Главная · Температура · Макрофаги: гистогенез, функциональные характеристики, основные медиаторы. Функции лейкоцитов

Макрофаги: гистогенез, функциональные характеристики, основные медиаторы. Функции лейкоцитов

6912 0

Основная роль в развитии и поддержании хронического воспа­ления принадлежит системе фагоцитирующих макрофагов (это понятие заменило широко применявшийся ранее, но по существу недостаточно обоснованный термин «ретикулоэндотелиальная система»). Основная клетка этой системы—макрофаг, развив­шийся из моноцита крови. Моноциты, происходящие из стволовой клетки костного мозга, поступают вначале в периферическую кровь, а из нее в ткани, где под влиянием различных местных стимулов превращаются в макрофаги.

Последние имеют чрезвы­чайно большое значение в осуществлении адаптивных реакций организма — иммунных, воспалительных и репаративных. Участию в подобных реакциях способствуют такие биологические свойства макрофагов, как способность мигрировать в очаги воспаления, возможность быстрого и стойкого увеличения продукции клеток костным мозгом, активный фагоцитоз чужеродного материала с быстрым расщеплением последнего, активация под действием чужеродных стимулов, секреция ряда биологически активных ве­ществ, способность «обрабатывать» проникший в организм анти­ген с последующей индукцией иммунного процесса.

Принципиально важно также, что макрофаги являются долгоживущими клет­ками, способными длительно функционировать в воспаленных тканях. Существенно, что они способны пролиферировать в очагах воспаления; при этом возможна трансформация макрофагов в эпителиоидные и гигантские многоядерные клетки.

Не обладая иммунологической специфичностью (как Т- и В-лимфоциты), макрофаг действует в качестве неспецифической вспомогательной клетки, обладающей уникальной способностью не только захватывать антиген, но и обрабатывать его так, что последующее распознавание этого антигена лимфоцитами значи­тельно облегчается. Этот этап особенно необходим для активации Т-лимфоцитов (для развития иммунных реакций замедленного типа и для продукции антител к тимусзависимым антигенам).

Кроме участия в иммунных реакциях за счет предварительной обработки антигена и его последующего «представления» лимфоцитам, макрофаги осуществляют защитные функции и более не­посредственно, уничтожая некоторые микроорганизмы, грибы и клетки опухолей.

Таким образом, при ревматических заболеваниях в клеточных реакциях иммунного воспаления участвуют не только специфически иммунизированные лимфоциты, но и не имеющие иммунологической специфичности моноциты и макрофаги.

Эти клетки привлекаются моноцитарными хемотаксическими веществами, вырабатываемыми в очагах воспаления. К ним отно­сятся С5а, частично денатурированные белки, калликреин, активатор плазминогена, основные белки из лизосом нейтрофилов Т-лимфоциты вырабатывают подобный фактор при контакте ее специфическим антигеном, В-лимфоциты — с иммунными комп­лексами.

Кроме того, лимфоциты продуцируют также факторы угнетающие миграцию макрофагов (т. е. фиксирующие их в очаге воспаления) и активирующие их функцию. В воспалительных оча­гах в отличие от нормальных условий наблюдаются митозы мак­рофагов и таким образом количество этих клеток нарастает также за счет местной пролиферации.

Значение макрофагов в поддержании воспалительного процесса определяется рассматриваемыми ниже противовоспалительными агентами, освобождаемыми из этих клеток.

1. Простагландины.

2. Лизосомные ферменты (в частности, при фагоцитозе комп­лексов антиген — антитело, причем клетка при их выделении не разрушается).

3. Нейтральные протеазы (активатор плазминогена, коллагеназа, эластаза). В норме их количество ничтожно, но при чужерод­ной стимуляции (при фагоцитозе) продукция данных ферментов индуцируется и они выделяются в значительных количествах. Продукция нейтральных протеаз угнетается ингибиторами белко­вого синтеза, в том числе глюкокортикостероидами. Выработка активатора плазминогена и коллагеназы стимулируется также факторами, секретируемыми активированными лимфоцитами.

4. Фосфолипаза Аз, освобождающая из более сложных комп­лексов арахидоновую кислоту — основной предшественник простагландинов. Активность этого фермента тормозится глюкокортико­стероидами.

5. Фактор, стимулирующий освобождение из костей как мине­ральных солей, так и органической основы костного матрикса. Этот фактор реализует свое влияние на костную ткань за счет прямого воздействия, не требуя присутствия остеокластов.

6. Ряд компонентов комплемента, которые активно синтезиру­ются и выделяются макрофагами: С3, С4, С2 и, по-видимому, так­же С1 и фактор В, необходимый для альтернативного пути активирования комплемента. Синтез этих компонентов повышается при активировании макрофагов и тормозится ингибиторами бел­кового синтеза.

7. Интерлейкин-1, который является типичным представителем цитокинов — биологически активных веществ полипептидной при­роды, вырабатываемых клетками (прежде всего клетками иммун­ной системы). В зависимости от источников продукции этих ве­ществ (лимфоциты или моноциты) нередко применяются терми­ны «лимфокины» и «монокины». Название «интерлейкин» с соответствующим номером используется для обозначения конкретных цитокинов — особенно тех, которые опосредуют клеточное взаимо­действие. Пока не вполне ясно, представляет ли интерлейкин-1, являющийся наиболее важным монокином, одно вещество или семейство полипептидов, обладающих очень близкими свойствами.

К этим свойствам относятся следующие:

  • стимуляция В-клеток, ускоряющих их трансформацию в плазматические клетки;
  • стимуляция активности фибробластов и синовиоцитов с повышенной выработкой ими простагландинов и коллагеназы;
  • пирогенное влияние, реализующееся в развитии лихорадки;
  • активирование синтеза в печени острофазовых белков, в частности сывороточного предшественника амилоида (этот эф­фект, возможно, является опосредованным — благодаря стиму­ляции выработки интерлейкина-6).

Среди системных эффектов интерлейкина-1, помимо лихорад­ки, могут быть отмечены также нейтрофилез и протеолиз скелет­ных мышц.

8. Интерлейкин-6, который также активирует В-клетки, стимулирует гепатоциты к выработке острофазовых белков и обладает свойствами b-интерферона.

9. Колониестимулирующие факторы, способствующие образо­ванию в костном мозге гранулоцитов и моноцитов.

10. Фактор некроза опухолей (ФНО), который не только действительно способен вызывать некроз опухолей, но и играет заметную роль в развитии воспаления. Этот полипептид, состоящий из 157 аминокислот, в раннюю фазу воспалительной реакции способствует прилипанию нейтрофилов к эндотелию и способствует тем самым их проникновению в очаг воспаления. Он служит так­же мощным сигналом к выработке токсичных кислородных радикалов и является стимулятором В-клеток, фибробластов и эндо­телия (2 последних типа клеток при этом вырабатывают колониестимулирующие факторы).

Клинически важно, что ФНО, так же как интерлейкин-1 и интерферон, подавляют активность липопротеинлипазы, которая обеспечивает отложение жира в организме. Именно поэтому при воспалительных заболеваниях часто отмеча­ется выраженное похудание, не соответствующее калорийному питанию и сохранившемуся аппетиту. Отсюда второе название ФНО — кахектин.

Активация макрофагов, проявляющаяся увеличением их разме­ра, большим содержанием ферментов, нарастанием способстности к фагоцитозу и уничтожению микробов и опухолевых клеток, может быть и неспецифичной: за счет стимуляции иными (не относящимися к имеющемуся патологическому процессу) микроорганизмами, минеральным маслом, лимфокинами, продуцируемыми Т-лимфоцитами, в меньшей степени — В-лимфоцитами.

Макрофаги активно участвуют в резорбции кости и хряща. При электронномикроскопическом исследовании на границе пан­нуса и суставного хряща обнаружены макрофаги, тесно связанные с частичками переваренных коллагеновьгх волокон. То же явление отмечено и при контакте макрофагов с резорбируемой костью.

Таким образом, макрофаги играют важную роль в развитии воспалительного процесса, его поддержании и хронизации и уже априорно могут рассматриваться как одна из главных «мишеней» антиревматической терапии.

МАКРОФАГИ МАКРОФАГИ

(от макро... и...фаг), клетки мезенхимного происхождения в животном организме, способные к активному захвату и перевариванию бактерий, остатков погибших клеток и др. чужеродных и токсичных для организма частиц. Термин «М.» введён И. И. Мечниковым (1892). Представляют собой крупные клетки изменчивой формы, с псевдоподиями, содержат множество лизосом. М. имеются в крови (моноциты), соединит, ткани (гистиоциты), кроветворных органах, печени (купферовские клетки), стенке альвеол лёгкого (лёгочные М.), брюшной и плевральной полостях (перитонеальные и плевральные М.). У млекопитающих М. образуются в красном костном мозге из стволовой кроветворной клетки, проходя стадии монобласта, промоноцита, моноцита. Все эти разновидности М. объединяют в систему одноядерных фагоцитов. (см. ФАГОЦИТОЗ , РЕТИКУЛОЭНДОТЕЛИАЛЬНАЯ СИСТЕМА).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

макрофа́ги

Клетки в животном организме, способные к активному захвату и перевариванию бактерий, остатков погибших клеток и других чужеродных и токсичных для организма частиц. Имеются в крови, соединительной ткани, печени, бронхах, лёгких, брюшной полости. Термин введён И.И. Мечниковым , открывшим явление фагоцитоза.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Смотреть что такое "МАКРОФАГИ" в других словарях:

    - … Википедия

    МАКРОФАГИ - (от греч. makros: большой и phago ем), сип. мегалофаги, макрофагоциты, большие фагоциты. Термин М. предложен Мечниковым, разделившим все клетки, способные к фагоцитозу, на малых фагоцитов, микрофагов (см.), и больших фагоцитов, макрофагов. Под… … Большая медицинская энциклопедия

    - (от макро... и...фаг) (полибласты) клетки мезенхимного происхождения у животных и человека, способные к активному захвату и перевариванию бактерий, остатков клеток и др. чужеродных или токсичных для организма частиц (см. Фагоцитоз). К макрофагам … Большой Энциклопедический словарь

    Главный тип клеток системы мононуклеарных фагоцитов. Это крупные (10 24 мкм) долгоживущие клетки с хорошо развитым лизосомальным и мембранным аппаратом. На их поверхности имеются рецепторы к Fc фрагменту IgGl и IgG3, C3b фрагменту С, рецепторам В … Словарь микробиологии

    МАКРОФАГИ - [от макро... и фаг (и)], организмы, пожирающие, крупную добычу. Ср. Микрофаги. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    макрофаги - Вид лимфоцитов, которые обеспечивают неспецифическую защиту за счет фагоцитоза и участвуют в развитии иммунного ответа как антигенпредставляющие клетки (antigen presenting cells). [Англо русский глоссарий основных терминов по вакцинологии и… … Справочник технического переводчика

    Моноциты (макрофаги) тип белых кровяных клеток, участвующих в борьбе с инфекциями. Моноциты, наряду с нейтрофилами, являются двумя основными типами клеток крови, которые поглощают и уничтожают различные микроорганизмы. Когда моноциты покидают… … Медицинские термины

    - (от макро... и...фаг) (полибласты), клетки мезенхимного происхождения у животных и человека, способные к активному захвату и перевариванию бактерий, остатков клеток и других чужеродных или токсичных для организма частиц (см. Фагоцитоз).… … Энциклопедический словарь

    - (см. макро... + ...фаг) клетки соединительной ткани животных и человека, способные к захватыванию и перевариванию различных посторонних организму частичек (в том числе микробов); и. и. мечников назвал эти клетки макрофагами, в отличие от… … Словарь иностранных слов русского языка

    макрофаги - ів, мн. (одн. макрофа/г, а, ч.). Клітини сполучної тканини тваринних організмів, здатні схоплювати й перетравлювати бактерії, рештки загиблих клітин та інші чужорідні або токсичні для організму частинки. Плацента/рні макрофа/ги макрофаги, що… … Український тлумачний словник

Книги

  • Плацентарные макрофаги. Морфофункциональные характеристики и роль в гестационном процессе , Павлов Олег Владимирович, Сельков Сергей Алексеевич. В монографии впервые в мировой литературе собраны и систематизированы современные сведения о малоизученной группе клеток плаценты человека - плацентарных макрофагах. Подробно описаны…

Макрофаги – это клетки системы мононуклеарных фагоцитов, которые способны захватывать и переваривать чужеродные частицы или остатки клеток в организме. Они имеют овальное ядро, большое количество цитоплазмы, диаметр макрофага составляет от 15 до 80 мкм.

В систему мононуклеарных фагоцитов помимо макрофагов входят их предшественники – монобласты, промоноциты. Макрофаги имеют схожие функции с нейтрофилами, однако они задействованы в некоторых иммунных и воспалительных реакциях, в которых нейтрофилы участия не принимают.

Моноциты образуются в костном мозге в виде промоноцитов, затем попадают в кровь, из крови путем диапедеза, протискивания моноцитов в щели между эндотелиальными клетками сосудов, они попадают в ткани. Там они становятся макрофагами, больше всего их скапливается в селезенке, легких, печени, костном мозге, где они выполняют специфические функции.

У мононуклеарных фагоцитов есть две основные функции, которые выполняются двумя типами клеток:

— профессиональными макрофагами, которые устраняют корпускулярные антигены;

— антигенпрезентирующими клетками, которые участвуют в поглощении, процессинге и представлении антигена T-клеткам.

К макрофагам относятся гистиоциты соединительной ткани, моноциты крови, кулферовские клетки печени, клетки стенок альвеол легкого и стенок брюшины, эндотелиальные клетки капилляров кроветворных органов, гистиоциты соединительной ткани.

Макрофаги обладают рядом функциональных признаков:

— способность прилипать к стеклу;

— способность поглощать жидкость;

— возможность поглощать твердые частицы.

Макрофаги обладают способностью к хемотаксису – это возможность двигаться по направлению к источнику воспаления благодаря разности содержания веществ в клетках и вне них. Макрофаги способны вырабатывать компоненты комплемента, которые играют важную роль в образовании иммунных комплексов, выделять лизоцим, обеспечивающий бактериальное действие, вырабатывать интерферон, который ингибирует размножение вирусов, фибронектин, имеющий ключевое значение в процессе адгезии. Макрофаги продуцируют пироген, который воздействует на центр терморегуляции, что способствует повышению температуры, необходимому для борьбы с инфекцией. Еще одна из важных функций макрофага – «представление» чужеродных антигенов. Поглощенный антиген расщепляется в лизосомах, его фрагменты, выйдя из клетки и взаимодействуя на ее поверхности с молекулой HLA‑DR‑подобного белка образуют комплекс, выделяющий интерлейкин I, который поступает к лимфоцитам, что обеспечивает в последствии иммунный ответ.

Помимо перечисленных, макрофаги обладают еще рядом важных функций, например, продуцирование тканевого тромбопластина, который помогает при свертывании крови.

Макрофáги (от др.-греч. μακρός - большой, и φάγος - пожиратель (синонимы: гистиоцит-макрофаг, гистофагоцит, макрофагоцит, мегалофаг-пожиратель)), полибласты, клетки мезенхимальной природы в животном организме, способные к активному захвату и перевариванию бактерий, остатков погибших клеток и других чужеродных или токсичных для организма частиц. Термин «макрофаги» введён Мечниковым.

К макрофагам относят моноциты крови, гистиоциты соединительной ткани, эндотелиальные клетки капилляров кроветворных органов, купферовские клетки печени, клетки стенки альвеол лёгкого (лёгочные макрофаги) и стенки брюшины (перитонеальные макрофаги).

Установлено, что у млекопитающих предшественники макрофагов образуются в костном мозге. Активными фагоцитарными свойствами обладают также клетки ретикулярной ткани кроветворных органов, объединяемые с макрофагами в ретикуло-эндотелиальную (макрофагическую) систему, выполняющую в организме защитную функцию.

Морфология

Главный тип клеток системы мононуклеарных фагоцитов. Это крупные (10 - 24 мкм) долгоживущие клетки с хорошо развитым лизосомальным и мембранным аппаратом. На их поверхности имеются рецепторы к Fc-фрагменту IgGl и IgG3, C3b-фрагменту С, рецепторам В- и Т-лимфоцитов, комплементу, другим интерлейкинам и гистамину.

Тканевые макрофаги

Фактически моноцит становится макрофагом, когда покидает сосудистое русло и проникает в ткани.

В зависимости от типа ткани выделяют следующие виды макрофагов.

· Гистиоциты - макрофаги соединительной ткани; компонент ретикуло-эндотелиальной системы.

· Купферовские клетки - иначе эндотелиальные звездчатые клетки печени.

· Альвеолярные макрофаги - иначе, пылевые клетки; расположены в альвеолах.

· Эпителиоидные клетки - составляющие гранулемы.

· Остеокласты - многоядерные клетки, участвующие в резорбции костной ткани.

· Микроглия - клетки центральной нервной системы, разрушающие нейроны и поглощающие инфекционные агенты.

· Макрофаги селезенки

Идентификация макрофагов

макрофаги содержат многочисленные цитоплазматические ферменты и могут быть идентифицированы в тканях гистохимическими методами, которые обнаруживают эти ферменты. Некоторые ферменты, типа мурамидазы (лизоцима) и химотрипсина, могут обнаруживаться методом меченных антител (иммуногистохимия), при котором используются антитела против белков фермента. Такие моноклональные антитела против различных CD антигенов широко используются для идентифицикации макрофагов.



Функции макрофагов

функции макрофагов включают в себя фагоцитоз, «обработку» антигенов и взаимодействие с цитокинами.

Фагоцитоз

· Неиммунный фагоцитоз: макрофаги способны фагоцитировать чужеродные частицы, микроорганизмы и остатки поврежденных клеток непосредственно, без вызова иммунного ответа. Однако фагоцитоз микроорганизмов и их уничтожение значительно облегчаются при присутствии специфических иммуноглобулинов, комплемента и лимфокинов, которые производятся иммунологически активированными T-лимфоцитами.

· Иммунный фагоцитоз: макрофаги имеют поверхностные рецепторы для C3b и Fc-фрагмента иммуноглобулинов. Любые частицы, которые покрыты иммуноглобулином или комплементом (опсонизированы), фагоцитируются значительно легче, чем «голые» частицы.

· «Обработка» антигенов: макрофаги «обрабатывают» антигены и представляют их B- и T-лимфоцитам в необходимой форме; Это клеточное взаимодействие включает одновременное распознавание лимфоцитами MHC молекул и «обработанных антигенов», находящихся на поверхности макрофагов.

· Взаимодействие с цитокинами: макрофаги взаимодействуют с цитокинами, производимыми T-лимфоцитами для защиты организма против определенных повреждающих агентов. Типичный результат такого взаимодействия - формирование гранулем. Макрофаги также производят цитокины, включая интерлейкин-l, b-интерферон и факторы роста T- и B-клеток. Различные взаимодействия лимфоцитов и макрофагов в тканях проявляются морфологически при хроническом воспаление.

Роль макрофагов не ограничивается секрецией ИЛ-1. В этих клетках синтезируется еще ряд биологически активных веществ, каждое из которых делает свой вклад в воспаление. К ним относятся: эстеразы, протеазы и антипротеазы; лизосомальные гидролазы - коллагеназа, аластаза, лизоцим, α-макроглобулин; монокины - ИЛ-1, колониестимулирующий фактор, фактор, стимулирующий рост фибробластов; антиинфекционные агенты - интерферон, трансферрин, транскобаламин; компоненты комплемента: С1, С2, СЗ, С4, С5, С6; дериваты арахидоновой кислоты: простагландин Е2, тромбоксан А2, лейкотриены.

К микрофагам Мечников отнёс зернистые полиморфноядерные лейкоциты крови, которые, эмигрируя из кровеносных сосудов, проявляют энергичный фагоцитоз главным оброзом по отношению к бактериям, и в гораздо меньшей степени (в противоположность макрофагам) к различным продуктам тканевого распада.

Особенно хорошо проявляется фагоцитарная деятельность микрофагов в гное, содержащем бактерии.

От макрофагов микрофаги отличаются ещё и тем, что не воспринимают витальной окраски.

Макрофаги содержат ферменты для переваривания фагоцитированных веществ. Эти ферменты содержатся в вакуолях (пузырьках), называемых лизосома-ми, и способны расщеплять белки, жиры, углеводы и нуклеиновые кислоты.

Макрофаги очищают организм человека от частиц неорганического происхождения, а также от бактерий, вирусных частиц, отмирающих клеток, токсинов – ядовитых веществ, образующихся при распаде клеток или вырабатываемых бактериями. Кроме того, макрофаги выделяют в кровь некоторые гуморальные и секреторные вещества: элементы комплемента С2, С3, С4, лизоцим, интерферон, интер-лейкин-1, простагландины, о^-макроглобулин, моноки-ны, регулирующие иммунный ответ, цитоксины – ядовитые для клеток вещества.

Макрофаги обладают тонким механизмом распознавания чужеродных частиц антигенной природы. Они различают и быстро поглощают старые и новорожденные эритроциты, не трогая нормальных эритроцитов. Долгое время за макрофагами была закреплена роль «чистильщиков», но они являются и первым звеном специализированной системы защиты. Макрофаги, включая антиген в цитоплазму, распознают его с помощью ферментов. Из лизосом выделяются вещества, растворяющие антиген в течение приблизительно 30 мин, после чего он выводится из организма.

Антиген проявляется и опознается макрофагом, после чего переходит к лимфоцитам. Нейтрофильные гранулоциты (нейтрофилы, или микрофаги) также формируются в костном мозге, откуда поступают в кровоток, в котором циркулируют в течение 6-24 ч.

В отличие от макрофагов созревшие микрофаги получают энергию не от дыхания, аот гликолиза, как прокариоты, т. е. становятся анаэробами, и могут осуществлять свою деятельность в бескислородных зонах, например в экссудатах при воспалении, дополняя деятельность макрофагов. Макрофаги и микрофаги на своей поверхности несут рецепторы к иммуноглобулину JgJ и к элементу комплемента С3, которые помогают фагоциту в распознавании и прикреплении антигена к поверхности его клетки. Нарушение деятельности фагоцитов довольно часто проявляется в виде повторяющихся гнойно-септических заболеваний, таких как хроническая пневмония, пиодермия, остеомиелит и др.

При ряде инфекций возникают различные приобретения фагоцитоза. Так, туберкулезные микобактерии не разрушаются при фагоцитировании. Стафилококк тормозит поглощение его фагоцитом. Нарушение деятельности фагоцитов приводит также к развитию хронического воспаления и болезням, связанным с тем, что накопленный макрофагами материал от разложения фагоцитированных веществ не может быть выведен из организма вследствие недостаточности некоторых ферментов фагоцита. Патология фагоцитоза может быть связана с нарушением взаимодействия фагоцитов с другими системами клеточного и гуморального иммунитета.

Фагоцитозу способствуют нормальные антитела и иммуноглобулины, комплемент, лизоцим, лейкины, интерферон и ряд других ферментов и секретов крови, предварительно обрабатывающих антиген, делая его более доступным для захвата и переваривания фагоцитом.

В 1970-х годах была сформулирована гипотеза о системе мононуклеарных фагоцитов, в соответствии с которой макрофаги представляют собой конечную стадию дифференцировки моноцитов крови, которые, в свою очередь, происходят из мультипотентных стволовых клеток крови в костном мозге. Однако исследования, проведённые в 2008-2013 годах, показали, что макрофаги тканей взрослых мышей представлены двумя популяциями, которые различаются по своему происхождению, механизму поддержания численности и функциям. Первая популяция это тканевые, или резидентные макрофаги. Они происходят из эритромиелоидных предшественников (не имеющих отношения к стволовым клеткам крови) желточного мешка и эмбриональной печени и заселяют ткани на различных этапах эмбриогенеза. Резидентные макрофаги приобретают тканеспецифичные характеристики и поддерживают свою численность за счёт пролиферации in situ без какого-либо участия моноцитов. К долгоживущим тканевым макрофагам относят купферовские клетки печени, микроглию центральной нервной системы, альвеолярные макрофаги лёгких, перитонеальные макрофаги брюшной полости, клетки Лангерганса кожи, макрофаги красной пульпы селезёнки.

Вторая популяция представлена относительно короткоживущими макрофагами моноцитарного (костномозгового) происхождения. Относительное содержание таких клеток в ткани зависит от её типа и возраста организма. Так макрофаги костномозгового происхождения составляют менее 5% всех макрофагов головного мозга, печени и эпидермиса, небольшую долю макрофагов лёгких, сердца и селезёнки (однако эта доля увеличивается с возрастом организма) и большую часть макрофагов собственной пластинки слизистой оболочки кишечника. Количество макрофагов моноцитарного происхождения резко увеличивается при воспалении и нормализуется по его окончании.

Активация макрофагов

In vitro, под воздействием экзогенных стимулов, макрофаги могут активироваться. Активация сопровождается существенным изменением профиля экспрессии генов и формированием клеточного фенотипа специфичного для каждого типа стимулов. Исторически первыми были открыты два во многом противоположных типа активированных макрофагов, которые по аналогии с Th1/Th2 назвали M1 и M2. Макрофаги типа М1 дифференцируются ex vivo при стимуляции предшественников интерфероном γ при участии фактора транскрипции STAT1. Макрофаги типа М2 дифференцируются ex vivo при стимуляции интерлейкином 4 (через STAT6).

Долгое время М1 и М2 были единственными известными типами активированных макрофагов, что позволило сформулировать гипотезу об их поляризации. Однако к 2014 году накопились сведения, указывающие на существование целого спектра активированных состояний макрофагов, которые не соответствуют ни типу М1, ни типу М2. В настоящее время, нет убедительных доказательств того, что активированные состояния макрофагов, наблюдаемые in vitro, соответствуют тому, что происходит в живом организме, и являются ли эти состояния постоянными или временными.

Макрофаги, ассоциированные с опухолью

Злокачественные опухоли оказывают влияние на своё тканевое микроокружение, в том числе и на макрофаги. Моноциты крови инфильтрируют опухоль и под влиянием сигнальных молекул, секретируемых опухолью (M-CSF, GM-CSF, IL4, IL10, TGF-β), дифференцируются в макрофаги с "антивоспалительным" фенотипом и, подавляя антиопухолевый иммунитет и стимулируя формирование новых кровеносных сосудов, способствуют росту и метастазированию опухоли.

Макрофаги (моноциты, клетки фон Купфера, клетки Лангерханса, гистиофаги, альвеолоциты и др.) способны эффективно захватывать и внутриклеточно разрушать различные микробы и повреждённые структуры.

Микрофаги (гранулоциты: нейтрофилы, эозинофилы, базофилы, тромбоциты, эндотелиоциты, клетки микроглии и др.) в меньшей степени, но также способны захватывать и повреждать микробы.

В фагоцитах в процессе всех стадий фагоцитоза микробов активизируется как кислородзависимая, так и кислороднезависимая микробицидные системы.

Главные компоненты кислородзаеисимой микробицидной системы фагоцитов - миелопероксидаза, каталаза и активные формы кислорода (синглетный кислород - 02, радикал супероксида - 02, гидроксильный радикал - ОН, перекись водорода - Н202).

Основные компоненты кислородонезависимой микробицидной системы фагоцитов - лизоцим (мурамидаза), лактоферрин, катионные белки, Н+ ионы (ацидоз), гидролазы лизосом.

3. Гуморальные бактерицидные и бактериостатические факторы:

Лизоцим, разрушая мураминовую кислоту пептидогликанов стенки грамположительных бактерий, вызьшает их осмотический лизис;

Лактоферрин, изменяя метаболизм железа в микробах, нарушает их жизненный цикл и нередко приводит к их гибели;

- (3-лизины бактерицидны для большинства грамположительных бактерий;

Факторы комплемента, оказывая опсонизирующее действие, активизируют фагоцитоз микробов;

Система интерферонов (особенно а и у) проявляет отчётливую неспецифическую противовирусную активность;

Деятельность как микроворсинок и железистых клеток слизистой оболочки воздухоносных путей, так и потовых и сальных желёз кожи, выделяющих соответствующие секреты (мокроту, пот и сало), способствует удалению из организма определённого количества различных микроорганизмов.

Фагоцитоз, процесс активного захватывания и поглощения живых и неживых частиц одноклеточными организмами или особыми клетками (фагоцитами) многоклеточных животных организмов. Явление Ф. было открыто И. И. Мечниковым, который проследил его эволюцию и выяснил роль этого процесса в защитных реакциях организма высших животных и человека, главным образом при воспалении и иммунитете. Большую роль Ф. играет при заживлении ран. Способность захватывать и переваривать частицы лежит в основе питания примитивных организмов. В процессе эволюции эта способность постепенно перешла к отдельным специализированным клеткам, вначале пищеварительным, а затем – к особым клеткам соединительной ткани. У человека и млекопитающих животных активными фагоцитами являются нейтрофилы (микрофаги, или специальные лейкоциты) крови и клетки ретикуло-эндотелиальной системы, способные превращаться в активных макрофагов. Нейтрофилы фагоцитируют мелкие частицы (бактерии и т.п.), макрофаги способны поглощать более крупные частицы (погибшие клетки, их ядра или фрагменты и т.п.). Макрофаги способны также накапливать отрицательно заряженные частицы красителей и коллоидных веществ. Поглощение мелких коллоидных частиц называют ультрафагоцитозом, или коллоидопексией.

Фагоцитоз требует затраты энергии и связан прежде всего с активностью клеточной мембраны и внутриклеточных органоидов – лизосом, содержащих большое количество гидролитических ферментов. В ходе Ф. различают несколько стадий. Вначале фагоцитируемая частица прикрепляется к клеточной мембране, которая затем обволакивает её и образует внутриклеточное тельце – фагосому. Из окружающих лизосом в фагосому попадают гидролитические ферменты, переваривающие фагоцитируемую частицу. В зависимости от физико-химических свойств последней переваривание может быть полным или неполным. В последнем случае образуется остаточное тельце, которое может оставаться в клетке длительное время.

Комплемент - (устаревшее алексин), белковый комплекс, обнаруживаемый в свежей сыворотке крови; важный фактор естественного Иммунитета у животных и человека. Термин введён в 1899 немецкими учёными П. Эрлихом и Ю. Моргенротом. К. состоит из 9 компонентов, которые обозначаются от С "1 до С"9, причём первый компонент включает три субъединицы. Все 11 белков, входящих в состав К., можно разделить иммунохимическими и физико-химическими методами. К. легко разрушается при нагревании сыворотки, при длительном ее хранении, воздействии на нее света. К. принимает участие в ряде иммунологических реакций: присоединяясь к комплексу антигена (См. Антигены) с антителом (См. Антитела) на поверхности клеточной мембраны, он вызывает лизис бактерий, эритроцитов и др. клеток, обработанных соответствующими антителами. Для разрушения мембраны и последующего лизиса клетки требуется участие всех 9 компонентов. Некоторые компоненты К. обладают ферментативной активностью, причём присоединившийся ранее к комплексу антигена с антителом компонент катализирует присоединение последующего. В организме К. участвует также в реакциях антиген - антитело, не вызывающих лизиса клеток. С действием К. связана устойчивость организма к болезнетворным микробам, освобождение Гистамина при аллергических реакциях немедленного типа, аутоиммунные процессы. В медицине консервированные препараты К. используют при серологической диагностике ряда инфекционных заболеваний, для обнаружения антигенов и антител.

ИНТЕРФЕРОНЫ - группа низкомолекулярных гликопротеидов, вырабатываемых клетками человека или животных в ответ па вирусную инфекцию или под действием различных индукторов (например, двухцепочечной РНК, инактивиро-ваннь1х вирусов и др.) и обладающих противовирусным действием.

Интерфероны представлены тремя классами:

альфа-лейкоцитарным, вырабатываемым ядерными клетками крови (гранулоцитами, лимфоцитами, моноцитами, малодифферинцированными клетками);

бета-фибробластным- синтезируемым клетками кожно-мышечной, соединительной и лимфоидной ткани:

гамма-иммунным - вырабатываемым Т-лимфоцитами в кооперации с макрофагами, естественными киллерами.

Антивирусное действие происходит не непосредственно при взаимодействии интерфе-ронов с вирусом, а опосредованно через клеточные реакции. Ферменты и ингибиторы, синтез которых индуцирован интерфероном, блокируют начало трансляции чужеродной генетической информации, разрушают молекулы информационных РНК. Взаимодействуя с клетками иммунной системы, стимулируют фагоцитоз, активность естественных киллеров, экспрессию главного комплекса гистосовместимости. Непосредственно воздействуя на В-клетки, интерферон регулирует процесс антителообразования.

АНТИГЕН - Химические молекулы, которые находятся в мембране клеток (или встроены в нее) и способны вызывать иммунный ответ, называются антигенами. Они делятся на дифференцированные и детерминированные. К дифференцированным антигенам относятся CD-антигены. К главному комплексу гистосовместимости относится HLA (hyman lencocyte antigen).

Антигены подразделяются на:

Токсины;

Изоантигены;

Гетерофильные антигены;

Домашние антигены;

Гантены;

Иммуногены;

Адъюванты;

Скрытые антигены.

Токсины - продукты жизнедеятельности бактерий. Токсины химическим путем могут быть превращены в анатоксины, у которых при этом исчезают токсические свойства, но сохраняются антигенные. Эта их особенность используется для приготовления ряда вакцин.

А- и В-изоантигены представляют собой мукополисахаридные антигены, против которых в организме всегда имеются антитела (аплотинины).

По антителам к А- и В- изоантигенам определяются 4 группы крови.

Гетерофильные антигены присутствуют в тканевых клетках многих животных, в крови человека они отсутствуют.

К домашним антигенам относятся аутоантигены, к большинству которых иммунная система толерантна.

Гантены - вещества, специфически реагирующие с антителами, но не способствующие их образованию. Гантены образуются при аллергических реакциях на лекарства.

Иммуногены (вирусы и бактерии) являются более сильными в сравнении с растворимыми антигенами.

Адъювантами называют вещества, которые при введении антигена усиливают иммунный ответ.

Скрытым антигеном может быть сперма, которая в некоторых случаях действует как чужеродный белок при травматических повреждениях яичек или при изменениях, вызванных паротитом.

Антигены подразделяют также на:

Антигены, являющиеся компонентами клеток;

Внешние антигены, не являющиеся компонентами клеток;

Аутоантигены (скрытые), не проникающие к иммунокомпетентным клеткам.

Антигены классифицируют и по другим признакам:

По типу вызывания иммунного ответа - иммуногены, аллергены, толерогены, трансплантационные);

По чужеродности - на гетеро- и аутоантигены;

По связанности с вилочковой железой - Т-зависимые и Т-независимые;

По локализации в организме - О-антигены (нулевые), термостабильные, высокоактивные и др.);

По специфичности для микроорганизма-носителя - видовые, типовые, вариантные, групповые, стадийные.

Взаимодействие организма с антигенами может происходить по-разному. Антиген может проникать внутрь макрофага и быть элиминирован в нем.

При другом варианте возможно его соединение с рецепторами на поверхности макрофага. Антиген способен реагировать с антителом на отростке макрофага и входить в контакт с лимфоцитом.

Кроме этого, антиген может обойти макрофаг и реагировать с антительным рецептором на поверхности лимфоцита или проникнуть в клетку.

Специфические реакции при действии антигенов протекают по-разному:

С образованием гуморальных антител (при трансформации иммунобласта в плазматическую клетку);

Сенсибилизированный лимфоцит превращается в клетку памяти, что приводит к образованию гуморальных антител;

Лимфоцит приобретает свойства лимфоцита-киллера;

Лимфоцит может превратиться в нереагирующую клетку в случае, если все его рецепторы связаны с антигеном.

Антигены придают клеткам способность синтезировать антитела, что зависит от их формы, дозировки и пути проникновения в организм.

Типы иммунитета

Различают два типа иммунитета: специфический и неспецифический.

Специфический иммунитет носит индивидуальный характер и формируется на протяжении всей жизни человека в результате контакта его иммунной системы с различными микробами и антигенами. Специфический иммунитет сохраняет память о перенесенной инфекции и препятствует ее повторному возникновению.

Неспецифический иммунитет носит видоспецифический характер, то есть практически одинаков у всех представителей одного вида. Неспецифический иммунитет обеспечивает борьбу с инфекцией на ранних этапах ее развития, когда специфический иммунитет еще не сформировался. Состояние неспецифического иммунитета определяет предрасположенность человека к различным банальным инфекциям, возбудителями которых являются условно патогенные микробы. Иммунитет бывает видовым или врожденным (например, человека к возбудителю чумы собак) и приобретенным.

Естественный пассивный иммунитет. АТ от матери передаются ребенку через плаценту, с грудным молоком. Он обеспечивает кратковременную защиту от инфекции, так как АТ расходуются и их количество уменьшается, но обеспечивают защиту до формирования собственного иммунитета.

Естественный активный иммунитет. Выработка собственных АТ при контакте с антигеном. Клетки иммунологической памяти обеспечивают наиболее стойкий, иногда пожизненный иммунитет.

Приобретенный пассивный иммунитет. Создается искусственно путем введения готовых АТ (сыворотки) от иммунных организмов (сыворотки против дифтерии, столбняка, ядов змей). Иммунитет такого типа также непродолжителен.

Приобретенный активный иммунитет. Небольшое количество антигенов вводят в организм в виде вакцины. Этот процесс называют вакцинацией. Используют убитый или ослабленный антиген. Организм не заболевает, но вырабатывает АТ. Часто производят повторное введение, и оно стимулирует более быстрое и продолжительное образование АТ, которые обеспечивают длительную защиту.

Специфичность антител. Каждое антитело специфично для определенного антигена; это связано с уникальной структурной организацией аминокислот в вариабельных участках его легких и тяжелых цепочек. Аминокислотная организация имеет разную пространственную конфигурацию для каждой антигенной специфичности, поэтому когда антиген вступает в контакт с антителом, многочисленные простетические группы антигена как зеркальное изображение соответствуют таким же группам антитела, благодаря чему между антителом и антигеном осуществляется быстрое и плотное связывание. Если антитело высокоспецифично и имеется много мест связи, происходит мощное сцепление между антителом и антигеном посредством: (1) гидрофобных связей; (2) водородных связей; (3) ионного притягивания; (4) ван-дер-вааль-совых сил. Комплекс антиген-антитело также подчиняется термодинамическому закону действия масс.

Структура и функции иммунной системы.

Структура иммунной системы. Иммунная система представлена лимфоидной тканью. Это специализированная, анатомически обособленная ткань, разбросанная по всему организму в виде различных лимфоидных образований. К лимфоидной ткани относятся вилочковая, или зобная, железа, костный мозг, селезенка, лимфатические узлы (групповые лимфатические фолликулы, или пейеровы бляшки, миндалины, подмышечные, паховые и другие лимфатические образования, разбросанные по всему организму), а также циркулирующие в крови лимфоциты. Лимфоидная ткань состоит из ретикулярных клеток, составляющих остов ткани, и лимфоцитов, находящихся между этими клетками. Основными функциональными клетками иммунной системы являются лимфоциты, подразделяющиеся на Т- и В-лимфоциты и их субпопуляции. Общее число лимфоцитов в человеческом организме достигает 1012, а общая масса лимфоидной ткани составляет примерно 1-2 % от массы тела.

Лимфоидные органы делят на центральные (первичные) и периферические (вторичные).

Функции иммунной системы. Иммунная система выполняет функцию специфической защиты от антигенов, представляющую собой лимфоидную ткань, способную комплексом клеточных и гуморальных реакций, осуществляемых с помощью набора иммунореагентов, нейтрализовать, обезвредить, удалить, разрушить генетически чужеродный антиген, попавший в организм извне или образовавшийся в самом организме.

Специфическая функция иммунной системы в обезвреживании антигенов дополняется комплексом механизмов и реакций неспецифического характера, направленных на обеспечение резистентности организма к воздействию любых чужеродных веществ, в том числе и антигенов.

Серологические реакции

Реакции между антигенами и антителами in vitro или серологические реакции широко используются в микробиологических и серологических (иммунологических) лабораториях с самыми разнообразными целями:

серодиагностики бактериальных, вирусных, реже других инфекционных заболеваний,

сероидентификации выделенных бактериальных, вирусных и других культур различных микроорганизмов

Серодиагностику проводят с помощью набора специфических антигенов, выпускаемых коммерческими фирмами. По результатам серодиагностических реакций судят о динамике накопления антител в процессе заболевания, о напряженности постинфекционного либо поствакцинального иммунитета.

Сероидентификацию микробных культур проводят для определения их вида, серовара с помощью наборов специфических антисывороток, также выпускаемых коммерческими фирмами.

Каждая серологическая реакция характеризуется специфичностью и чувствительностью. Под специфичностью понимают способность антигенов или антител реагировать только с гомологичными антителами, содержащимися в сыворотке крови, либо с гомологичными антигенами соответственно. Чем выше специфичность, тем меньше ложноположительных и ложноотрицательных результатов.

В серологических реакциях участвуют антитела, принадлежащие главным образом к иммуноглобулинам классов IgG и IgM.

Реакция агглютинации представляет собой процесс склеивание и выпадение в осадок корпускулярного антигена (агглютиногена) под воздействием специфических антител (агглютининов) в растворе электролита в виде глыбок агглютината.