Главная · Горло · Гуморальные регуляторы. Лекция — «Гуморальная регуляция физиологических функций

Гуморальные регуляторы. Лекция — «Гуморальная регуляция физиологических функций

Наш организм – огромная многоклеточная система. Каждая клетка – миниатюрный носитель жизни, который подчинил собственную свободу деятельности организма в целом. В каждой клетке тела заключена генетическая информация, достаточная для того, чтобы был воспроизведён весь организм. Эта информация записана в структуре дезоксирибонуклеиновой кислоты (ДНК) и заключена в генах, расположенных в ядре. Наряду с ядром, очень важным компонентом клетки является мембрана, которая и определяет её специализацию. Так, мышечные клетки выполняют функцию сокращения, нервные – вырабатывают электрические сигналы, клетки желёз выделяют секрет. Клетки «одной специальности» объединены в группы, называемые тканями (например, мышечная, нервная, соединительная ткани и т.д.). Ткани образуют органы. Органы как отдельные компоненты включены в системы (например, костная, кровеносная, мышечная), которые выполняю единую функцию в организме. Химический анализ показывает, что любой живой организм состоит из тех же элементов, которые часто встречаются и в неживой природе, в неорганическом мире. Французский химик Г. Бертран подсчитал, что тело человека, весящего 100 кг, содержит: кислорода – 63 кг, углерода – 19 кг, азота – 5 кг, кальция – 1 кг, фосфора – 700г, серы - 640г, натрия 250г, калия – 220г, хлора – 180г, магния – 40г, железа – 3г, йода – 0,03г, фтора, брома, марганца, меди – ещё меньше. Нетрудно заметить, что живое и неживое построено из одних и тех же элементов. Но в живых организмах они объединены в особые химические соединения – органические вещества.

Можно выделить три большие группы этих веществ: белки (это 20 аминокислот, из которых 8 незаменимы и должны поступать с пищей; прежде всего они являются строительным материалом, а потом уже источником энергии, их энергетическая ценность такова: 1г белка – 42 ккал); жиры (это и строительный материал, и источник энергии: 1г – 9,3 ккал); углеводы (это, прежде всего, основной источник энергии: 1г – 4,1 ккал). Здесь следует указать на возможность взаимных переходов (преобразований) белков, жиров и углеводов друг в друга во время биохимических реакций внутри организма. Поступая в организм с пищей наряду с неорганическими веществами (водой, солями), витаминами и вдыхаемом кислороде, они участвуют в обмене.

Обмен веществ – основной биологический процесс, который свойственен всему живому и представляет из себя сложную цепь окислительно-восстановительных биохимических реакций с участием кислорода (аэробная фаза) и без временного участия кислорода (анаэробная фаза), заключающихся в усвоении и переработке в организме поступающих из окружающей среды веществ, освобождении химической энергии, превращении её в другие виды (механическую, тепловую, электрическую) и выделении во внешнюю среду продуктов их распада (углекислого газа, воды, аммиака, мочевины и т.д.)



Мы видим, что этот обмен есть двуединый процесс, связанный с постоянным расщеплением веществ, которое сопровождается выделением и расходом энергии (процесс диссимиляции ) и их постоянным обновлением и пополнением энергии (процесс ассимиляции ).

Исследования показали, что молекулы клетки непрерывно расщепляются и синтезируются вновь. Подсчитано, что у человека половина всех тканевых белков распадается и строится заново в течение каждых 80 дней.

Белки мышц заменяются медленнее, обновляясь каждые 180 дней. Мы эти процессы наблюдаем при росте ногтей, волос. В растущем и развивающемся организме процессы ассимиляции преобладают над процессами диссимиляции. Именно в результате этого происходит накопление веществ и рост организма. В сформировавшемся взрослом организме эти процессы находятся в динамическом равновесии. Однако всякое усиление деятельности организма (например, мышечной) приводит к усилению процессов диссимиляции. Поэтому, чтобы организме сохранялось равновесие между приходом-расходом веществ и энергии, необходимо усиление процессов ассимиляции, за счёт, прежде всего, увеличения поступления в него питательных веществ.

Так, например, питание людей, активно занимающихся физкультурно-спортивной или трудовой деятельностью, должно обеспечивать организм в 1,5-2 раза больше энергии, чем питание не занимающихся этими видами деятельности. При этом всегда надо помнить, что излишки питательных веществ откладываются в организме в виде избыточной жировой ткани.



Если процессы диссимиляции начинают преобладать над процессами ассимиляции, происходит истощение организма и, в конце концов, гибель его, вследствие разрушения жизненно важных тканевых белков.

Наряду с процессом обмена веществ реализуются и два других неотъемлемых от всего живого процесса: размножения (обеспечения сохранения вида) и адаптация (приспособление к неменяющимся условиям внешней и внутренней среды организма). Чтобы не погибнуть, организм реагирует на воздействие внешней среды приспособительно, а это влечёт за собой изменения самого организма. Так, например, охлаждение ведёт к усилению окислительных процессов, что в свою очередь вызывает увеличение продукции тепла. Систематическая интенсивная мышечная деятельность приводит к усиленному образованию мышечных белков и усилению массы мышц, а также к увеличению содержания в мышцах веществ, служащих источниками энергии мышечной деятельности.

Любой живой организм может существовать, если лишь состав его тела поддерживается в определённых, обычно довольно узких пределах. Постоянство внутренней среды (гомеостаз: «гомео» – подобный, «стаз» – состояние) – фундаментальный биологический закон. Непреложен и закон развития организма человека, записанный в его генетическом коде. Первый закон развитие как бы исключает, а второй его требует. В этом противоречии ещё одна трудность для системы регулирования? Имеется два механизма регуляции – гуморальный и нервный. Гуморальный или химический механизм регуляции является эволюционно более древним. Суть его в том, что в различных клетках и органах в ходе жизнедеятельности образуются различные по своей химической природе и физиологическому действию вещества. Большинство из них обладает огромной биологической активностью, то есть способностью в очень небольших концентрациях вызывать значительные изменения функции. Поступая в тканевую жидкость, а затем в кровь, они разносятся ею по всему телу и оказывают влияние на все клетки и ткани.

Это второй уровень управления – надклеточный или гуморальный. Химические раздражители не имеют определённого «адресата» и на разные клетки действуют по-разному. Основными представителями гуморальных регуляторов являются метаболиты (продукты обмена веществ), гормоны (производственные желёз внутренней секреции), медиаторы (химические посредники при передаче возбуждения с нервного волокна на клетки рабочего органа). Причём, наиболее активны из них метаболиты (например, углекислый газ) и гормоны. Таковы в самых общих чертах сведения о принципе регуляции через кровь лимфу. В процессе эволюции животного мира наряду с гуморальным механизмом регуляции возник более совершенный – нервный.

Всю нервную систему разделяют на центральную и периферическую. К центральной относятся головной и спинной мозг. Посредством периферической осуществляется связь головного и спинного мозга со всеми органами. В её состав входят центростремительные невроны, которые воспринимают и передают в ЦНС раздражения из внешней и внутренней среды организма, и центробежные невроны, передающие управляющие команды из ЦНС ко всем органам. Следует отметить особую роль спинного мозга в любом двигательном акте, так как он соединён непрерывными путями со всеми скелетными мышцами (за исключением мышц лица).

В периферической нервной системе условно выделяют два отдела: соматический и вегетативный. Соматическая нервная система обеспечивает иннервацию кожного покрова тела, двигательного аппарата (кости, суставы, мышцы) и органов чувств. Вегетативная нервная система иннервирует внутренние органы, кровеносные сосуды и железы, контролируя и регулируя тем самым обменные процессы в организме. Это вегетативный уровень управления, однако, следует помнить, что регуляция жизнедеятельности организма обеспечивается при гармоничном сочетании работы всех отделов нервной системы.

Нервный механизм регуляции осуществляется рефлекторным путём. Рефлекс – это ответная реакция организма на то или иное воздействие в виде нервных импульсов. В основе образования рефлексов лежат возбуждение и торможение в коре головного мозга, как две противоположные стороны единого процесса уравновешивания взаимодействия организма с внешней средой. Безусловный рефлекс – это врождённые, наследственные реакции организма (например, отдёргивание руки при уколе). Рефлексы, которые возникают при определённых условиях в результате жизненного опыта данного организма, называются условными. Для его образования необходимо сочетание раздражения какого-либо органа чувств с врождёнными безусловным рефлексом. В этом случае между нервными клетками больших полушарий головного мозга устанавливается новая нервная связь. Условные рефлексы – настоящие владыки нашего организма.

Они определяют его привычки, настроение, самочувствие и т.д., выделение слюны при виде или запахе пищи, ваши будущие профессиональные навыки, умения читать, писать, запоминать обеспечивают опять-таки они.

Условные рефлексы, многократно повторенные во время конкретной деятельности, образуют в коре головного мозга динамический стереотип.

Нервный механизм регуляции является более совершенным, чем гуморальный. Во-первых, взаимодействие клеток осуществляется через нервную систему значительно быстрее, так как скорость проведения импульса по нервным путям доходит до 120 м/с, во-вторых, нервные импульсы всегда имеют в виду определённого адресата, то есть направлены к строго определённым клеткам. К тому же нервная регуляция является более экономичной, требует минимальных затрат энергии, так как мгновенно включаются и быстро выключаются, когда необходимость согласования каких-то процессов отпадает. Для нервной системы характерно многообразие функций и почти неограниченная власть над физиологическими процессами. Гуморальная регуляция в известной мере подчиняется ей. Впрочем, подчёркивая могущество нервной системы, следует заметить, что действует она всегда в тесной согласованно и с гуморальным механизмом регулирования. Причём, различные химические соединения по гуморальному пути влияют на нервные клетки, изменяя их состояние.

Итак, вы видим, что все уровни управления (от клеточного до уровня центральной нервной системы), дополняя друг друга, делают организм единой саморазвивающейся и саморегулируемой системой. Эта саморегуляция возможна ещё и потому, что обязательно имеются обратные связи между регулируемым процессом и регулирующей системой.

Например, мышечные движения осуществляются под влиянием импульсов, поступающих к мышцам от ЦНС. В свою очередь, всякое мышечное сокращение приводит к появлению потока импульсов, идущих от мышц в ЦНС, информируя её об интенсивности сокращения. Это изменяет деятельность определённых нервных центров. Вспомните, как трудно расстегнуть пуговицу пальто закоченевшими пальцами. Дело не в том, что на холоде мышцы пальцев теряют способность к движению. Холод блокирует нервные окончания и теряет чувствительность. Сигналы о положении пальцев в пространстве не поступают в ЦНС, которая при таких условиях не может координировать деятельность мышц. Иными словами, рефлекс осуществляется только тогда, когда двигательный нерв, чувствительный нерв и мышца образуют замкнутую электрическую цепь.

Урок по биологии: "Органы и системы органов. Целостность организма"

Цели урока : дать понятие об уровнях организации человеческого организма, плане его строения, топографии внутренних органов и полостях тела, системах органом. Провести анализ конкретных связей между структурами и функциями органов и частей тела. Формировать у учащихся навыки умения работать с

анатомическими таблицами, схемами и проводить наблюдения, функциональные пробы.

Оборудование : торс человека, таблицы с изображением внутренних органов человека, схема организма

человека как единой целостной системы.

Ход урока

I . Организационный момент

II . Изучение новой темы

1. Активизация познавательной деятельности

Наш организм. Это определение кажется настолько привычным и понятным, что мы редко задумываемcя над его сущностью. И на вопрос: «Что же это все-таки такое?» - каждый ответит, очевидно, по-своему. А как?

Учитель предлагает учащимся самостоятельно, индивидуально определить понятие «организм», сделав записи на листе. Через 2-3 минуты учащиеся обмениваются мнениями в паре, а затем в четверке, обсуждают и записывают одно обобщенное понятие.

Организм - это определенный биологический комплекс или система, реагирующая как единое целое на различные изменения внешней среды. Система эта относительно стабильна, несмотря на то, что состоит из многих органов. Органы, в свою очередь, состоят из тканей, ткани - из клеток, клетки - из молекул.

Молекулы, клетки, ткани, органы, системы органов - все эти «этажи» или разные «уровни» живого объединены в организме человека в единое и нераздельное целое. Как устроен и что может каждый «этаж» сам по себе, каким образом достигается четкая согласованная их деятельность?

Учащиеся с помощью учителя формулируют цель и задачи урока.

2. Рассказ учителя с использованием схемы «Организм человека как единая целостная система»

1. Вся окружающая нас природа разделяется на органическую и неорганическую. К первой относятся животные и растительные организмы, а также неклеточные формы жизни - вирусы, ко второй - минералы.

2. Химический анализ показывает, что любой живой организм состоит из тех элементов, которые часто встречаются и в неживой природе, в неорганическом мире. 96 % веса тела составляют кислород, углерод, водород, азот. Еще 3 % приходится на долю кальция, фосфора, калия, серы. Прочие химические элементы имеются в организме в совсем небольших количествах.

Французский химик Г. Бертран подсчитал, что тело человека, весящего около 100 кг, содержит кислорода 63 кг, углерода - 19 кг, водорода - 9 кг, азота - 5 кг, кальция - 1 кг, фосфора - 700 г, серы - 640 г, натрия - 250 г, калия - 220 г, хрома - 180 г, магния - 40 г, железа - 3 г, йода - 0,03 г. Фтора, брома, марганца, меди - еще меньше.

3. Живое и неживое построено из одних и тех же элементов. Но в живых организмах они объединены в особые химические соединения - органические вещества (молекулы). Можно выделить четыре большие группы этих веществ - белки, жиры, углеводы и нуклеиновые кислоты. Они входят в состав любой живой клетки. Эти крупные молекулы играют роль строительных блоков, из которых создаются сложные надмолекулярные комплексы. Вещества клетки расположены не хаотично, а образуют упорядоченные структуры-органоиды, которые обеспечивают все процессы жизнедеятельности клетки.

4. Организм человека - огромное «многоклеточное государство». Клетки, из которых построено тело человека, неодинаковы и отличаются своей специализацией, т. е. приспособлены к выполнению определенных функций. Например, главная функция клеток мышц - сокращение, нервных - выработка электрических сигналов, железистых - выделение секрета. Есть клетки, выполняющие опорную функцию, функцию размножения и многие другие. Клетка - структурная и функциональная единица всех живых организмов и все клетки имеют единый план строения.

5. Клетки «одной специальности» объединяются в группы. Вместе с расположенными между этими клетками межклеточным веществом такие специализированные системы клеток получили название тканей. Все разнообразие тканей человека условно подразделяют на эпителиальную (покровную) ткань, соединительные, мышечные ткани и нервную.

6. Из нескольких тканей, среди которых одна имеет функционально ведущее значение, складываются органы, совместная и координированная работа которых обеспечивает возможность нашего существования.

  • Схема. Организм человека как единая целостная сиcтема:

Геноти

Органы, выполняющие единую функцию, имеющие общий план строения и развития, объединяются в

систему органов.

А Системы органов: опорно-двигательная, пищеварительная, дыхательная, выделительная, половая, кровеносная (сердечно-сосудистая), покровная, эндокринная и нервная. Все системы органов взаимосвязаны и составляют единый организм. 7. Определяющим началом всего является генотип.

Генотип - совокупность всех наследственных задатков клетки или организма. Генотип контролирует развитие, строение и жизнедеятельность организма, то есть совокупность всех его признаков.

Опыт. На следующем этапе урока учитель предлагает учащимся выполнить функциональную пробу. Учащиеся задерживают дыхания на возможно больший срок в состоянии выдоха. Учитель смотрит на секундомер и объявляет время через каждые 5 с.

Результат опыта: 1. Учащиеся задерживают дыхание на разное время, следовательно, чувствительность к недостатку кислорода неодинакова. 2. У большинства участников опыта лицо покраснело, заметно пульсирование сонных артерий.

Вывод: изменение функции дыхательной системы ведет за собой изменение в функциях кровеносной системы. Следовательно, между органами, системами органов имеется связь.

  • Взаимодействие всех подсистем организма направлено в основном на поддержание постоянства внутренней среды организма, основой которой является кровь.

I Іостоянно происходящие изменения в окружающей среде, тотчас же компенсируются и уравновешиваются организмом, т. е. не влияют существенно на работу его внутренних органов.

Например. И летом, в жару, и зимой, в холод, температура нашего тела не меняется. Высоко в горах и глубоко под землей, то есть при значительных колебаниях атмосферного давления насыщение нашей крови кислородом и другими газами постоянно.

Большое количество съеденных шоколадных конфет не изменит существенно и надолго уровень сахара в вашей крови.

Для нормальной работы всех органов необходимо определенное количество циркулируемой крови и постоянный уровень артериального давления. А если кровопотеря? Ранение, порез, открытый перелом, сопровождающийся разрывом кровеносных сосудов? В большинстве случаев организм справляется с такими испытаниями.

Наш организм - система саморегулирующаяся.

Саморегуляция достигается взаимодействием всех клеток, тканей, органов, взаимосвязью и взаимоподчиненностью всех процессов, в них происходящих. Нарушение работы одного органа в той или иной степени нарушает деятельность и других органов.

Каким же образом обеспечиваются подобные «цепные реакции» нашего организма?

Путей таких несколько и наиболее изученными являются два: гуморальный и нервный.

Гуморальный, или химический. В различных клетках и органах в ходе жизнедеятельности образуются различные по своей химической природе и физиологическому действию вещества. Большинство из них обладает огромной биологической активностью, то есть способностью в очень небольших концентрациях вызывать значительные изменения в работе органов. Основными представителями гуморальных регуляторов являются гормоны, которые вырабатываются в железах эндокринной системы.

Нервный. Согласует и регулирует деятельность различных клеток, тканей и органов, приспосабливая ее к разным условиям жизни.

Для нервной системы характерно многообразие функций и почти неограниченная власть над физиологическими процессами. Даже гуморальная регуляция в известной мере подчиняется ей. Так, образование и выделение большинства гормонов осуществляется под контролирующим влиянием нервной системы. Действие нервной системы происходит всегда в тесной согласованности с гуморальными процессами.

Оба этих механизма, дополняя друг друга, обеспечивают важнейшую особенность нашего организма - саморегуляцию физиологических функций, приводящую к автоматическому поддержанию необходимых организму условий существования.

  • Если нервный и гуморальный механизм регулируют лишь интенсивность функций клеток, органов и тканей, то какая же причина (или сила) формирует организм, предопределяет развитие и существование его?
  • Как вы понимаете выражение «Организм - единое целое»? Подумайте и объясните, могут ли органы осуществлять функции вне организма?
  • Объясните, почему над суставами пальцев руки кожа собрана в складки.

Учитель просит учащихся положить руки на парты ладонной стороной вниз и рассмотреть свои пальцы. Учащиеся замечают, что над суставами кожа собрана в с к пилки. Сколько их? Учитель предлагает самостоятельно объяснить значение этих структурных образований. (Структура - от лат. строение, устройство). Учащиеся отмечают, что благодаря складкам кожи над суставами пальцы можно сгибать. Такое строение позволяет совершать различные хватательные движения, а это и есть функция этого органа.

Придумайте опыт, который бы доказал, что складки кожи, над суставами необходимы для функционирования пальцев. (Для доказательства достаточно второй рукой захватить складку кожи указательного пальца и попытаться его согнуть. Это не получается. Если убрать кожные складки, нарушается функция пальца: его нельзя согнуть в суставе. Нарушение структуры (складок) делает невозможной функцию кисти (схватывание вещи)).

Вывод: между структурой (строением) и функцией органов и частей тела существует тесная связь.

Напишите, как можно больше, названий органов человеческого тела за 2-3 мин. У учащихся закономерно возникают вопросы типа «А (зуб, мозг, нос и т. д.) - это орган?»

Учитель предлагает учащимся выяснить это, используя материал учебника

На следующем этапе урока учитель кратко рассказывает о внешнем и внутреннем строении человеческого организма: называет части тела, показывает на таблице полости тела.

Формирование навыка работы с анатомическими таблицами, рисунками, нахождение проекции внутренних органов на своем теле организуется в ходе выполнения следующего задания:

Пользуясь рисунками в учебнике, таблицами, научитесь распознавать на себе место расположения важнейших органов в своем теле (гортани, легких, сердца, диафрагмы, печени, желудка, кишечника, селезенки и др.)

Определите, какой орган помещается:

а) под диафрагмой в правом боку и по средней линии тела;

б) под диафрагмой левее от средней линии;

в) в левом боку чуть ниже диафрагмы;

г) выше диафрагмы под грудной костью;

д) в брюшной полости по обе стороны поясничного отдела позвоночника.

Учитель подчеркивает, что в строении и расположении органов человеческого тела имеются

определенные закономерности:

Таблица. Средняя относительная масса различных органов и тканей взрослого человека (% к массе всего тела)

Мускулатура

Почки

Скелет

Сердце

Кожа (все слои)

Поджелудочная железа

Головной мозг

Прочие железы

Спинной мозг

0,06

Кровь

Глаза

0,02

Кровеносные сосуды, нервные стволы и мелкие органы

Желудочно-кишечный тракт

Легкие

Печень

1) длина ладони равна длине лица (от подбородка до начала волосяного покрова), т. е. ладонью можно закрыть лицо;

2) длина предплечья равна длине стопы, а длина стопы равна длине окружности кулака (следовательно, узнать, подходит ли носок, можно, если обернуть его след вокруг кисти, сжатой в кулак, а подобрать нужный размер тапочка или валенка можно, если сравнить длину подошвы обуви с длиной предплечья);

3) расстояние между кистями разведенных в сторону рук равно сумме длин обеих ног (определить, подходят ли брюки по длине можно, если растянуть их в разведенных руках);

4) длина носа примерно равна длине уха, а ширина уха составляет половину его длины.

Перечисленные закономерности лучше проверить дома, но при наличии времени на уроке такие измерения могут быть сделаны и в классе. Их анализ показывает, что они верны лишь приблизительно, причем у одних несоответствия будут большими, у других меньшими. Эти отклонения являются вариантами нормы и не являются недостатками фигуры.

  • Закрепление изученного материала

Сформулируйте основные выводы темы.

1. Организм - биологическая система, реагирующая как единое целое на различные изменения внешней среды.

2. Человеческий организм состоит из клеток, клетки образуют ткани, ткани - органы, органы - системы органов, а те - организм в целом.

3. Нервный и гуморальный механизмы обеспечивают саморегуляцию физиологических функций организма.

4. Орган - часть тела, имеющая определенную форму, строение, выполняющая определенную функцию.

5. Функции - реакции организма, направленные на удовлетворение возникших в нем потребностей, защиту от вредных воздействий среды и приспособление к ней.

6. Между строением и функциями органов существует тесная взаимосвязь.

Гуморальная регуляция осуществляется с помощью особых химических регуляторов внутренней среды - гормонов. Это химические вещества, образующиеся и выделяющиеся специализированными эндокринными клетками, тканями и органами. От других биологически активных веществ (метаболитов, медиаторов) гормоны отличаются тем, что они образуются специализированными эндокринными клетками и оказывают свое действие на удаленные от них органы.

Считается, что гормональная регуляция осуществляется эндокринной системой. В это функциональное объединение входят эндокринные органы или железы (например, щитовидная железа, надпочечники и др.). Эндокринная ткань в органе (скопление эндокринных клеток, например, островки Лангерганса в поджелудочной железе). Клетки органов, обладающие кроме основной, одновременно и эндокринной функцией (например, мышечные клетки предсердий наряду с сократительной функцией образуют и секретируют гормоны, влияющие на диурез).

Аппарат управления гормональной регуляцией. Гормональная регуляция имеет и аппарат управления. Один из путей такого управления реализуется отдельными структурами центральной нервной системы, непосредственно передающими нервные импульсы к эндокринным элементам. Это нервный или цереброгландулярный (мозг – железа) путь . Другой путь управления эндокринными клетками нервная система реализует через гипофиз (гипофизарный путь ). Важным путем управления деятельностью некоторых эндокринных клеток является местная саморегуляция (например, секреция сахаррегулирующих гормонов островками Лангерганса регулируется уровнем глюкозы в крови; кальцитонина – уровнем кальция).

Центральной структурой нервной системы, регулирующей функции эндокринного аппарата, является гипоталамус. Эта функция гипоталамуса связана с наличием в нем групп нейронов, обладающих способностью синтезировать и секретировать специальные регуляторные пептиды – нейрогормоны. Гипоталамус является одновременно и нервным и эндокринным образованием. Свойство нейронов гипоталамуса, синтезировать и секретировать регуляторные пептиды, получило название нейросекреция. Надо заметить, что в принципе, этим свойством обладают все нервные клетки - они транспортируют синтезированные в них белки, ферменты.

Нейросекрет переносится в структуры мозга, ликвор и гипофиз. Гипоталамические нейропептиды делят на три группы. Висцерорецепторные нейрогормоны – обладают преимущественно действием на висцеральные органы (вазопрессин, окситоцин). Нейрорецепторные нейрогормоны – нейромодуляторы и медиаторы, обладающие выраженными эффектами на функции нервной системы (эндорфины, энкефалины, нейротензин, ангиотензин). Аденогипофизрецепторные нейрогормоны – реализующие деятельность железистых клеток аденогипофиза.

Кроме гипоталамуса к общему звену управления деятельностью эндокринных элементов относят еще лимбическую систему

Синтез, секреция и выделение гормонов. По химической природе все гормоны подразделяют на три группы. Производные аминокислот – тиреоидные гормоны, адреналин, гормоны эпифиза. Пептидные гормоны – гипоталамические нейропептиды, гормоны гипофиза, островкового аппарата поджелудочной железы, околощитовидные гормоны. Стероидные гормоны – образуются из холестерина – гормоны надпочечников, половые гормоны, гормон почечного происхождения – кальцитрол.

Гормоны обычно депонируются в тех тканях, где образуются (фолликулы щитовидной железы, мозговое вещество надпочечников – в виде гранул). Но некоторые из них депонируются и несекреторными клетками (катехоламины захватываются клетками крови).

Транспорт гормонов осуществляется жидкостями внутренней среды (кровью, лимфой, микроокружением клеток) в двух формах – связанной и свободной. Связанные (с мембранами эритроцитов, тромбоцитов и белками) гормоны имеют низкую активность. Свободные – являются наиболее активные, проходят через барьеры и взаимодействуют с клеточными рецепторами.

Метаболические превращения гормонов приводят к образованию новых информационных молекул с отличающимися от основного гормона свойствами. Осуществляется метаболизм гормонов с помощью ферментов в самих эндокринных тканях, печени, почках и в тканях – эффекторах.

Выделение информационных молекул гормонов и их метаболитов из крови происходит через почки, потовые железы, слюнные железы, желчь, пищеварительные соки.

Механизм действия гормонов. Различают несколько видов, путей и механизмов действия гормонов на ткани – мишени. Метаболическое действие – изменение обмена веществ в тканях (изменение проницаемости мембран клеток, активности ферментов в клетке, синтеза ферментов). Морфогенетическое действие – влияние гормонов на процессы формообразования, дифференцировки и роста структурных элементов (изменение генетического аппарата и обмена веществ). Кинетическое действие – способность запускать деятельность эффектора (окситоцин – сокращение мускулатуры матки, адреналин – распад гликогена в печени). Корригирующее действие – изменение деятельности органов (адреналин – увеличение частоты сердечных сокращений). Реактогенное действие – способность гормона менять реактивность ткани к действию того же гормона, других гормонов или медиаторов (глюкокортикоиды облегчают действие адреналина, инсулин улучшает реализацию действия соматотропина).

Пути действия гормонов на клетки – мишени могут осуществляться в виде двух возможностей. Действие гормона с поверхности клеточной мембраны после связывания со специфическим мембранным рецептором (запуск после этого цепочки биохимических реакций в мембране и цитоплазме). Так действуют пептидные гормоны и катехоламины. Или через проникновение через мембрану и связывание с рецепторами цитоплазмы (после чего гормон – рецепторный комплекс проникает в ядро и органоиды клетки). Так действуют стероидные гормоны, гормоны щитовидной железы.

У пептидных, белковых гормонов и катехоламинов гормон – рецепторный комплекс приводит к активации мембранных ферментов и образованию вторичных посредников гормонального регуляторного эффекта. Известны следующие системы вторичных посредников:аденилатциклаза – циклический аденозин – моно – фосфат (цАМФ), гуанилатциклаза – циклический гуанозин – моно- фосфат (цГМФ), фосфолипаза С – инозитол – три – фосфат (Ифз), ионизированный кальций.

Детальная работа всех этих вторичных посредников Вами будет рассмотрена в курсе биохимии. Поэтому я лишь должен отметить, что в большинстве клеток организма присутствуют или могут образовываться почти все из рассмотренных выше вторичных посредников, за исключением цГМФ. Между ними, в связи с этим, устанавливаются различные взаимосвязи (равноправное участие, один основной, а другие способствуют ему, действуют последовательно, дублируют друг друга, являются антагонистами).

У стероидных гормонов мембранный рецептор обеспечивает специфическое узнавание гормона и его перенос в клетку, а в цитоплазме располагается особый цитоплазменный белок – рецептор, с которым и связывается гормон. Затем наступает взаимодействие этого комплекса с ядерным рецептором и включается цикл реакций с включением в процесс ДНК и с конечным синтезом белков и ферментов в рибосомах. Кроме того, стероидные гормоны изменяют в клетке и содержание цАМФ и ионизированного кальция. В этом плане механизмы действия разных гормонов имеют общие черты.

В последние десятилетия открыта большая группа ткак называемых тканевых гормонов. Например, гормоны пищеварительного тракта, почек и, практически, всех тканей организма. К ним относят простагландины, кинины, гистамин, серотонин, цитомедины и другие.

Более подробно мы поговорим обо всех этих веществах, когда перейдем к изучению частной физиологии (физиологии отдельных систем и органов). Вторая половина прошлого века в биологии и медицине характеризуется бурным развитием изучения роли пептидов в деятельности организма. Ежегодно появляется большое количество публикаций, посвященных действию пептидов на течение различных физиологических функций. В настоящее время из различных (практически всех) тканей организма выделено более 1000 пептидов. Среди них большая группа нейропептидов. К настоящему времени пептидные регуляторы обнаружены в желудочно–кишечном тракте, сердечно – сосудистой системе, органах дыхания и выделения. Т.е. имеется как бы рассеянная нейроэндокринная система, называемая иногда третьей нервной системой. Эндогенные пептидные регуляторы, содержащиеся в крови, лимфе, интерстициальной жидкости и различных тканях, могут иметь как минимум три источника своего происхождения: эндокринные клетки, нейрональные элементы органа, а также депо аксонального транспорта пептида из центральной нервной системы. Головной мозг постоянно синтезирует, и, следовательно, содержит за небольшим исключением все пептидные биорегуляторы. Поэтому мозг с полным основанием можно назвать эндокринным органом. В конце прошлого века было доказано наличие в клетках организма информационных молекул, обеспечивающих взаимосвязи в деятельности нервной и иммунной систем. Они получили название цитомедины. Это соединения, которые осуществляют связь между малыми группами клеток и оказывают выраженное влияние на их специфическую активность Цитомедины несут от клетки к клетке определенную информацию, записанную с помощью последовательности аминокислот и конформационных модификаций. Наибольший эффект цитомедины вызывают в тканях того органа, из которого они выделены. Эти вещества поддерживают определенное соотношение клеток в популяциях, находящихся на разнличных стадиях развития. Они осуществляют информационный обмен между генами и межклеточной средой. Они уаствуют в регуляции процессов дифференцировки и пролиферации клеток, изменяя функциональную активность генома и биосинтез белка. В настоящее время выдвигается представление о существовании единой нейро - эндокринной – цитомединовой системы регуляции функций в организме.

Мне особо хотелось бы подчеркнуть, что наша кафедра имеет отношение к изучению механизма действия многочисленной группы веществ, получивших название цитомедины. Эти вещества пептидной природы выделены в настоящее время практически из всех органов и тканей и являются важнейшим звеном в регуляции физиологических функций в организме.

Некоторые из этих веществ прошли экспериментальную проверку, в том числе, и на нашей кафедре и в настоящее время описаны как лекарственные препараты (тимоген, тималин – из тканей тимуса, кортексин – из тканей мозга, кардиалин – из тканей сердца – препараты получены в России). Наши сотрудники изучали механизм действия таких цитомединов - из тканей слюнных желез – В.Н. Соколенко. Из тканей печени и эритроцитов – Л.Э. Веснина, Т.Н. Запорожец, В.К. Пархоменко, А. В. Катрушов, О.И. Цебржинский, С.В. Мищенко. Из тканей сердца – А.П. Павленко, из тканей почек – И.П. Кайдашев, из тканей мозга – Н.Н. Грицай, Н.В. Литвиненко. Цитомедин «Вермилат» из тканей калифорнийского червя – И.П. Кайдашев, О.А., Баштовенко.

Эти пептиды играют важную роль в регуляции антиоксидантной защиты в организме, иммунитете, неспецифической резистентности, свертывании крови и фибринолизе и других реакциях.

Взаимоотношение нервных и гуморальных механизмов в регуляциии физиологических функций. Рассмотренные выше нервные и гуморальные принципы регуляции функционально и структурно объединены в единую нейро – гуморальную регуляцию. Начальным звеном такого регуляторного механизма, как правило, является афферентный сигнал на входе, а эффекторные каналы информационной связи являются либо нервными, либо гуморальными. Рефлекторные реакции организма являются начальными в сложном целостном реагировании, но только в совокупности с аппаратом эндокринной системы обеспечивается системность регуляции жизнедеятельности организма с целью оптимального ее приспособления к условияим среды. Одним из механизмов такой организации регуляции жизнедеятельности является общий адаптационный синдром или стресс . Он представляет собой совокупность неспецифических и специфических реакций систем нейро-гуморальной регуляции, метаболизма и физиологических функций. Системный уровень нейро-гуморальной регуляции жизнедеятельности проявляется при стрессе в виде повышения устойчивости организма в целом к действию факторов окружающей внешней среды, в том числе и вредных для организма.

Более подробно механизм стресса Вы будете изучать в курсе патологической физиологии. Однако я хотел бы обратить Ваше внимание на то, что при осуществлении этой реакции ярко демонстрируется взаимоотношение нервных и гуморальных механизмов регуляции физиологических функций в организме. В организме эти механизмы регуляции дополняют друг друга, образуя функционально единый механизм. Так, например, гормоны влияют на процессы, протекающие в мозгу (поведение, память, обучение). Мозг, в свою очередь, контролирует активность эндокринного аппарата.

Взаимосвязь организма с окружающей внешней средой, которая так влияет на его функции, осуществляется с помощью специального аппарата нервной системы, который получил название анализаторы. Об их строении и функции мы и поговорим на следующей лекции.

гуморальный.

продолжительность действия.



Мембранный потенциал покоя. Современные представления о механизме его происхождения. Метод его регистрации.

Потенциал покоя. Мембранный потенциал покоя - электрический потенциал между внутренней стороной плазматической мембраны и наружной поверхностью клеточной мембраны. По отношению к наружной поверхности в покое внутренняя сторона мембраны заряжена всегда отрицательно. Для каждого вида клеток потенциал покоя величина практически постоянная. У теплокровных она составляет: в волокнах скелетных мышц - 90 мВ, в клетках миокарда - 80, в нервных клетках и волокнах - 60–70, в секреторных железистых клетках - 30–40, в клетках гладких мышц - 30–70 мВ. Потенциалом покоя обладают все живые клетки, но его величине значительно меньше (например, в эритроцитах - 7–10 мВ).

Согласно современной мембранной теории потенциал покоя возникает за счет пассивного и активного движения ионов через мембрану.

Пассивное движение ионов осуществляется по градиенту концентрации и не требует затрат энергии. В состоянии покоя клеточная мембрана более проницаема для ионов калия. Цитоплазма мышечных и нервных клеток содержит в 30–50 раз больше ионов калия, чем в межклеточной жидкости. Ионы калия в цитоплазме находятся в свободном состоянии и согласно градиенту концентрации диффундируют через клеточную мембрану во внеклеточную жидкость, в ней они не рассеиваются, а удерживаются на внешней поверхности мембраны внутриклеточными анионами.

Внутри клетки содержатся в основном анионы органических кислот: аспарагиновой, уксусной, пировиноградной и др. Содержание неорганических анионов в клетке сравнительно небольшое. Анионы не могут проникать через мембрану и остаются в клетке, располагаясь на внутренней поверхности мембраны.

Так как ионы калия имеют положительный заряд, а анионы - отрицательный, то внешняя поверхность мембраны заряжена положительно, а внутренняя - отрицательно. Ионов натрия в 8–10 раз больше во внеклеточной жидкости, чем в клетке, проницаемость их через мембрану незначительно. Проникновение ионов натрия из внеклеточной жидкости внутрь клетки приводит к некоторому уменьшению потенциала покоя.

Потенциал покоя - это разность электрических потенциалов между внутренней и наружной сторонами мембраны, когда клетка находится в состоянии физиологического покоя. Его средняя величина составляет -70 мВ (милливольт).

Потенциал действия.

Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.

При возбуждения действия раздражителя на мембране клетки открываются ион-селективные натриевые каналы и натрий из внешней среды лавинообразно будет поступать в цитоплазму клетки в результате движений ионов натрия в состоянии возбуждения по градиенту концентрации внутри сторонв мембрына заряжается (-). Это и есть потенциал действия.

Рисунок и график

Учение о рефлексе (Р.Декарт, Г.Прохазка), его развитие в трудах И.М.Сеченова, И.П.Павлова, П.К.Анохина. Классификация рефлексов. Рефлекторный путь, обратная афферентация и ее значение. Время рефлекса. Рецептивное поле рефлекса.

Деятельность организма – закономерная рефлекторная реакция на стимул. Рефлекс – реакция организма на раздражение рецепторов, которая осуществляется с участием ЦНС. Структурной основой рефлекса является рефлекторная дуга.

Рефлекторная дуга – последовательно соединенная цепочка нервных клеток, которая обеспечивает осуществление реакции, ответа на раздражение.

Рефлекторная дуга состоит из шести компонентов: рецепторов, афферентного (чувствительного) пути, рефлекторного центра, эфферентного (двигательного, секреторного) пути, эффектора (рабочего органа), обратной связи.

Рефлекторные дуги могут быть двух видов:

1) простые – моносинаптические рефлекторные дуги (рефлекторная дуга сухожильного рефлекса), состоящие из 2 нейронов (рецепторного (афферентного) и эффекторного), между ними имеется 1 синапс;

2) сложные – полисинаптические рефлекторные дуги. В их состав входят 3 нейрона (их может быть и больше) – рецепторный, один или несколько вставочных и эффекторный.

Представление о рефлекторной дуге как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном – петлей обратной связи. Этот компонент устанавливает связь между реализованным результатом рефлекторной реакции и нервным центром, который выдает исполнительные команды. При помощи этого компонента происходит трансформация открытой рефлекторной дуги в закрытую.

Особенности простой моносинаптической рефлекторной дуги:

1) территориально сближенные рецептор и эффектор;

2) рефлекторная дуга двухнейронная, моносинаптическая;

3) нервные волокна группы А? (70-120 м/с);

4) короткое время рефлекса;

5) мышцы, сокращающиеся по типу одиночного мышечного сокращения.

Особенности сложной моносинаптической рефлекторной дуги:

1) территориально разобщенные рецептор и эффектор;

2) рецепторная дуга трехнейронная (может быть и больше нейронов);

3) наличие нервных волокон группы С и В;

4) сокращение мышц по типу тетануса.

Особенности вегетативного рефлекса:

1) вставочный нейрон находится в боковых рогах;

2) от боковых рогов начинается преганглионарный нервный путь, после ганглия – постганглионарный;

3) эфферентный путь рефлекса вегетативной нервной дуги прерывается вегетативным ганглием, в котором лежит эфферентный нейрон.

Отличие симпатической нервной дуги от парасимпатической: у симпатической нервной дуги преганглионарный путь короткий, так как вегетативный ганглий лежит ближе к спинному мозгу, а постганглионарный путь длинный.

У парасимпатической дуги все наоборот: преганглионарный путь длинный, так как ганглий лежит близко к органу или в самом органе, а постганглионарный путь короткий.

Рабочий обмен, энергетические затраты организма при различных видах труда. Рабочая проверка. Специфически - динамическое действие пищи. Распределение населения по группам в зависимости от энергозатрат.

Интенсивность обменных процессов в организме значительно возрастает в условиях физической нагрузки. Объективным критерием для оценки энергозатрат, связанных с двигательной активностью разных профессиональных групп, является коэффициент физической активности. Он представляет собой отношение общих энергозатрат к величине основного обмена. Прямая зависимость величины энергозатрат от тяжести нагрузки позволяет использовать уровень энергозатрат в качестве одного из показателей интенсивности выполняемой работы

Разница между величинами энергозатрат организма на выполнение различных видов работ и энергозатрат на основной обмен составляет так называемую рабочую прибавку (к минимальному уровню энергозатрат). Предельно допустимая по тяжести работа, выполняемая на протяжении ряда лет, не должна превышать по энергозатратам уровень основного обмена для данного индивидуума более чем в 3 раза.

^ Умственный труд не требует столь значительных энергозатрат, как физический.

^ Специфически-динамическое действие пищи - это усиление интенсивности обмена веществ под влиянием приема пищи и увеличение энергетических затрат организма относительно уровней обмена и энергозатрат, имевших место до приема пищи. Специфически-динамическое действие пищи обусловлено затратами энергии на переваривание пищи, всасывание в кровь и лимфу питательных веществ из желудочно-кишечного тракта, ресинтез белковых, сложных липидных и других молекул; влиянием на метаболизм биологически активных веществ, поступающих в организм в составе пищи (в особенности белковой) и образующихся в нем в процессе пищеварения.

^ Увеличение энергозатрат организма выше уровня, имевшего место до приема пищи, проявляется примерно через час после приема пищи, достигает максимума через три часа, что обусловлено развитием к этому времени высокой интенсивности процессов пищеварения, всасывания и ресин-теза поступающих в организм веществ. Специфически-динамическое действие пищи может продолжаться 12-18 ч. Оно наиболее выражено при приеме белковой пищи, повышающей интенсивность обмена веществ до 30 %, и менее значительно при приеме смешанной пищи, повышающей интенсивность обмена на 6-15 %.

^ Уровень общих энергозатрат, как и основного обмена, зависит от возраста: суточный расход энергии возрастает у детей с 800 ккал (6 мес- 1 год) до 2850 ккал (11-14 лет). Резкий прирост энергозатрат имеет место у подростков-юношей 14-17 лет (3150 ккал). После 40 лет энергозатраты снижаются и к 80 годам составляют около 2000-2200 ккал/сут.

Пpи пpеобладании возбуждения подавляются тоpмозные условные pефлексы, появляется двигательное и вегетативное возбуждение. Пpи пpеобладании тоpмозного пpоцесса ослабляются или пpопадают положительные условные pефлексы. Появляются слабость, сонливость, огpаничивается двигательная активность. Тpудовая деятельность человека является основой его существования. Любой тpуд пpотекает в конкpетной сpеде, котоpая опpеделяет условия тpуда. В каждом виде тpудового пpоцесса есть элементы физического тpуда (пpи котоpом совеpшается мышечная нагpузка) и элементы умственного тpуда. Поэтому всякий тpуд подpазделяется по его тяжести (4-6 гpупп) и по напpяженности (4-6 гpупп). Как пpавило любой тpуд сопpовождается возpастанием неpвного напpяжения на фоне уменьшающихся мышечных усилий.

Кровь и ее функции, количество и состав. Гематокрит. Плазма крови и ее физико-химические свойства. Осмотическое давление крови и ее функциональная роль. Регуляция постоянства осмотического давления крови.

Гематокрит - это доля (в процентах) от общего объема крови, которую составляют эритроциты. В норме этот показатель составляет у мужчин - 40-48 %, у женщин - 36-42 %

Кровь – это физиологическая система, которая включает в себя:

1) периферическую (циркулирующую и депонированную) кровь;

2) органы кроветворения;

3) органы кроверазрушения;

4) механизмы регуляции.

Система крови обладает рядом особенностей:

1) динамичностью, т. е. состав периферического компонента может постоянно изменяться;

2) отсутствием самостоятельного значения, так как все свои функции выполняет в постоянном движении, т. е. функционирует вместе с системой кровообращения.

Ее компоненты образуются в различных органах.

В организме кровь выполняет множество функций:

транспортную;дыхательную;питательную;экскреторную;терморегулирующую;защитную.

Кpовь состоит из фоpменных элементов (45%) и жидкой части или плазмы (55%)

Фоpменные элементы включают эpитpоциты, лейкоциты, тpомбоциты

В состав плазмы входят вода (90-92%) и сухой остаток (8-10%)

Сухой остаток состоит из оpганических и неоpганических веществ

К оpганическим веществам относятся:

Белки плазмы (общее количество 7-8%) - альбумины (4,5%), глобулины (2-3,5%), фибpиноген (0,2-0,4%)

Hебелковые азотсодеpжащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, кpеатин, кpеатинин, аммиак)

Общее количество небелкового азота (остаточный азот) составляет 11-15 ммоль/л (30-40 мг%). Пpи наpушении функции почек, выделяющих шлаки из оpганизма, содеpжание остаточного азота pезко возpастает

Безазотистые оpганические вещества: глюкоза 4,4-6,65 ммоль/л (80-120 мг%), нейтpальные жиpы, липиды

Феpменты и пpофеpменты: некотоpые из них участвуют в пpоцессах свеpтывания кpови и фибpинолиза (пpотpомбин, пpофибpинолизин), некотоpые - pасщипляют глюкоген, жиpы, белки и дp.

Hеоpганические вещества плазмы составляют около 1% от ее состава

К ним относятся пpеимущественно катионы (Na+, Ca2+, K+, Mg2+) и анионы (Cl-, HPO42-, HCO3-)

Из тканей оpганизма в кpовь поступает большое количество пpодуктов обмена, биологически активных веществ (сеpотонин, гистамин), гоpмонов, из кишечника всасываются питательные вещества, витамины

Плазма составляет жидкую часть крови и является водно-солевым раствором белков. Состоит на 90–95 % из воды и на 8-10 % из сухого остатка. В состав сухого остатка входят неорганические и органические вещества. К органическим относятся белки, азотосодержащие вещества небелковой природы, безазотистые органические компоненты, ферменты.

Физико-химические свойства кpови пpоявляются сочетанием свойств суспензии, коллоида и pаствоpа электpолитов

1. Свойства суспензии пpоявляются способностью фоpменных элементов находится во взвешенном состоянии и опpеделяются белковым составом кpови и соотношением фpакций альбуминов и глобулинов

2. Коллоидные свойства опpеделяются количеством белков плазмы и обеспечивают постоянство жидкого состава кpови и ее обьема.

3. Электpолитные свойства кpови зависят от содеpжания анионов и катионов, количество котоpых (а также неэлектpолиты с низкой молекуляpной массой - глюкоза) опpеделяют величину осмотического давления (в ноpме 7,3-7,6 атм. или 745-760 кПа)

4. Вязкость кpови обусловлена белками и фоpменными элементами, главным обpазом, эpитpоцитами

5. Относительная плотность (удельный вес) (в ноpме удельный вес кpови pавен 1,05-1,064, плазмы - 1,025-1,03)

6. Активная pеакция кpови опpеделяется концентpацией водоpодных ионов. Для опpеделения кислотности или щелочности сpеды пользуются водоpодным показателем pH, котоpый отличается высоким

7. Поддеpжание постоянства активной pеакции кpови обеспечивается деятельностью легких, почек, потовых желез, а также буфеpными системами

Осмотическое давление крови обеспечивается за счет концентрации в крови осмотически активных веществ, т. е. это разность давлений между электролитами и неэлектролитами.

Осмотическое давление относится к жестким константам, его величина 7,3–8,1 атм. Электролиты создают до 90–96 % всей величины осмотического давления, из них 60 % – хлорид натрия, так как электролиты имеют низкую молекулярную массу и создают высокую молекулярную концентрацию. Неэлектролиты составляют 4-10 % величины осмотического давления и обладают высокой молекулярной массой, поэтому создают низкую осмотическую концентрацию. К ним относятся глюкоза, липиды, белки плазмы крови. Осмотическое давление, создаваемое белками, называется онкотическим. С его помощью форменные элементы поддерживаются во взвешенном состоянии в кровеносном русле. Для поддержания нормальной жизнедеятельности необходимо, чтобы величина осмотического давления всегда была в пределах допустимой нормы.

Понятие о гемостазе. Сосудисто-тромбоцитарный и коагуляционный гемостаз. Факторы и фазы свертывания крови. Тромбоциты и их роль в гемокоагуляции. Взаимодействие свертывающей и противосвертывающей систем крови. Фибринолиз.

Тpомбоциты (кpасные кpовяные пластинки) - это плоские безьядеpные клетки непpавильной окpуглой фоpмы, количество котоpых в кpови находится в пpеделах от 200 до 300 тыс. в 1 мм3

Они обpазуются в кpасном костном мозге путем отшнуpовывания участков цитоплазмы от мегакаpиоцитов

В пеpифеpической кpови тpомбоциты циpкулиpуют от 5 до 11 суток, после чего они pазpушаются в печени, легких, селезенке

Тpомбоциты содеpжат фактоpы свеpтывания кpови, сеpотонин, гистамин

Тpомбоциты обладают адгезивными и агглютинационными свойствами

(т.е. способностью пpилипать к чужеpодным и собственным измененным стенкам, а также способностью склеиваться и пpи этом выделять, фактоpы гемостаза), влияют на тонус микpососудов и пpоницаемость их стенок, пpинимают участие в пpоцессе свеpтывания кpови

Гемостаз - это сложный комплекс физиологических, биохимических и биофизических пpоцессов, пpедупpеждающих возникновение кpовотечений и обеспечивающих их остановку

Гемостаз обеспечивается взаимодействием тpех систем: сосудистой, клеточной (тpомбоциты) и плазменной

Различают два механизма гемостаза:

1. Пеpвичный (сосудисто-тpомбоцитаpный)

2. Втоpичный (коагуляционный или свеpтывание кpови)

Сосудисто-тpомбоцитаpный гемостаз обеспечивается pеакцией сосудов с вовлечением тpомбоцитов

Повpеждение мелких сосудов (аpтеpиол, капилляpов, венул) сопpовождается их pефлектоpным спазмом, либо за счет вегетативных, либо гумоpальных влияний

Пpи этом из повpежденных тканей и клеток кpови освобождаются биологически активные вещества (сеpотонин, ноpадpеналин), котоpые вызывают сужение сосудов

Чеpез 1-2 часа тpомбоциты начинают пpиклеиваться к повpежденным участкам сосудистой стенки и pаспластываться на них (адгезия)

Одновpеменно тpомбоциты начинают склеиваться дpуг с дpугом, соединяясь в комочки (агpегация)

Обpазующиеся агpегаты накладываются на адгезиpованные клетки, в pезультате чего обpазуется тpомбоцитаpная пpобка, закpывающая повpежденный сосуд и останавливающая кpовотечение

В пpоцессе этой pеакции из тpомбоцитов выбpасываются вещества, способствующие свеpтыванию кpови

Заканчивается пpоцесс уплотнением тpомбоцитаpного тpомба, что пpоисходит за счет сокpатительного белка тpомбоцитов - тpомбостенина

Гемокоагуляция - втоpой важнейший механизм гемостаза, котоpый включается пpи поpажении более кpупных сосудов, когда сосудисто-тpомбоцитаpных pеакций бывает недостаточно

Пpи этом тpомбообpазование обеспечивается сложной системой свеpтывания кpови, с котоpой взаимодействует пpотивосвеpтывающая система

Свеpтывание кpови пpоисходит постадийно (4 стадии или фазы) в pезультате взаимодействия плазменных фактоpов кpови и pазличных соединений, содеpжащихся в фоpменных элементах и тканях

В плазме насчитывается 13 фактоpов свеpтывания кpови:

Фибpиноген (I), Пpотpомбин (II), Тpомбопластин (III), Ca+ (IV), Пpоакцелеpин (V), Акцелеpин (VI), Пpоконвеpтин (VII), Антигемофильный глобулин А (VIII), фактоp Кpистмаса (IX), фактоp Стюаpта-Пpауэpа (X), пpедшественник плазменного тpомбопластина (XI), фактоp Хагемана (XII), Фибpин-стабилизиpующий фактоp (XIII)

В I фазу пpоисходит обpазование активного тpомбопластина в течение 5-10 мин

Во II фазе свеpтывания (пpодолжается 2-5 сек) из пpотpомбина (III) пpи участии активного тpомбопластина (пpодукт I фазы) обpазуется феpмент тpомбин

III фаза (пpодолжается 2-5 сек) заключается в обpазовании неpаствоpимого фибpина из белка фибpиногена (I) под влиянием обpазовавшегося тpомбина

IV фаза (пpодолжается несколько часов) хаpактеpизуется уплотнением или pетpакцией кpовяного сгустка

Пpи этом из фибpин-полимеpа выделяется сывоpотка с помощью сокpатительного белка кpовяных пластиной - pетpактоэнзима, что активиpуется ионами кальция

Антисвеpтывающая система пpедставлена естественными антикоагулянтами (вещества, тоpмозящие свеpтывание кpови)

Они обpазуются в тканях, фоpменных элементах и пpисутствуют в плазме

К ним относятся: гепаpин, антитpомбин, антитpомбопластин

Гепаpин - важный естественный антикоагулянт, его выpабатывают тучные клетки

Точкой его пpиложения является pеакция пpевpащения фибpиногена в фибpин, котоpую он блокиpует благодаpя связыванию тpомбина

Активность гепаpина зависит от содеpжания в плазме антитpомбина, котоpый увеличивает его коагулиpующие способности

Антитpомбопластины - вещества котоpые блокиpуют фактоpы свеpтывания, участвующие в активации тpомбопластина

Фибpинолиз - пpоцесс pасщепления фибpина, обpазующегося в пpоцессе свеpтывания кpови, под влиянием фибpинолитической системы

Тканевые активатоpы освобождаются пpи повpеждении клеток pазличных оpганов (кpоме печени) в виде гидpолаз, тpипсина, уpокиназы

Активатоpами микpооpганизмов являются стpептокиназа, стафиллокиназа и дp.

Электроэнцефалография.

Электроэнцефалография - это метод исследования электрической активности головного мозга. Метод основан на принципе регистрации электрических потенциалов, появляющихся в нервных клетках в процессе их деятельности. Электрическая активность головного мозга мала, она выражается в миллионных долях вольта. Изучение биопотенциалов мозга производится поэтому при помощи специальных, высокочувствительных измерительных приборов или усилителей, называемых электроэнцефалографами (рис.). С этой целью на поверхность черепа человека накладываются металлические пластинки (электроды), которые соединяют проводами со входом электроэнцефалографа. На выходе аппарата получается графическое изображение на бумаге колебаний разности биопотенциалов головного мозга, называемое электроэнцефалограммой (ЭЭГ).

Данные ЭЭГ оказываются различными у здорового и больного человека. В состоянии покоя на ЭЭГ взрослого здорового человека видны ритмические колебания биопотенциалов двух типов. Более крупные колебания, со средней частотой 10 в 1 сек. и с напряжением, равным 50 мкв, называются альфа-волнами. Другие, более мелкие колебания, со средней частотой 30 в 1 сек. и напряжением, равным 15-20 мкв, называются бета-волнами. Если мозг человека переходит от состояния относительного покоя к состоянию деятельности, то альфа-ритм ослабевает, а бета-ритм усиливается. Во время сна как альфа-ритм, так и бета-ритм уменьшаются и появляются более медленные биопотенциалы с частотой 4-5 или 2-3 колебания в 1 сек. и частотой 14-22 колебания в 1 сек. У детей ЭЭГ отличается от результатов исследования электрической активности головного мозга у взрослых и приближается к ним по мере полного созревания мозга, т. е. к 13- 17 годам жизни.

При различных заболеваниях мозга на ЭЭГ возникают разнообразные нарушения. Признаками патологии на ЭЭГ покоя считаются: стойкое отсутствие альфа-активности (десинхронизация альфа-ритма) или, наоборот, резкое ее усиление (гиперсинхронизация); нарушение регулярности колебаний биопотенциалов; а также появление патологических форм биопотенциалов - высокоамплитудных медленных (тета- и дельта-волн, острых волн, комплексов пик-волна и пароксизмальных разрядов и т. д. По этим нарушениям врач-невропатолог может определить тяжесть и до известной степени характер мозгового заболевания. Так, например, если в головном мозге имеется опухоль или произошло кровоизлияние в мозг, электроэнцефалографические кривые дают врачу указание, где (в какой части мозга) это повреждение находится. При эпилепсии на ЭЭГ даже в межприпадочном периоде можно наблюдать возникновение на фоне обычной биоэлектрической активности острых волн или комплексов пик-волна.

Особенно важна электроэнцефалография когда встает вопрос о необходимости операции на мозге для удаления у больного опухоли, абсцесса или инородного тела. Данные электроэнцефалографии в сочетании с другими методами исследования используют, намечая план будущей операции.

Во всех тех случаях, когда при осмотре больного с заболеванием ЦНС у врача-невропатолога возникают подозрения о структурных поражениях головного мозга, целесообразно электроэнцефалографическое исследование, С этой целью рекомендуется направлять больных в специализированные учреждения, где работают кабинеты электроэнцефалографии.

Основные формы регуляции физиологических функций. Взаимоотношение нервных и гуморальных механизмов регуляции.

Физиологическая регуляция – это активное управление функциями организма и его поведением для поддержания оптимального уровня жизнедеятельности, постоянства внутренней среды и обменных процессов с целью приспособления организма к меняющимся условиям среды.

Механизмы физиологической регуляции:

гуморальный.

Гуморальная физиологическая регуляция для передачи информации использует жидкие среды организма (кровь, лимфу, цереброспинальную жидкость и т.д.) Сигналы передаются посредством химических веществ: гормонов, медиаторов, биологически активных веществ (БАВ), электролитов и т.д.

Особенности гуморальной регуляции:не имеет точного адресата – с током биологических жидкостей вещества могут доставляться к любым клеткам организма;

скорость доставки информации небольшая – определяется скоростью тока биологических жидкостей – 0,5-5 м/с;

продолжительность действия.

Нервная физиологическая регуляция для переработки и передачи информации опосредуется через центральную и периферическую нервную систему. Сигналы передаются с помощью нервных импульсов.

Особенности нервной регуляции:имеет точного адресата – сигналы доставляются к строго определенным органам и тканям;большая скорость доставки информации – скорость передачи нервного импульса – до 120 м/с;кратковременность действия.

Для нормальной регуляции функций организма необходимо взаимодействие нервной и гуморальной систем.

Нейрогуморальная регуляция объединяет все функции организма для достижения цели, при этом организм функционирует как единое целое.Организм находится в неразрывном единстве с внешней средой благодаря активности нервной системы, деятельность которой осуществляется на основе рефлексов. Рефлекс – это строго предопределенная реакция организма на внешнее или внутреннее раздражение, осуществляемая при обязательном участии ЦНС. Рефлекс является функциональной единицей нервной деятельности.

Гуморальную регуляцию процессов жизнедеятельности осуществляют и другие биологически активные вещества (БАВ), которые секретируются не в кровь, а в межтканевую жидкость, окружающие эти клетки. Такие вещества называются гистогормонами или тканевыми гормонами. Они обеспечивают, как правило, саморегуляцию тканевых процессов в месте их образования и могут действовать следующими путями: паракринным; аутокринным; нейрокринным (рис. 1.1).

1. Паракринный путь действия БАВ . БАВ поступает во внеклеточную жидкость и действует на рядом лежащие другие клетки, не поступая в кровоток. Например, гормон соматостатин секретируется D-клетками островков Лангерганса в межклеточную жидкость и действует на рядом лежащие α- и β-клетки островка, тормозя секрецию инсулина и глюкагона.

2. Аутокринное действие – синтезированный гистогормон выделяется из клетки и его действие осуществляется на ту же клетку, в которой он синтезирован. Такое действие оказывают ионы Са ++ , цАМФ.

3. Нейрокринное или нейротрансмиттерное действие. По аксонам нервной клетки нейротрансмиттеры поступают в синаптическую щель и на рецептор конечного органа. В центральной нервной системе такими нейротрансмиттерами являются допамин, норадреналин, адреналин, а на периферии - допамин. Они действуют быстро (мс) и быстро разрушаются специфическими ферментами.



Рис. 1.1. Пути действия гуморальных регуляторов гомеостаза.

Один и тот же гормон может обладать несколькими из описанных путей действия. Так, адреналин, норадреналин, допамин обладают эндокринным действием: из мозгового слоя надпочечника поступают в кровоток и действуют на свои, отдаленные от их железы, конечные эффекторные органы. В мозге и на периферии они действуют как нейротрансмиттеры.

Соматостатин в островках поджелудочной железы оказывает паракринный эффект, секретируясь из D-клеток, во внеклеточной жидкости действует на α- и β-клетки островка, тормозя секрецию инсулина и глюкагона. При этом одновременно он поступает в кровоток, действуя эндокринным путем.

Кортизол, кроме классического эндокринного действия, оказывает паракринное действие: по внеклеточной жидкости из пучковой зоны коры надпочечника он поступает в мозговой слой надпочечника и стимулирует синтез адреналина.

Инсулин, кроме классического эндокринного действия, обладает аутокринным и паракринным действием. Аутокринное действие - инсулин секретируется из β-клетки островка и во внеклеточной жидкости вновь поступает в ту же β-клетку. Паракринное действие - инсулин секретируется из β-клетки островка и во внеклеточной жидкости действует на α-клетки и тормозит секрецию глюкагона.

Таким образом, деление гуморальных регуляторов на гормоны и негормональные факторы (гистогормоны, медиаторы и т.д.) условно. Одно и то же соединение может рассматриваться в одном случае как гормон, а в другом, как гистогормон (прогестерон). Здесь может иметь место аналогии с электромагнитным полем, т.к. это с одной стороны волна, с другой – частица.

Беспозвоночные животные помимо гормонов, гистогормонов и т.д. вырабатывают соединение, выделяемые во внешнюю среду, которые вызывают реакции особей того же вида (например, половые аттрактанты). Их называют феромонами.

Гомеостаз глюкозы в норме

Поддержание нормального уровня глюкозы в плазме крови, главным образом базального, необходимо для нормальной функции мозга, который является абсолютно глюкозозависимым и может обходиться без глюкозы не более 5-10 мин.

Так как процесс еды происходит периодически, в организме имеются механизмы запасания энергии и глюкозы (гликоген в печени и мышцах, нейтральный жир в жировой ткани) и механизмы, способствующие их расходованию, когда пища не поступает. Поддержание нормального уровня глюкозы в крови в период, когда пища не поступает, осуществляется за счет образования в печени и в почках глюкозы из аминокислот (глюконеогенез) для обеспечения питания мозга.

Окисление глюкозы является основным источником энергии для многих тканей, но особенно для функционирования мозга. Так как клеточные мембраны непроницаемы для гидрофильных молекул, таких как глюкоза, все клетки имеют транспортные белки, которые находятся в мембранах клеток, и переносят глюкозу через липидные мембраны в цитоплазму клеток. Только кишечник и почки имеют энергетически зависимый Na + транспорт глюкозы. Во всех других клетках тела перенос глюкозы энергетически независимый, пассивный, путём диффузии глюкозы от высокой концентрации к низкой через клеточные мембраны в цитоплазму клеток. Выделяют пять глюкозотранспортных белков (ГТБ): ГТБ-1, -2, -3, -4, -5. Они подразделяются в зависимости от их чувствительности к глюкозе (табл. 6.3.). Глюкозотранспортные белки 1 и 3 переносят глюкозу в мозг. Остальные ткани в этот период используют в основном жирные кислоты, которые освобождаются из жировых клеток.