот тип движения возможен при достаточно мощной мускулатуре и определенном ее расположении «пластами» вдоль всего тела. Оба эти условия сочетаются в кожно-мускульном мешке червей. При этом двигательная мускулатура составляет около половины общего объема тела, а иногда (немертины, пиявки) я значительно больше.

С образованием конечностей кожномускульный мешок распадается на отдельные мышцы. Морфологическая основа двигательной функции кожно-мускульного мешка - расположение сократительных волокон во взаимно перпендикулярном направлении. Это пласты кольцевых и продольных мышц. Еще у грегарин миофибриллы образуют систему продольных и поперечных нитей. Отростки эпителиально-мышечных клеток низших кишечнополостных также образуют слой продольных (от эктодермы) и слой кольцевых сократительных волокон. Однако у кишечнополостных количество мускулатуры невелико, кожно-мускульный мешок не формируется и движение осуществляется реактивным способом - только у ктенофор сохраняется ресничное движение, дающее, однако, при крупных размерах ктенофор очень слабый эффект, Изгибательное, волнообразное движение - весьма целесообразная форма передвижения в водной среде, однако в плотной среде грунтов, особенно морских, эта форма движения не эффективна: у животных возникает гидравлическое прямолинейное движение. При этом формируется обширная полость тела, наполненная полостной жидкостью. Количество мускулатуры в кожно-мускульном мешке уменьшается, но оно достаточно, чтобы сокращением кольцевой мускулатуры тела и перекачкой полостной жидкости вперед обеспечить продавливание хода в грунте, а затем, расширив передний конец тела и заклинив его в ходе, подтянуть заднюю часть тела сокращением продольной мускулатуры.

Принципиально тот же способ движения свойствен двустворчатым моллюскам, пробивающим ход в грунте клиновидной ногой, способной к расширению при перекачке в ее лакуны полостной жидкости, с последующим подтягиванием тела и одевающей его раковины. Интересно отметить, что отличные пловцы - головоногие моллюски - освоили реактивное движение и им не свойственно изгибательное движение тела. У их предков кожно-мускульный мешок уже распался (как и у остальных моллюсков) и была утрачена основа для создания изгибательного движения.

В водной среде возникли и членистоногие, и свойственное им движение с помощью рычажных конечностей, но, прежде чем сказать о свойственной им форме движения, следует остановиться на метамерии (сегментации) и ее происхождении.

Метамерия иногда рассматривается как своеобразный тип симметрии. При гомономной сегментации, так же как и при других типах симметрии, имеет место повторение сходственных частей тела - м ет а м е р (или сомитов) с одинаковым расположением половой системы, выделительных органов, разветвлений нервной (невросомит) и кровеносной (а нгиосомит) системы, с двумя параподиями по бокам тела, с поперечными перегородками - диссепиментами, отгораживающими сегменты друг от друга, с обособленными участками продольной и кольцевой мускулатуры (м и о с ом и т). Только в данном случае сходственные части - метамеры - расположены не вокруг точки или линии и не по обе стороны плоскости, а в линейном направлении по главной оси тела. Метамерное строение появилось вместе с развитием вторичной полости тела и кровеносной системы (рис. 5, 6). Низшие черви- сколециды - лишены настоящей метамерии (Amera), она появляется только у высших червей - аннелид - и проявляется либо в малом числе сегментов (Oligomera - мшанки, плеченогие и все вторичноротые), либо в большом (Poly mera - аннелиды и членистоногие).

Кишечнополостные

- древние животные, обитавшие еще в кембрийском море. Отсутствие настоящих органов и тканей дает основание считать их (наряду с губками - первейшими многоклеточными организмами) наиболее примитивными многоклеточными животными. Большинство видов обитает в морях и океанах, лишь немногие живут в пресных водоемах.

Класс гидроидные

Гидра - пресноводный полип («полип» означает «многоног»), обитающий в чистой проточной воде. Тело гидры цилиндрической формы размером от 1 до 1,5 см (причем тело обычно не превышает в длину 5-7 мм, зато щупальца способны вытягиваться на несколько сантиметров) . На одном конце находится подошва, служащая для прикрепления к подводным предметам, на противоположном - ротовое отверстие, окруженное длинными щупальцами (5-12). Гидра ведет малоподвижный образ жизни. Стенки тела гидры двухслойны и представлены эктодермой и энтодермой, между которыми располагается мезоглея. Тело гидры обладает радиальной симметрией, или лучевой симметрией. Лучевая симметрия - особый порядок расположения частей тела животного (у гидры - щупалец) по отношению к оси его симметрии, при котором они расходятся от нее подобно лучам от источника света. В нем можно различить главную продольную ось, вокруг которой в радиальном порядке размещения различные органы. Через тело можно провести несколько (2-4-6-8- и т.д.) плоскостей симметрии. Радиальная симметрия тела возникла в процессе эволюции у животных, которые вели прикрепленный образ жизни, т.к. жертва может появиться с любой стороны, лучеобразно расставленные щупальца лучше всего соответствуют такому способу охоты. Сидячий образ жизни вели предки кишечнополостных.

Особенности строения клетки многоклеточного животного организма.

Тело многоклеточных животных состоит из множества клеток и их производных. Клетки дифференцированы по строению и функции, они утратили самостоятельность, поскольку представляют собой лишь составные части целостного организма. Для жизненного цикла многоклеточных характерно сложное индивидуальное развитие (онтогенез), в процессе которого оплодотворенное яйцо дробится на множество клеток (бластомеров), затем дифференцирующихся на зародышевые листки и зачатки органов. В дальнейшем из зародыша развивается взрослый организм. (При партеногенезе - из неоплодотворенного яйца формируется взрослый организм).

Всех многоклеточных можно разделить на 2 группы:

а) лучистые

(радиально-симметричные), или двухслойные. Им свойственно наличие нескольких плоскостей симметрии и радиальное расположение органов вокруг главной оси тела. В процессе онтогенеза у них образуется только 2 зародышевых листка - эктодерма и энтодерма. Сюда относятся все представители типа кишечнополостных;

б) трехслойные, или двусторонне симметричные,

в отличие от лучистых, имеют одну плоскость симметрии, которая делит их тело на 2 зеркально одинаковые половинки (левую и правую). У них, кроме эктодермы и энтодермы, образуется и 3-ий зародышевый листок - мезодерма. Из него формируются многие внутренние органы.