Главная · Горло · Метка: оценка функции эндотелия. Эндотелий сосудов и его участие в регуляции сосудистого тонуса Эндотелий сосудов какая ткань

Метка: оценка функции эндотелия. Эндотелий сосудов и его участие в регуляции сосудистого тонуса Эндотелий сосудов какая ткань

Эндотелий - это слой уплощенных клеток мезенхимного происхождения, выстилающий стенки кровеносных и лимфатических сосудов и капилляров, обеспечивающий процессы обмена между кровью и тканями. Представляет собой непрерывную мембрану, состоящую из слоя эндотелиальных клеток, связанных межклеточным «цементом». Эндотелий кровеносных капилляров некоторых органов прерывается благодаря наличию субмикроскопических внутриклеточных «пор» (в почках, эндокринных железах, кишечнике) или широких межклеточных щелей (в печени, селезенке, костном мозге).


Плоскостный препарат внутренней оболочки артерии мышечного типа: 1 - клетки эндотелия; 2 - клетки подэндотелиального слоя; 3 - границы между эндотелиальными клетками (по Щелкунову).

Эндотелий [от греч. endon - внутри + (эпи)телий] - слой уплощенных клеток мезенхимного происхождения, выстилающий стенки кровеносных и лимфатических сосудов. В эмбриогенезе эндотелий впервые возникает в результате особой дифференцировки клеток мезенхимы, образующих замкнутый однослойный пласт клеток в виде кровяных островков, располагающихся в стенке желточного мешка и хорионе на 2-3-й неделе внутриутробного развития. Большинство авторов считает эндотелий продуктом особо дифференцированных клеток мезенхимы. Некоторые авторы относят эндотелий к своеобразному высокоспецифическому типу эпителиальных тканей (ангиодермальному). Клетки эндотелия представляют собой тонкие пластинки, тесно прилегающие друг к другу и образующие сплошной однослойный пласт (рис.). Длина клеток эндотелия от 5 мк до 175 мк, толщина в околоядерных участках от 200 Å до 1-2 мк. Извилистые границы клеток хорошо импрегнируются азотнокислым серебром. Полигональная форма клеток разнообразна, зависит от размера сосуда и степени его растяжения. Ядра клеток эндотелия овальной формы, длинным диаметром располагаются вдоль длинника сосуда.

Клетки эндотелия чаще содержат одно ядро, иногда 2-3, встречаются симпласты с 10 и более ядрами. В клетках эндотелия обнаружены пиноцитозные пузырьки диаметром 500-1000 Å, располагающиеся около наружной и внутренней поверхности. На поверхности эндотелия, обращенной к току крови, расположены субмикроскопические ворсинки. В цитоплазме эндотелия выявлена эндоплазматическая сеть с многочисленными гранулами РНК на ее мембранах, мелкие митохондрии. Межклеточные промежутки шириной в 100 Å межклеточного цемента не содержат. Наблюдается чешуйчатое перекрытие двух соседних клеток эндотелия. Микропоры диаметром 300-400 Å обнаружены в эндотелии капилляров клубочков почки, ворсин кишечника, эндокринных желез. Эндотелий кровеносных капилляров окружен базальной мембраной, отсутствующей в эндотелии лимфатических капилляров. В эндотелии выявлены гликоген, витамин С, щелочная фосфатаза. Наиболее дифференцирован эндотелий эндокарда и крупных сосудов, менее - эндотелий капилляров. Клетки эндотелия делятся путем митоза и амитоза. При репаративной регенерации восстановление эндотелия происходит путем митотического деления его клеток на краю раны и наползания их на поврежденную поверхность. Восстановление эндотелия также совершается из мало дифференцированных мезенхимных элементов, расположенных в субэндотелиальном слое. Новообразование капилляров происходит благодаря слиянию почкообразных выростов эндотелия друг с другом. Эндотелий, выстилающий синусоидные капилляры печени, костного мозга, селезенки и синусы лимфатических узлов, обладает ярко выраженной способностью к накоплению чужеродных коллоидов из крови и лимфы. Этот эндотелий относится к элементам ретикулоэндотелиальной системы (см.). Через эндотелий совершается обмен веществ между кровью (или лимфой) и тканевой жидкостью.

1 Губарева Е.А. 1 Туровая А.Ю. 1 Богданова Ю.А. 1 Апсалямова С.О. 1 Мерзлякова С.Н. 1

1 ГБОУ ВПО «Кубанский государственный медицинский университет Министерства здравоохранения и социального развития Российской Федерации», Краснодар

В обзоре рассмотрена проблема физиологических функций эндотелия сосудов. История изучения функций сосудистого эндотелия начата с 1980 года, когда был открыт оксид азота Р. Фуршготом и И. Завадски. В 1998 году была сформирована теоретическая основа для нового направления фундаментальных и клинических исследований – разработки участия эндотелия в патогенезе артериальной гипертензии и других сердечно-сосудистых заболеваний, а также способов эффективной коррекции его дисфункции. В статье рассмотрены основные работы по физиологической роли эндотелинов, оксида азота, ангиотензина II и других биологически активных эндотелиальных веществ. Очерчен круг проблем, связанных с изучением поврежденного эндотелия, как потенциального маркера развития многочисленных заболеваний.

биологически активные вещества

дилятаторы

констрикторы

оксид азота

эндотелий

1. Гомазков О.А. Эндотелий – эндокринное дерево // Nature. – 2000. – № 5.

2. Меньщикова Е.В., Зенков Н.К. Окислительный стресс при воспалении // Успехи соврем. биол. – 1997. – Т. 117. – С. 155–171.

3. Одыванова Л.Р., Сосунов А.А., Гатчев Я. Окись азота (NO) в нервной системе // Успехи соврем. биол. – 1997. – №3. – С. 374‒389.

4. Реутов В.П. Цикл окиси азота в организме млекопитающих // Успехи соврем. биол. – 1995. – № 35. – С. 189–228.

5. Cooke J.P. Asymmetrical dimethylarginine: the Uber marker? // Circulation. – 2004. – № 109. – Р. 1813.

6. Davignon J., Ganz P. Role of endothelial dysfunction in atherosclerosis// Circulation. – 2004. – № 109. – Р. 27.

7. De Caterina R. Endothelial dysfunctions: common denominators in vascular disease // Current Opinion in Lipidology. – 2000. Vol. 11, № 1. – Р. 9–23.

8. Kawashima S. The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis // Endothelium. – 2004. Vol. 11, № 2. – Р. 99–107.

9. Libby P. Inflammation in atherosclerosis// Nature. – 2002. – Vol. 420, № 6917. – Р. 868–874.

10. Tan K.C.B., Chow W.S., Ai V.H.G. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria// Diabetes Metabolism Research and Reviews. – 2002. – Vol. 18, № 1. – Р. 71–76.

Эндотелий - активный эндокринный орган, самый большой в организме, диффузно рассеянный вместе с сосудами по всем тканям. Эндотелий, по классическому определению гистологов, - однослойный пласт специализированных клеток, выстилающих изнутри все сердечно-сосудистое дерево, весом около 1,8 кг. Один триллион клеток со сложнейшими биохимическими функциями, включающий системы синтеза белков и низкомолекулярных веществ, рецепторы, ионные каналы .

Эндотелиоциты синтезируют субстанции, важные для контроля свертывания крови, регуляции сосудистого тонуса, артериального давления, фильтрационной функции почек, сократительной активности сердца, метаболического обеспечения мозга. Эндотелий способен реагировать на механическое воздействие протекающей крови, величину давления крови в просвете сосуда и степень напряжения мышечного слоя сосуда. Клетки эндотелия чувствительны к химическим воздействиям, которые могут приводить к повышенной агрегации и адгезии циркулирующих клеток крови, развитию тромбоза, оседанию липидных конгломератов (табл. 1).

Все эндотелиальные факторы делятся на вызывающие сокращение и расслабление мышечного слоя сосудистой стенки (констрикторы и дилятаторы). Основные констрикторы представлены ниже.

Большой эндотелин - неактивный предшественник эндотелина, содержащий 38 аминокислотных остатков, обладает менее выраженной вазоконстрикторной (по сравнению с эндотелином) активностью in vitro. Конечный процессинг большого эндотелина осуществляется при участии эндотелинпревращающего фермента.

Эндотелин (ЭТ). Японский исследователь М. Янагасава и соавт. (1988) описали новый эндотелиальный пептид, активно сокращающий гладкомышечные клетки сосудов. Открытый пептид, названный ЭТ, сразу стал предметом интенсивного изучения. ЭТ- сегодня один из самых популярных в списке биоактивных регуляторов. Это - вещество с наиболее мощной сосудосуживающей активностью образуется в эндотелии. В организме присутствуют несколько форм пептида, различающихся небольшими нюансами химического строения, но весьма не схожих по локализации в организме и физиологической активности. Синтез ЭТ стимулируют тромбин, адреналин, ангиотензин (АТ), интерлейкины, клеточные ростовые факторы и др. В большинстве случаев ЭТ секретируется из эндотелия «внутрь», к мышечным клеткам, где расположены чувствительные к нему ЕТА-рецепторы. Меньшая часть синтезируемого пептида, взаимодействуя с рецепторами ЕТВ-типа, стимулирует синтез NO. Таким образом, один и тот же фактор регулирует две противоположные сосудистые реакции (констрикцию и дилятацию), реализуемые различными химическими механизмами.

Таблица 1

Факторы, синтезируемые в эндотелии и регулирующие его функцию

Факторы, вызывающие сокращение и расслабление мышечного слоя сосудистой стенки

Констрикторы

Дилятаторы

Большой эндотелин (бЭТ)

Оксид азота (NO)

Ангиотензин II (АТ II)

Большой эндотелин (бЭТ)

Тромбоксан А2 (ТхА2)

Простациклин (PGI2)

Простагландин Н2 (PGН2)

Эндотелиновый фактор деполяризации (EDHF)

Ангиотензин I (АТ I)

Адреномедулин

Факторы прогоагуляционные и антикоагуляционные

Протромбогенные

Антитромбогенные

Тромбоцитарный фактор роста (ТФРβ)

Оксид азота (NO)

Ингибитор тканевого активатора плазминогена (ИТАП)

Тканевой активатор плазминогена (ТАП)

Фактор Виллебранда (VIII фактор свертывания)

Простациклин (PGI2)

Ангиотензин IV (АТ IV)

Тромбомодулин

Эндотелин I (ЭТ I)

Фибронектин

Тромбоспондин

Фактор активации тромбоцитов (ФАТ)

Факторы, влияющие на рост сосудов и гладкомышечных клеток

Стимуляторы

Ингибиторы

Эндотелин I (ЭТ I)

Оксид азота (NO)

Ангиотензин II (АТ II)

Простациклин (PGI2)

Супероксидные радикалы

Натриуретический пептид С

Эндотелиальный фактор роста (ECGF)

Гепариноподобные ингибиторы роста

Факторы провоспалительные и противовоспалительные

Провоспалительные

Противовоспалительные

Фактор некроза опухоли α (ФНО-α)

Оксид азота (NO)

Супероксидные радикалы

С-реактивный белок (С-РБ)

Для ЭТ выявлены подтипы рецепторов, не схожие по клеточной локализации и запускающие «сигнальные» биохимические реакции. Четко прослеживается биологическая закономерность, когда одно и то же вещество, в частности, ЭТ регулирует различные физиологические процессы (табл. 2).

ЭТ - это группа полипептидов, состоящая из трех изомеров (ЭТ-1, ЭТ-2, ЭТ-3), отличающихся некоторыми вариациями и последовательностью расположения аминокислот. Имеется большое сходство между структурой ЭТ и некоторыми нейротоксическими пептидами (яды скорпиона, роющей змеи).

Основной механизм действия всех ЭТ заключается в увеличении содержания в цитоплазме гладкомышечных клеток сосудов ионов кальция, что вызывает:

  • стимуляцию всех фаз гемостаза, начиная с агрегации тромбоцитов и заканчивая образованием красного тромба;
  • сокращение и рост гладких мышц сосудов, приводящие к вазоконстрикции и утолщению стенки сосудов и уменьшению их диаметра.

Таблица 2

Подтипы рецепторов ЭТ: локализация, физиологические эффекты
и участие вторичных посредников

Эффекты ЭТ неоднозначны и определяются рядом причин. Наиболее активен изомер - ЭТ-1. Он образуется не только в эндотелии, но и в гладких мышцах сосудов, нейронах, глие, мезенгиальных клетках почек, печени и других органах. Полупериод жизни - 10-20 мин, в плазме крови - 4-7 мин. ЭТ-1 причастен к ряду патологических процессов: инфаркту миокарда, нарушению ритма сердца, легочной и системной гипертезии, атеросклерозу и др. .

Поврежденный эндотелий синтезирует большое количество ЭТ, вызывающего вазоконстрикцию . Большие дозы ЭТ приводят к значительным изменениям системной гемодинамики: снижению частоты сердечных сокращений и ударного объема сердца, увеличению на 50 % сосудистого сопротивления в большом круге кровообращения и на 130 % в малом .

Ангиотензин II (AT II) - физиологически активный пептид прогипертензивного действия. Это гормон, образующийся в крови человека при активации ренин-ангиотензиновой системы, участвует в регуляции артериального давления и водно-солевого обмена. Этот гормон вызывает сужение выносящих артериол почечных клубочков . Он увеличивает реабсорбцию в почечных канальцах натрия и воды. АТ II суживает артерии и вены, а также стимулирует выработку таких гормонов, как вазопрессин и альдостерон, что приводит к повышению давления. Сосудосуживающая активность АТ II определяется его взаимодействием с AT I рецептором .

Тромбоксан А2 (ТхА 2) - способствует быстрой агрегации тромбоцитов, увеличивая доступность их рецепторов для фибриногена, чем активирует коагуляцию, вызывает вазоспазм и бронхоспазм. Кроме того, TхA2 является медиатором в опухолеобразовании, тромбозах и астме. ТхА2 вырабатывается также гладкими мышцами сосудов, тромбоцитами. Одним из факторов, стимулирующих выделение ТхА2, является кальций, который в большом количестве выделяется из тромбоцитов в начале их агрегации. ТхА2 сам увеличивает содержание кальция в цитоплазме тромбоцитов. Кроме того, кальций активирует сократительные белки тромбоцитов, что усиливает их агрегацию и дегрануляцию. Он активирует фосфолипазу А2, превращающую арахидоновую кислоту в простагландины G2, Н2 - вазоконстрикторы .

Простагландин H2 (PGH2) - обладает ярко выраженной биологической активностью. Он стимулирует агрегацию тромбоцитов и вызывает сокращение гладких мышц с формированием вазоспазма.

Группа веществ под названием дилятаторы, представлена следующими биологически активными веществами.

Оксид азота (NO) - это низкомолекулярная и не несущая заряда молекула, способная быстро диффундировать и свободно проникать через плотные клеточные слои и межклеточное пространство. По строению NO содержит неспаренный электрон, имеет высокую химическую активность и легко реагирует со многими клеточными структурами и химическими компонентами, что обусловливает исключительное многообразие ее биологических эффектов. NO способен вызывать различные и даже противоположные эффекты в клетках-мишенях, что зависит от наличия дополнительных факторов: окислительно-восстановительного и пролиферативного статуса и ряда прочих условий. NO влияет на эффекторные системы, контролирующие пролиферацию, апоптоз и дифференцировку клеток, а также на их устойчивость к стрессовым воздействиям. NO выполняет функции посредника в передаче паракринного сигнала. Действие NO вызывает быстрый и относительно кратковременный ответ в клетках-мишенях, обусловленный снижением уровня кальция, а также долговременные эффекты, обусловленные индукцией определенных генов. В клетках-мишенях NO и ее активные производные, такие как пероксинитрит, действуют на белки, содержащие гем, железосерные центры и активные тиолы, также ингибируют железосерные ферменты. Кроме того, NO рассматривают как один из мессенджеров внутри и межклеточной сигнализации в центральной и периферической нервной системе и рассматривают как регулятор пролиферации лимфоцитов. Эндогенный NO - важный компонент системы регуляции кальциевого гомеостаза в клетках и соответственно активности Са 2+ -зависимых протеинкиназ. Образование NO в организме происходит при ферментативном окислении L-аргинина. Синтез NO осуществляется семейством цитохром ‒ P-450-подобных гемопротеинов - NO-синтаз.

По определению ряда исследователей - NO - «двуликий Янус»:

  • NO как усиливает процессы перекисного окисления липидов (ПОЛ) в мембранах клеток и липопротеинах сыворотки, так и ингибирует их;
  • NO вызывает вазодилятацию, но может вызывать и вазоконстрикцию ;
  • NO индуцирует апоптоз, но оказывает защитный эффект в отношении апоптоза, индуцированного другими агентами;
  • NO способен модулировать развитие воспалительной реакции и ингибировать окислительное фосфорилирование в митохондриях и синтез АТФ .

Простациклин (PGI2) - образуется преимущественно в эндотелии. Синтез простациклина происходит постоянно. Он подавляет агрегацию тромбоцитов, кроме того, оказывает вазодилятирующее действие за счет стимуляции специфических рецепторов гладкомышечных клеток сосудов, что приводит к повышению активности в них аденилатциклазы и к увеличению образования в них цАМФ.

Эндотелий зависимый гиперполяризующий фактор (EDHF) - по своей структуре он не идентифицирован, как NO или простациклин. EDHF вызывает гиперполяризацию гладкомышечного слоя артериальной стенки и соответственно его релаксацию. G. Edwards и соавт. (1998) было установлено, что EDHF не что иное как К+, который выделяется эндотелиоцитами в миоэндотелиальное пространство стенки артерии при действии на последнюю адекватного раздражителя. EDHF способен играть важную роль в регуляции артериального давления.

Адреномедулин содержится в сосудистой стенке, обоих предсердиях и желудочках сердца, спинномозговой жидкости. Имеются указания на то, что адреномедулин может синтезироваться легкими и почками. Адреномедулин стимулирует продукцию эндотелием NO, что способствует вазодилятации, расширяет сосуды почек и увеличивает скорость клубочковой фильтрации и диурез, повышает натрийурез, снижает пролиферацию гладкомышечных клеток, препятствует развитию гипертрофии и ремоделирования миокарда и сосудов, ингибирует синтез альдостерона и ЭТ.

Следующая функция сосудистого эндотелия - участие в реакциях гемостаза за счет выделения протромбогенных и антитромбогенных факторов.

Группа протромбогенных факторов представлена следующими агентами.

Тромбоцитарный фактор роста (PDGF) является наиболее хорошо изученным представителем группы белковых факторов роста. PDGF может изменять пролиферативный статус клетки, влияя на интенсивность белкового синтеза, но, не затрагивая при этом усиления транскрипции генов раннего ответа, как c-myc и c-fos. Сами тромбоциты не синтезируют белок. Синтез и процессинг PDGF осуществляется в мегакариоцитах - клетках костного мозга, предшественниках тромбоцитов - и запасается в α-гранулах тромбоцитов. Пока PDGF находится внутри тромбоцитов, он недоступен для других клеток, однако при взаимодействии с тромбином происходит активация тромбоцитов с последующим высвобождением содержимого в сыворотку. Тромбоциты являются главным источником PDGF в организме, но вместе с тем показано, что некоторые другие клетки также могут синтезировать и секретировать этот фактор: это в основном клетки мезенхимального происхождения.

Ингибитор тканевого активатора плазминогена-1 (ИТАП-1) - продуцируется эндотелиоцитами, клетками гладких мышц, мегакариоцитами и мезотелиальными клетками; депонируется в тромбоцитах в неактивной форме и является серпином. Уровень ИТАП-1 в крови регулируется очень точно и возрастает при многих патологических состояниях. Его продукция стимулируется тромбином, трансформирующим фактором роста β, тромбоцитарным фактором роста, ИЛ-1, ФНО-α, инсулиноподобным фактором роста, глюкокортикоидами. Основная функция ИТАП-1 - ограничить фибринолитическую активность местом расположения гемостатической пробки за счет ингибирования ТАП. Это выполняется легко за счет большего содержания его в сосудистой стенке по сравнению с тканевым активатором плазминогена. Таким образом, на месте повреждения активированные тромбоциты выделяют избыточное количество ИТАП-1, предотвращая преждевременный лизис фибрина.

Ингибитор тканевого активатора плазминогена 2 (ИТАП-2) - основной ингибитор урокиназы.

Фактор фон Виллебранда (VIII - vWF) - синтезируется в эндотелии и мегакариоцитах; стимулирует начало тромбообразования: способствует прикреплению рецепторов тромбоцитов к коллагену и фибронектину сосудов, усиливает адгезию и агрегацию тромбоцитов. Синтез и выделение этого фактора возрастает под влиянием вазопрессина, при повреждении эндотелия. Поскольку все стрессорные состояния увеличивают выделение вазопрессина, то при стрессах, экстремальных состояниях тромбогенность сосудов возрастает.

АТ II быстро метаболизируется (период полураспада - 12 мин) при участии аминопептидазы А с образованием АТ III и далее под влиянием аминопептидазы N - ангиотензина IV, обладающих биологической активностью. АТ IV, предположительно, участвует в регуляции гемостаза, опосредует угнетение клубочковой фильтрации.

Важная роль отводится фибронектину - гликопротеиду, состоящему из двух цепей, соединенных дисульфидными связями. Вырабатывается он всеми клетками сосудистой стенки, тромбоцитами. Фибронектин является рецептором для фибринстабилизирующего фактора. Способствует адгезии тромбоцитов, участвуя в образовании белого тромба; связывает гепарин. Присоединяясь к фибрину, фибронектин уплотняет тромб. Под действием фибронектина клетки гладких мышц, эпителиоцитов, фибробластов повышают свою чувствительность к факторам роста, что может вызвать утолщение мышечной стенки сосудов и повышение общего периферического сопротивления сосудов.

Тромбоспондин - гликопротеид, который не только вырабатывается эндотелием сосудов, но находится и в тромбоцитах. Он образует комплексы с коллагеном, гепарином, являясь сильным агрегирующим фактором, опосредующим адгезию тромбоцитов к субэндотелию.

Фактор активации тромбоцитов (ФАТ) - образуется в различных клетках (лейкоциты, эндотелиальные клетки, тучные клетки, нейтрофилы, моноциты, макрофаги, эозинофилы и тромбоциты), относится к веществам с сильным биологическим действием.

ФАТ задействован в патогенезе аллергических реакций немедленного типа. Он стимулирует агрегацию тромбоцитов с последующей активацией фактора XII (фактора Хагемана). Активированный фактор XII, в свою очередь, активирует образование кининов, наибольшее значение из которых имеет брадикинин.

Группа антитромбогенных факторов представлена нижеперечисленными биологически активными веществами.

Тканевой активатор плазминогена (tPA, фактор III, тромбопластин, ТАП) - сериновая протеаза катализирует превращение неактивного профермента плазминогена в активный фермент плазмин и является важным компонентом системы фибринолиза. ТАП является одним из ферментов, наиболее часто вовлекаемых в процессы деструкции базальной мембраны, внеклеточного матрикса и инвазии клеток. Он продуцируется эндотелием и локализован в стенке сосудов. ТАП представляет собой фосфолипопротеин, эндотелиальный активатор, высвобождаемый в кровоток под действием разных стимулов.

Основные функции сводятся к инициации активации внешнего механизма свертывания крови. Он обладает высоким сродством к циркулирующему в крови ф.VII. В присутствии ионов Са2+ ТАП образует комплекс с ф.VII, вызывая его конформационные изменения и превращая последний в сериновую протеиназу ф.VIIа. Возникающий комплекс (ф.VIIа-Т.ф.) превращает ф.Х в сериновую протеиназу ф.Ха. Комплекс ТАП-фактор VII способен активировать как фактор X, так и фактор IX, что, в конечном итоге, способствует образованию тромбина.

Тромбомодулин - протеогликан, содержащийся в сосудах и являющийся рецептором для тромбина. Эквимолярный комплекс тромбин-тромбомодулин не вызывает превращения фибриногена в фибрин, ускоряет инактивацию тромбина антитромбином III и активирует протеин C, один из физиологических антикоагулянтов крови (ингибиторов свертывания крови). В комплексе с тромбином тромбомодулин функционирует в качестве кофактора. Связанный с тромбомодулином тромбин в результате изменения конформации активного центра приобретает повышенную чувствительность в отношении инактивации его антитромбином III и полностью теряет способность взаимодействовать с фибриногеном и активировать тромбоциты.

Жидкое состояние крови поддерживается благодаря ее движению, адсорбции факторов свертывания эндотелием и, наконец, благодаря естественным антикоагулянтам. Важнейшие из них - это антитромбин III, протеин С, протеин S и ингибитор внешнего механизма свертывания.

Антитромбин III (АТ III) - нейтрализует активность тромбина и других активированных факторов свертывания крови (фактора XIIa, фактора XIa, фактора Xa и фактора IXa). В отсутствие гепарина комплексирование АТ III с тромбином протекает медленно. При связывании остатков лизина АТ III с гепарином в ее молекуле происходят конформационные сдвиги, способствующие быстрому взаимодействию реактивного места АТ III с активным центром тромбина. Это свойство гепарина лежит в основе его антикоагулянтного действия. АТ III образует комплексы с активированными факторами свертывания крови, блокируя их действие. Эта реакция в сосудистой стенке и на эндотелиальных клетках ускоряется гепариноподобными молекулами.

Протеин С - синтезируемый в печени витамин-К-зависимый белок, который связывается с тромбомодулином и превращается тромбином в активную протеазу. Взаимодействуя с протеином S, активированный протеин С разрушает фактор Va и фактор VIIIa, прекращая образование фибрина. Активированный протеин С может также стимулировать фибринолиз. Уровень протеина С не столь жестко связан с наклонностью к тромбозам, как уровень АТ III. Кроме того, протеин С стимулирует выделение тканевого активатора плазминогена эндотелиальными клетками. Кофактором протеина С служит протеин S.

Протеин S - фактор протромбинового комплекса, кофактор протеина С. Снижение уровня АТ III, протеина С и протеина S или их структурные аномалии ведут к повышению свертываемости крови. Протеин S - витамин К - зависимый одноцепочечный плазменный протеин, является кофактором активированного протеина С, вместе с которым регулирует скорость свертывания крови. Протеин S синтезируется в гепатоцитах, эндотелиальных клетках мегакариоцитах, клетках Лейдинга, а также в клетках мозга. Протеин S функционирует как неэнзиматический кофактор активированного белка C, сериновая протеаза, участвующая в протеолитической деградации факторов Va и VIIIa.

Все факторы, влияющие на рост сосудов и гладкомышечных клеток, делятся на стимуляторы и ингибиторы. Основные стимуляторы представлены ниже.

Ключевой активной формой кислорода является супероксид анион-радикал (Ō2), образующийся при присоединении одного электрона к молекуле кислорода в основном состоянии. Ō2 представляет опасность тем, что способен повреждать белки, содержащие железо-серные кластеры, такие как аконитаза, сукцинатдегидрогеназа и НАДН-убихинон оксидоредуктаза. При кислых значениях рН Ō2 может протонироваться с образованием более реакционноспособного пероксидного радикала. Присоединение двух электронов к молекуле кислорода или одного электрона к Ō2 приводит к образованию Н2О2, которая является окислителем умеренной силы.

Опасность любых реакционно-активных соединений в значительной степени зависит от их стабильности. Экзогенно возникшие Ō2 могут проникать в клетку и (наряду с эндогенными) участвовать в реакциях, приводящих к различным повреждениям: перекисном окислении ненасыщенных жирных кислот, окислении SH-групп белков, повреждении ДНК и др.

Фактор роста эндотелиальных клеток (beta-Endothelial Cell Growth Factor) - обладает свойствами ростового фактора эндотелиальных клеток. 50 % аминокислотной последовательности молекулы ECGF соответствует структуре фактора роста фибробластов (FGF). Оба эти пептида также обнаруживают сходную аффинность к гепарину и ангиогенную активность in vivo. Основной фактор роста фибробластов (bFGF) считается одним из важных индукторов опухолевого ангиогенеза.

Главные ингибиторы роста сосудов и гладкомышечных клеток представлены следующими веществами.

Эндотелиальный натрийуретический пептид С - вырабатывается, главным образом, в эндотелии, но обнаруживается также в миокарде предсердий, желудочков и в почках. Вазоактивным действием обладает CNP, выделяющийся из эндотелиальных клеток и паракринно воздействующий на рецепторы гладкомышечных клеток, вызывая и вазодилятацию. Синтез CNP усиливается в условиях дефицита NO, что имеет компенсаторное значение при развитии артериальной гипертензии и атеросклерозе.

Макроглобулин α2 - это гликопротеин, который относится к α2-глобулинам и представляет собой одну полипептидную цепь с молекулярной массой 725000 кДа. Нейтрализует плазмин, оставшийся неинактивированным после взаимодействия с α2-антиплазмином. Угнетает активность тромбина.

Кофактор II гепарина - гликопротеин, одноцепочечный полипептид с молекулярной массой 65000 кДа. Его концентрация в крови равна 90 мкг/мл. Инактивирует тромбин, образуя с ним комплекс. Реакция значительно ускоряется в присутствии дерматансульфата.

Сосудистый эндотелий также вырабатывает факторы, влияющие на развитие и течение воспаления.

Они делятся на провоспалительные и противовоспалительные. Ниже представлены провоспалительные факторы.

Фактор некроза опухоли-α (ФНО-α, кахектин) - это пироген, во многом дублирует действие ИЛ-1, но кроме того, играет важную роль в патогенезе септического шока, вызванного грамотрицательными бактериями. Под влиянием ФНО-α резко увеличивается образование макрофагами и нейтрофилами Н2О2 и других свободных радикалов. При хроническом воспалении ФНО-α активирует катаболические процессы и тем самым способствует развитию кахексии.

Цитотоксическое действие ФНО-α на опухолевую клетку связано с деградацией ДНК и нарушением функционирования митохондрий.

Индикатором эндотелиальной дисфункции может служить С-реактивный белок (С-РБ). Накоплено достаточно сведений о взаимосвязи С-РБ с развитием поражений сосудистой стенки и его непосредственном участии в этом процессе. Ввиду этого уровень С-РБ рассматривается сегодня в качестве надежного предиктора осложнений сосудистых заболеваний мозга (инсульт), сердца (инфаркт), периферических сосудистых нарушений. С-РБ опосредует инициальные стадии повреждения сосудистой стенки: активацию эндотелиальных молекул адгезии (ICAM-l, VCAM-l), секрецию хемотаксических и провоспалительных факторов (МСР-1 - хемотаксический для макрофагов белок, ИЛ-6), способствуя привлечению и адгезии иммунных клеток к эндотелию. Об участии С-РБ в повреждении сосудистой стенки свидетельствуют, кроме того, и данные о депозитах С-РБ, обнаруженных в стенках пораженных сосудов при инфаркте миокарда, атеросклерозе, васкулитах.

Основной противовоспалительный фактор - оксид азота (его функции представлены выше).

Таким образом, сосудистый эндотелий, находясь на границе между кровью и другими тканями организма, полностью выполняет свои основные функции за счет биологически активных веществ: регуляция параметров гемодинамики, тромборезистентность и участие в процессах гемостаза, участие в воспалении и ангиогенезе.

При нарушении функции или структуры эндотелия резко меняется спектр выделяемых им биологически активных веществ. Эндотелий начинает секретировать агреганты, коагулянты, вазоконстрикторы, причем часть из них (ренин-ангиотензиновая система) оказывает влияние на всю сердечно-сосудистую систему. При неблагоприятных условиях (гипоксия, нарушения обмена веществ, атеросклероз и т. п.) эндотелий становится инициатором (или модулятором) многих патологических процессов в организме .

Рецензенты :

Бердичевская Е.М., д.м.н., профессор, зав. кафедрой физиологии ФГОУ ВПО «Кубанский государственный университет физической культуры, спорта и туризма» г. Краснодар;

Быков И.М., д.м.н., профессор, зав. кафедрой фундаментальной и клинической биохимии ГБОУ ВПО КубГМУ Минздравсоцразвития России, г. Краснодар.

Работа поступила в редакцию 03.10.2011.

Библиографическая ссылка

Каде А.Х., Занин С.А., Губарева Е.А., Туровая А.Ю., Богданова Ю.А., Апсалямова С.О., Мерзлякова С.Н. ФИЗИОЛОГИЧЕСКИЕ ФУНКЦИИ СОСУДИСТОГО ЭНДОТЕЛИЯ // Фундаментальные исследования. – 2011. – № 11-3. – С. 611-617;
URL: http://fundamental-research.ru/ru/article/view?id=29285 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Эндотелий - внутренняя выстилка сосудов - условно называется самой большой эндокринной железой: состоит приблизительно из 1,6х10 3 клеток, общим весом около 1 кг и общей площадью около 900 м 2 .

Эндотелиоциты имеют выраженную метаболическую активность и выполняют различные функции, связанные с поддержанием гомеостаза путем сохранения динамического равновесия ряда разнонаправленных процессов (Бувальцев В.И. 2001; Задионченко В. С, 2002; Петрищев Н.Н., 2003; Сторожаков Г.И. и соавт., 2003; EsperR.J., 2006; VermaS., AndersonT.J., 2002;):

Тонуса сосудов (вазодилатация / вазоконстрикция);

Процессов гемостаза (синтез и ингибирование факторов агрегации тромбоцитов, про- и

Антикоагулянтов, факторов фибринолиза);

Местного воспаления (выработка про- и противовоспалительных факторов, регуляции

Сосудистой проницаемости, процессов адгезии лейкоцитов);

Анатомического строения и ремоделирования сосудов (синтез / ингибирование факторов

Пролиферации).

Рис.7. Поперечный срез сосуда (вверху слева) и микроструктура эндотелиальной клетки.

Выделяют ряд стимулов, вызывающих секреторную реакцию эндотелиальной клетки (Сторожаков Г.И. и соавт., 2003; CinesD.B., 1998; VermaS., AndersonT.J., 2002;). Находясь в постоянном непосредственном контакте с кровью, эндотелий получает сигналы как гуморальным путем: под воздействием циркулирующих в крови веществ (катехоламины, вазопрессин, ацетилхолин, брадикинин, гистамин и др.), так и при непосредственном взаимодействии клеток крови (тромбоцитов, лейкоцитов, эритроцитов) с чувствительными структурами эндотелиоцитов, а также при изменении напряжения сдвига (при изменениилинейной скорости кровотока).

Эндотелий и регуляция сосудистого тонуса

Эндотелий принимает самое активное участие в регуляции сосудистого тонуса, вырабатывая различные биологически активные вещества. По своему действию вазоактивные вещества делятся на вазоконстрикторы и вазодилататоры. Однако не все вазоактивные вещества можно четко отнести к указанным группам, поскольку, во-первых, для ряда веществ существует несколько типов рецепторов: через одни из них опосредуются сосудосуживающие, а через другие -сосудорасширяющие эффекты; кроме того, активация рецепторов одного типа, расположенных на эндотелии и на гладкомышечных клетках сосудов, нередко вызывает противонаправленный эффект; во-вторых, в сосудах непрерывно реализуется принцип антагонистической регуляции, поскольку воздействие сосудосуживающих факторов почти всегда сопровождается одновременной стимуляцией образования и сосудорасширяющих веществ.

В норме, в ответ на перечисленные стимулы клетки эндотелия реагируют усилением синтеза ряда веществ, приводящих к расслаблению или сокращению гладкомышечных клеток сосудистой стенки (Сторожаков Г.И. и соавт., 2003; Петрищев Н.Н., 2003; FaraciF.M., HeistadD., 1998; VеrmaS., AndersonT.J., 2002). Широкий спектр веществ с вазоконстрикторной и вазодилататорной активностью, секретируемых эндотелиоцитами, представлен в таблице 1.

Табл. 1. Факторы, синтезируемые в эндотелии и регулирующие его функцию

Факторы сокращения и расслабления сосудистой стенки

Факторы, влияющие на рост сосудов

Факторы, влияющие на воспаление

Эндотелий-зависимая вазодилатация связана с синтезом в эндотелии преимущественно трех основных веществ: оксида азота (NO), эндотелиального гиперполяризирующего фактора (EDHF) и простациклина. Оксид азота синтезируется клетками эндотелия ферментом эндотелиальной NO-синтазой из L-аргинина (Adams M.R. et al., 1997; Moncada S. et al., 1997). Время полужизни молекулы NO составляет всего несколько секунд. Имеются два уровня его секреции - базальный и стимулированный (Moncada S. et al., 1997). NO является мощным вазодилататором, при этом его базальная секреция определяет поддержание нормального тонуса сосудов в покое (Бувальцев В.И., 2001; Петрищев Н.Н., 2003; Faraci F.M., Heistad D., 1998; Verma S., AndersonT.J., 2002; EspcrRJ.etal., 2006).

В норме NO является не только мощным вазодилататором, но и тормозит процессы ремоделирования сосудистой стенки, подавляя пролиферацию гладкомышечных клеток (Moncada S. et al., 1997). Он предотвращает адгезию и агрегацию тромбоцитов, адгезию моноцитов, защищает сосудистую стенку от патологической перестройки и последующего развития атеросклероза и атеротромбоза (Задионченко В. С. и соавт., 2002; Бувальцев В.И. 2003; Новикова Н.А., 2005; Verma S. et al., 2003; Landmesser U. et al., 2004; Esper R.J. et al., 2006).

К другим вазодилатирующим агентам относится простациклин. В постоянной регуляции сосудистого тонуса основную роль играют оксид азота и EDHF, в то время как простациклин образуется преимущественно при стимуляции гуморальными факторами, такими как брадикинин, ацетилхолин или при увеличении напряжения сдвига.

Эндотелий может вызывать сужение сосудов, которое связано с отсутствием высвобождения факторов релаксации или предотвращения их действия (например, при снижении базальной секреции N0), так и с выделением собственных констрикторных агентов (Сидоренко Б.А., Затейщиков Д.А., 1999; Сторожаков Г.И. и соавт., 2003; Esper R.J. et al., 2006). Наиболее изученный представитель этого класса эндотелин-1 - активирует рецепторы на гладкомышечных клетках, стимулируя стойкую вазоконстрикцию и пролиферацию средней оболочки мелких сосудов. Секреция эндотелина стимулируется инсулином.

К другим вазоконстрикторным агентам относятся тромбоксан А 2 , простагландин F 2 , непосредственно действующие на гладкомышечные клетки. Два последних фактора одновременно являются и факторами, способствующими пролиферации гладкомышечных элементов сосудистой стенки.

Эндотелий и тромборезистентность сосудистой стенки

Все вещества, секретируемые эндотелием и участвующие в гемостазе и тромбозе, можно, в известной степени условно, разделить на две группы -тромбогенные и атромбогенные. К веществам, индуцирующим адгезию и агрегацию тромбоцитов, относятся фактор Виллебранда (фВ), фактор активации тромбоцитов, аденозиндифосфорная кислота (АДФ), тромбоксан А2. Адгезия тромбоцитов к эндотелию и субэндотелиалыюму матриксу - начальный этап гемостаза и тромбоза. В норме адгезии тромбоцитов к неповрежденному эндотелию не происходит, а в условиях патологии адгезия ограничивается, как правило, зоной, прилежащей к области повреждения сосудистой стенки. Это связано с образованием эндотелиальными клетками простациклина, N0, экто-АДФазы и других факторов, ингибирующих адгезию и агрегацию тромбоцитов.

Табл.2 Факторы гемостаза и антитромбоза

Адгезия и агрегация тромбоцитов приводит к образованию тромбоцитарного тромба, который, в условиях нормальной функции эндотелия, прочно связан с сосудистой стенкой. Этот этап гемостаза связан с активацией плазменных прокоагулянтов и образованием тромбина - фактора, вызывающего необратимую агрегацию тромбоцитов, а также ключевого фермента системы свертывания крови, под влиянием которого фибриноген превращается в фибрин. Тромбин, кроме того, является активатором эндотелиоцитов. Из эндотелия в условиях повреждения выделяется тканевой фактор, инициирующий внешний (быстрый) путь свертывания крови. Ингибиторы образования тромбина (ингибитор тканевого фактора, тромбомодулин, протеогликаны и др.)предотвращают избыточное фибринобразование на луминальной поверхности сосудов при повреждении сосудистой стенки, а также (вместе с плазменными ингибиторами тромбиногенеза) драматическое внутрисосудистое свертывание крови. И, наконец, в эндотелии образуются активаторы и ингибиторы фибринолиза.

Тромборегуляторы оказывают влияние не только на гемостаз, но и на другие процессы: проницаемость сосудистой стенки, вазомоторные реакции (простациклин, N0, тромбоксан А 2), ангиогенез, клеточную пролиферацию (тканевой активатор плазминогена) и т.д. Источниками тромборегуляторов, при определенных условиях, могут быть лейкоциты, макрофаги и другие клетки.

На луминальной поверхности эндотелия имеются рецепторы ко многим биологически активным веществам, циркулирующим в крови, а также к тромборегуляторам. Через взаимодействие их с рецепторами эндотелия осуществляется пара- и аутокринная регуляция их образования и секреции. Кроме того, на поверхности эндотелия имеются места связывания плазменных прокоагулянтов, антикоагулянтов и других плазменных белков. Тромборегуляторы эндотелиального происхождения (тканевой фактор, простациклин, тканевой активатор плазминогена и его ингибитор), имеющие сравнительно большой период биологического полураспада, оказывают не только локальное, но и системное действие на клетки крови и кровеносные сосуды. Это относится, прежде всего, к веществам, секретируемыми эндотелием, оказывающим как прямое влияние на гемостаз (фВ, тромбомодулин), так и опосредованное (эндотелин-1, супероксидный анион и др.).

В регуляции гемостатической функции эндотелия большое значение имеют гормоны (вазопрессин, эстрогены и др.), цитокины (интерлейкин-1, фактор некроза опухоли альфа), гемодинамические факторы. В физиологических условиях образование атромбогенных веществ в эндотелии преобладает над образованием тромбогенных, что обеспечивает сохранение жидкого состояния крови при повреждениях сосудистой стенки. Секреция атромбогенных веществ определяет тромборезистентность кровеносных сосудов.

Эндотелий, адгезия и агрегация тромбоцитов

Образование гемостатической пробки начинается с контакта тромбоцитов с тромбогенной поверхностью (адгезия); последующий рост тромба зависит от взаимодействия тромбоцитов друг с другом (агрегация). На поверхности тромбоцитов имеются рецепторы адгезии, относящиеся к семейству интегринов класса βз и β1 и взаимодействующие с адгезивными экстрацеллюлярными белками (фибронектин, коллаген, фибриноген, тромбоспондин, ламинин, фактор Виллебранда и др.).

Фактор Виллебранда опосредует начальный контакт тромбоцитов с субэндотелием, синтезируется в эндотелии и мегакариоцитах (Verweij C.L., 1998). Фактор Виллебранда секретируется в плазму и субэндотелий, а также депонируется в тельцах Вейбеля-Паладе в эндотелиоцитах . При повреждении сосудистой стенки, вышедший из эндотелиоцитов фактор Виллебранда связывается с субэндотелиальным матриксом (1-й этап), подвергается конформационным изменениям (2-й этап) и связывается с рецептором (гликопротеином Ib) тромбоцитов (3-й этап). Это связывание, которое является началом адгезии тромбоцитов, приводит к увеличению входа ионов кальция и экспрессии гликопротеина IIb/IIIa. Фактор Виллебранда взаимодействует с этими рецепторами; этот этап завершается распространенной, необратимой адгезией и агрегацией тромбоцитов. Адгезия тромбоцитов, опосредованная фактором Виллебранда, происходит наиболее интенсивно при высоких скоростях сдвига, т.е. в артериях. При многих заболеваниях, сопровождающихся острым и хроническим повреждением эндотелия (сахарный диабет, атеросклероз), уровень фактор Виллебранда в крови значительно повышается, что рассматривается как показатель дисфункции эндотелия. Увеличение синтеза и секреции фактора Виллебранда наблюдается под влиянием адреналина, вазопрессина (Петрищев Н.Н., 2003).

К факторам, стимулирующим адгезию и агрегацию тромбоцитов и образующимся в эндотелии, относятся также фактор активации тромбоцитов, АДФ, тромбоксан А2.

Фактор активации тромбоцитов, образующийся в эндотелии, взаимодействует с соответствующими рецепторами тромбоцитов, вызывает экспрессию гликопротеина IIb/IIIa с последующей активацией адгезии и агрегации тромбоцитов. Аденозиндифосфорная кислота, выделяющаяся из поврежденных эндотелиоцитов и других клеток, ковалентно связывается с рецепторами тромбоцитов. Под влиянием АДФ увеличивается внутриклеточная концентрация ионов кальция, что и лежит в основе его проагрегантного действия (Feoktistov I., Biaggoni I., 1997).

Тромбоксан А 2 - продукт метаболизма арахидоновой кислоты. Взаимодействуя с рецепторами тромбоцитов, в конечном счете, вызывает увеличение внутриклеточной концентрации ионов кальция, активацию и агрегацию тромбоцитов (Harder D.R. et al., 1997). В отличие от простациклина, тромбоксан А 2 имеет очень короткий период биологического полураспада, поэтому его эффект, в основном, местный)Суслина З.А., 1990; Walch L. et al., 2000). Кроме того, тромбоксан А 2 оказывает вазоконстрикторное действие (Harder D.R. et al., 1997).


рис.2 Взаимодействие тромбоцита с поверхностью эндотелия.

К факторам, ингибирующим адгезию тромбоцитов и их агрегацию, относятся простациклин, N0, экто-АДФаза. Простациклин - продукт метаболизма арахидоновой кислоты. Синтез простациклина в эндотелии происходит постоянно, но он не депонируется, а секретируется через луминальную поверхность в кровь. В отличие от других простагландинов, простациклин не разрушается полностью, проходя через легкие, и поэтому в случае локального увеличения его синтеза могут наблюдаться системные эффекты. Простациклин как тромборегулятор иигибирует агрегацию и в меньшей степени адгезию тромбоцитов, активируя систему аденилатциклаза-циклический АМФ (HarderD.R. etal , 1997). Кроме этого, простациклин оказывает вазодилататорное действие, потенцирует эффекты гистамина, кининов. Увеличение продукции простациклина наблюдается при повреждении эндотелия, гипоксии, под влиянием вазоактивных веществ (адреналина, гистамина, брадикинина, ангиотензина-II, эндотелина-1, цитокинов, тромбина, гемодинамических факторов (Суслина З.А., 1990).

Оксид азота постоянно образуется и выделяется из эндотелия. Синтез NO определяется активностью эндотелиальной NO-синтазы. Ацетилхолин, гистамин, эндотелин-1, ангиотензин-Н, брадикинин, вазопрессин, эстрогены, тромбин усиливают синтез N0 . Базальный уровень синтеза и секреции N0 определяется напряжением сдвига, то есть зависит от скорости кровотока и вязкости крови. Продукты, выделяющиеся из тромбоцитов при их агрегации (АДФ, серотонин), являются стимуляторами синтеза N0. N0, диффундирующий через луминальную поверхность эндотелиоцитов, препятствует адгезии и агрегации тромбоцитов через активацию системы гуанилатциклаза-циклический гуанозин-монофосфат. Период биологического полураспада N0 меньше 1 секунды, он быстро инактивируется, связываясь с оксигемоглобином и поэтому его биологические эффекты локальны. В крови N0 образует S-нитрозотиоловые и металл-нитрозилрвые комплексы, циркулирующие в крови (Moncada S. et al., 1997).

Экто-АДФаза - представитель эндотелиальных экто-аденозиновых фосфатаз. Значение этого фермента в гемостазе заключается в том, что он расщепляет АДФ до аденозина, который ингибирует агрегацию и является, к тому же, вазодилататором (Feoktistov I., Biaggoni I, 1997).

Прокоагулянтная и антикоагулянтная активность эндотелия.

В норме на поверхности эндотелия не происходит свертывание крови. Трансформация поверхности эндотелия из антикоагулянтной в прокоагулянтную индуцируется тканевым фактором, который активирует VII фактор свертывания крови, ускоряет активацию X фактора свертывания крови и, таким образом, запускается так называемый «внешний» путь свертывания крови. В норме, в неповрежденном эндотелии тканевой фактор не образуется. При повреждении сосудов, а также при гипоксии, действии цитокинов, эндотоксина, напряжении сдвига, под влиянием окисленных липопротеидов и других факторов происходит экспрессия синтеза тканевого фактора. Через луминальную поверхность эндотелиоцитов тканевой фактор секретируется и связывается с поверхностью эндотелия, а также циркулирует в крови. Активация «внешнего пути» завершается образованием тромбина, на образование и активность которого влияют атромбогенные факторы, секретируемые эндотелием: ингибитор тканевого фактора, тромбомодулин, протеогликаны и др. Ингибитор тканевого пути свертывания синтезируется различными клетками, но основным его источником является эндотелий. На поверхности эндотелиоцитов он связан с протеогликанами и мобилизуется под влиянием гепарина. Ингибитор тканевого пути свертывания связывается с активированным X фактором свертывания крови внутри комплекса тканевой фактор -активированный VII и активированный X факторы свертывания крови и ингибирует начальный этап гемокоагуляции - образование протромбиназы. Наряду с тромбомодулином, протеинами С и S, антитромбином III и гепарином он относится к естественным антикоагулянтам. Матрикс, окружающий эндотелий, содержит гепаран-сульфат, дерматан-сульфат и другие гликозаминогликаны, которые повышают активность связанного с клеткой антитромбина III и гепарин-кофактора-Н, тем самым ограничивая

Тромбиногенез. Тромбомодулии - гликопротеин в составе мембраны эндотелия, образует комплексное соединение с тромбином. Продукт взаимодействия превращает протеин С в активную форму, которая разрушает активированные факторы свертывания крови VIII и V и, тем самым, ингибирует образование тромбина. Активность активированного протеина С увеличивается его кофактором -протеином S, который образуется в эндотелии и в других клетках.

Таким образом, система тромбомодулин-протеин С выполняет антикоагулянтную функцию. Более того, модифицированный при взаимодействии с тромбомодулином, тромбин теряет способность превращать фибриноген в фибрин и вызывать агрегацию тромбоцитов. При повреждении сосудистой стенки, тромбомодулин «отделяется» от эндотелия и поступает в кровь. Увеличение его в крови наблюдается у больных с претромботическими состояниями, васкулитами.

Эндотелий и фибринолиз

В эндотелии образуются и секретируются тканевой и урокиназный активаторы плазминогена и их ингибиторы PAI-1 и PAI-2. Тканевой активатор плазминогена , подобно фВ, секретируется постоянно, но его выброс из эндотелиоцитов может резко увеличиваться в определенных ситуациях (физическая нагрузка, катехоламинемия, венозная окклюзия и т.п.). PAI-1 также постоянно продуцируется и секретируется эндотелиоцитами, причем находится в клетке в большом избытке по отношению к t-PA. В крови и субклеточном матриксе PAI-1 связан с адгезивным гликопротеидом витронектином. В этом комплексе период биологического полураспада PAI-1 увеличивается в 2-4 раза. Благодаря этому, возможна концентрация PAI-1 в определенном регионе и локальное угнетение фибринолиза. Липопротеиды очень низкой плотности и окисленные липопротеиды стимулируют продукцию PAI-1. Некоторые цитокины (интерлейкин-1, фактор некроза опухоли альфа) и эндотелии подавляют фибринолитическую активность, главным образом, за счет увеличения синтеза и секреции PAI-1.

На поверхности эндотелиальных клеток имеются рецепторы к плазминогену и t-PA, что благоприятствует местной активации фибринолиза. Липопротеид (а) блокирует рецептор плазминогена и, тем самым, снижает фибринолитический потенциал. В эндотелии синтезируется также белок аннексин-2, который, взаимодействуя с t-PA, увеличивает его способность активировать плазминоген. Тканевой активатор плазминогена, связанный с аннексином-2, «защищен» от действия его ингибитора РАИ. Протеолитическая система плазминогена- t-PA-PAI- имеет значение не только для фибринолиза, но и вовлекается во многие другие физиологические и патологические процессы: ангиогенез, тромботические и геморрагические расстройства.

Нарушение участия эндотелия в регуляции фибринолиза является важным звеном в патогенезе многих заболеваний, в том числе атеросклероза, и оказывает существенное влияние на динамику тромбоза.

Гемодинамические факторы и секреция тромборегуляторов

Эндотелиальные клетки постоянно испытывают воздействие гемодинамических факторов: пристеночное напряжение сдвига, трансмуральное давление, напряжение и изгибы в связи с пульсацией. Так, известно, что в зонах высокого давления выше тромбопластиновая и антиагрегантная активность сосудов, при перемещении фрагмента вен в артерию продукция t-PA и простациклина увеличивается, скорость тока крови в венулах влияет на размеры тромба. Наибольшее значение придается напряжению сдвига, который зависит от скорости кровотока и вязкости. Градиент сдвига больше, чем сама по себе его величина, влияет на реакции эндотелия; в регионах с высоким и низким напряжением сдвига градиент сдвига может быть одинаковым. При увеличении напряжения сдвига развиваются быстрые (менее 1 минуты) реакции (выделение простациклина) и медленные (1-6 часов) реакции (увеличение образования NO-синтазы, t-PA, тканевого фактора, тромбомодулина и других факторов). В механизме быстрых реакций большое значение имеют активация калиевых каналов (в течение миллисекунд), гиперполяризация мембраны эндотелиоцита, увеличение уровня инозитолтрифосфата, диацилглицерола, изменение концентрации ионов кальция, активация G-белков. Медленные реакции являются ген-опосредованными и отражают увеличение синтеза тромборегуляторов (t-PA, РАМ), а также фермента эндотелиальной NO-синтазы, ответственного за синтез N0.

В реальных условиях кровотока эндотелий одновременно испытывает воздействие гемодинамических и других факторов, которые модулируют эффекты друг друга. Гемодинамические факторы при определенных условиях могут нарушать структуру и функцию эндотелия, т.е. действовать как патогенетические факторы, приводящие, в конечном счете, к нарушению баланса между тромбогенностью и тромборезистентностью, увеличению проницаемости эндотелия для макромолекул, аккумуляции липопротеидов, адгезии тромбоцитов, лейкоцитов и т.д.

Таким образом, образование и выделение тромбогенных и атромбогенных веществ эндотелием - нормальный, постоянно протекающий во всех сосудах процесс. Однако в их количестве и соотношении имеются существенные различия как региональные, так и в различных отделах сосудистой системы в пределах одного региона. Различие гидродинамических характеристик в сосудах разной принадлежности, калибра и локализации определяет в значительной степени уровень их тромбогенности и тромборезистентности. Увеличение продукции и выделения тромбогенных веществ - неспецифическая реакция на повреждение и активацию, прежде всего, эндотелия. При некоторых патологических процессах эта реакция сопровождается депрессией атромбогенных механизмов. Уменьшение образования атромбогенных веществ -фактор риска тромбоза, но увеличение - еще не гарантия обратного. В норме атромбогенные вещества сосудистой стенки, ингибируя тромбиногенез, инактивируя прокоагулянты, активируя фибринолиз, препятствуя адгезии и агрегации тромбоцитов, не препятствуют гемостазу при повреждении сосудов, но ограничивают процесс тромбообразования; в этом и заключается значение тромборезистентности.

Эндотелий и адгезия лейкоцитов

Взаимодействие лейкоцитов с эндотелием происходит посредством специальных адгезивных молекул, которые представлены как на эндотелиоцитах, так и на лейкоцитах. Выделяют 3 класса молекул адгезии: селектины (Р, Е, L), молекулы адгезии семейства иммуноглобулинов и интегрины. На эндотелии представлены Р- и Е-селектины, которые связываются с сиалированными гликопротеинами мембраны лейкоцитов. L-селектин, расположенный исключительно на лейкоцитах, связывается с гликопротеинами мембраны эндотелия. Другая группа эндотелиальных молекул адгезии -межклеточная молекула адгезии-1 (ICAM-1, intercellular adhesion molecule 1) и сосудистая клеточная молекула адгезии (VCAM-1, vascular cellular adhesion molecule 1) - относятся к суперсемейству иммуноглобулинов и связываются с интегринами мембраны лейкоцитов. Основными рецепторами ICAM-1 на лейкоцитах являются β 2 -иитегрины, главным рецептором VCAM-1 является β l -интегрин VLA-4. Основным регулятором процесса адгезии лейкоцитов является сам эндотелий (PrasadA. etal., 2002). В нормальных условиях на эндотелии представлена в небольшом количестве конститутивная молекула адгезии ICAM-2, посредством которой происходит формирование маргинального пула лейкоцитов в венозных сосудах. Стимуляция эндотелия или его повреждение приводят к дополнительной экспрессии молекул адгезии - селектинов и ICAM-1, VCAM-1 (Haim Metal. , 2002).

Под действием Р- и Е-селектинов осуществляется частичная задержка лейкоцитов с неполной остановкой на поверхности эндотелия - роллинг. Причем Р-селектин обеспечивает начальную стадию, быстрый роллинг лейкоцитов, скорость которого начинает замедляться при экспрессии Е-селектииа. Экспрессия ICAM-1 и VCAM-I способствует полной остановке лейкоцитов. Необходимо отметить, что для контакта интегринов лейкоцитов с эндотелиальными молекулами адгезии требуется активация лейкоцитов цитокинами, после которой происходит перестройка или «активация» интегринов. Повышение адгезивности эндотелия имеет большое значение в патогенезе дисфункции эндотелия при воспалении, атеросклерозе, септическом шоке и других патологических процессах (Libby P. et al., 2002).

Эндотелий и ангиогенез

При гипоксии или в условиях повреждения тканей происходит активация роста сосудов, в которой эндотелий принимает самое непосредственное участие. Во взрослом организме выделяют два типа роста сосудов: неоангиогенез и артериогенез. Неоангиогенез - ответвление (отпочковывание) сосудов от уже существующих сосудов. Артериогенез - рост артерий из артериол (например, при формировании коллатерального кровотока) (Петрищев Н.Н., 2003).

Неоангиогенез наблюдается в условиях гипоксии, при заживлении ран и нередко сопровождает воспаление. Одним из главных условий ангиогенеза является повышение проницаемости эндотелия, что связывают преимущественно с действием N0. Повышение проницаемости сосудов необходимо для выхода белков плазмы крови, и в первую очередь - фибриногена, что приводит к образованию фибриновой основы для последующей миграции эндотелиоцитов. Главным механизмом регуляции процессов неоангиогенеза является высвобождение ангиогенных факторов, источниками которых могут быть эндотелиальные клетки, тучные клетки, макрофаги и другие клетки. Под действием ангиогенных факторов роста и цитокинов происходит активация пролиферации эндотелиоцитов, которая завершается их дифференцировкой и дальнейшим «созреванием» сосуда или его ремоделированием, после чего вновь сформированный сосуд приобретает стабильное состояние (GriffioenA.W., MolemaG., 2000).

Существуют и механизмы угнетения неоангиогенеза. К ингибиторам ангиогенеза относятся тромбоспондин (один из белков экстрацеллюлярного матрикса), ангиостатин (фрагмент плазминогена), эндостатин (протеолитический фрагмент коллагена XVIII), тромбоцитарный фактор 4, а также белки вазостатин и рексетин.

Эндотелий и оксидантный стресс

Головной мозг чрезвычайно чувствителен к недостатку кислорода и глюкозы. Особенностью его метаболизма является интенсивный окислительный обмен: составляя 2% от общей массы тела, головной мозг утилизирует 20-25% получаемого организмом кислорода. Одним из патогенетических механизмов повреждения и гибели нейронов при острой церебральной ишемии является свободнорадикальный. При нормальном протекании метаболизма кислородные радикалы не накапливаются в клетках, их стационарно низкий уровень подлежит постоянному контролю антиоксидантных систем (Болдьгрев А.А., 2001; Завалишин И.А. и соавт., 1996). Одним из неспецифических механизмов активации свободнорадикального окисления в мозге является повышенная продукция важного радикального соединения - оксида азота при актива- индуцибельной NО -синтазы и увеличении продукции цитокинов. Супероксиданион образуется во всех аэробных клетках и является родоначальником других активных форм кислорода. Супероксиданион кислорода, образуемый и в эндотелии, связывает физиологически значимый NО, подавляя вазодилатацию, с образованием пероксинитрита (ONOO) (Дубинина О.Ю.,2002). Это высокотоксичное соединение, повреждающее NОS-3, результатом чего является несопряженность фермента, который становится неспособным переносить электроны к L-аргинину для образования NО, но переносит их к молекулярному кислороду, что приводит к образованию супероксиданиона. Это формирует порочный круг, в котором небольшое количество радикалов вызывает выработку большого их количества и приводит к повреждению клетки. Активные формы кислорода в низких концентрациях оказывают защитное действие (микробицидное и антибластомное), а в высоких - повреждают собственные клетки организма путем инактивации ферментов, разрушения базальных и клеточных мембран, изменения структуры ДНК, что приводит к разрушению эндотелиоцитов, тромбоцитов, нейронов, фибробластов и других видов клеток (Афенина Г.Б. и соавт. ,2000; Дубинина О.Ю.,2002; Калуев А.В., 1999).

При нарушении мозгового кровообращения активируется перекисное окисление мембранных липидов - происходит атака кислородными радикалами фосфолипидов мембран с образованием гидрофобных радикалов и нарушением целостности клеточной мембраны (Болдырев А.А. и соавт. 1996). Перекисное окисление липидов (ПОЛ) в биомембранах активирует синтез индукторов агрегации тромбоцитов - эндоперекисей, а также синтез простагландинов и тромбоксанов (Григлевски Р.Е.,1997). Увеличение интенсивности перекисного окисления липидов в плазме крови и эндотелии приводит к подавлению фермента простациклинсинтетазы. В результате снижается секреция эндотелием простациклина - мощного естественного атромбогенного фактора. В условиях острой ишемии головного мозга легко происходит окисление ферментов, содержащих SН-группы, активными формами кислорода. Накопление окисленных белков (маркер - карбонилированные белки) может отражать недостатки функционирования баланса между прооксидантами, антиоксидантами, репарацией, элиминацией биологически поврежденных протеинов. Поврежденные в процессе окислительного стресса белки по большей части не восстанавливаются и подлежат утилизации протеолитическими системами, уже измененными в ходе окислительных реакций. Это замедляет процессы утилизации, приводит к возрастанию содержания оксидативно модифицированных протеинов с прогрессирующим нарушением клеточных функций. При изучении содержания карбонилированных белков и липоперекисей в мозговой ткани разновозрастных крыс выявлена сильная прямая коррелятивная связь между этими показателями, отмечено их значимое повышение с возрастом. Интенсивность свободнорадикального окисления определяется как скоростью образования инициаторов свободнорадикального окисления - активных форм кислорода, так и антиоксидантными возможностями защитных систем организма. При патологических состояниях баланс в системе активные формы кислорода - антиоксидантная система нарушается (Волошин П.В., 2007).

Дисфункция эндотелия

Термином эндотелиальная дисфункция обозначают многие, часто обратимые изменения в функциональном статусе эндотелия, являющиеся ответом на внешние стимулы. Однако при длительном воздействии повреждающих факторов происходит постепенное нарушение функционирования эндотелия (Сидоренко Б.А., Затейщиков Д.А., 1999; Новикова Н.А., 2005; Vita J.A., Loscalzo J., 2002; LandmesserU. etal., 2004). Причинами эндотелиальной дисфункции могут быть различные факторы (Петрищев Н.Н., 2003; Verma S.et al, 2002):

Ишемия/гипоксия тканей

Возрастные изменения

Свободнорадикальиое повреждение

Дислипопротеинемия(гиперхолестеринемия)

Действие цитокинов

Гипергомоцистеминемия

Гипергликемия

Гипертензия

Эндогенные интоксикации (почечная печеночная недостаточность, панкреатит и др.)

Экзогенные интоксикации (курение и др.).

В широком смысле, эндотелиальная дисфункция может быть определена как неадекватное (увеличенное или сниженное) образование в эндотелии различных биологически активных веществ. В то же время ряд авторов приводит более «узкое» определение эндотелиальной дисфункции, как состояния эндотелия, при котором имеется недостаточная продукция NO (Бувальцев В.И. 2001; Соболева Г.Н. и соавт., 2001; Петрищев Н.Н., 2003; Verma S. et al., 2002; Bonetti P.O.et al., 2003; LandmesserU.etal., 2004; YangZ., MingX. 2006), поскольку NO принимает участие в регуляции практически всех функций эндотелия и, кроме того, является фактором, наиболее чувствительным к повреждению. Важнейшим фактором нарушения образования и/или биодоступности NO является избыточное образование свободных радикалов, что наблюдается при многих заболеваниях (Петрищев Н.Н., 2003; Dominiczak A.F., Bohr D.F., 1995; Duffy S.J. ct al., 1999; Cai H., HarrisonD.G., 2000; GhiadoniL. etal., 2003). Самостоятельное действие на дисфункцию эндотелия могут оказывать липопротеиды низкой плотности, никотин (Сидоренко Б.А., Затейщиков Д.А., 1999; Новикова Н.А., 2005; Cclermajer D.S. et al., 1993; SorensenK.E. etal., 1994). При этом точный механизм, приводящий к дисфункции, остается во многом неясным и в настоящее время является предметом широкого изучения (Сторожаков Г.И. и соавт., 2003; Bonetti P.O. et al., 2003).

По скорости образования в эндотелии различных факторов (что связано во многом и с их структурой), а также по преимущественному направлению секреции этих веществ (внутриклеточная или внеклеточная) можно разделить вещества эндотелиального происхождения на следующие группы (Петрищев Н.Н., 2003).

1. Факторы, постоянно образующиеся в эндотелии и выделяющиеся из клеток в базолатеральном направлении или в кровь (NO, простациклин). Почти любое повреждение эндотелия сопровождается либо нарушением синтеза, либо биодоступности этой группы веществ. В то же время образование NO и простациклина может увеличиваться при действии на эндотелий липополисахарида и цитокинов. При этом в эндотелии образуется иидуцибельная NO синтаза и циклооксигсиаза-2, что приводит к значительному повышению выработки NO, простациклина: эти изменения могут свидетельствовать об активации эндотелия.

2. Факторы, накапливающиеся в эндотелии и выделяющиеся из него при стимуляции (фактор Виллебранда, Р-селектии, t-PA). При действии биологически активных веществ, таких как гистамин, тромбин, активированные фрагменты системы комплемента, цитокины и др., происходит высвобождение фактора Виллебранда и t-PA в кровь и перемещение на мембрану эндотелиоцита Р-селектина с незначительнымпоступлением его в кровь (растворенный Р-селектин). Эти факторы могут попадать в кровь не только при стимуляции эндотелия, но и при его активации и повреждении.

3. Факторы, синтез которых в нормальных условиях практически не происходит, однако резко увеличивается при активации эндотелия (эндотелин-1, ICAM-1, VCAM-1, Е-селектин, PAI-). Эти факторы либо экспрессируются на эндотелиоцитах (ICAM-1, VCAM-1, Е-селектин) и частично выделяются в кровь (растворенные ICAM-1, VCAM-1, Е-селектин), либо преимущественно секретируются и поступают в кровь (эндотелин-1, PAI-).

4. Факторы, синтезируемые и накапливающиеся в эндотелии (тканевой фактор, t-PA) либо являющиеся мембранными белками эндотелия (тромбомодулин, рецептор протеина С). Высвобождение этих факторов в кровь наблюдается при повреждении эндотелия.

Как правило, в конкретной клинической ситуации имеется сразу несколько вариантов изменения функциональной активности эндотелия, поэтому в крови присутствуют самые различные эндотелиальные факторы. В связи с этим, все вышеописанные изменения нередко объединяются термином «дисфункция эндотелия».

Выделяют 4 механизма, через которые опосредуется эндотелиальная дисфункция (Погорелова О.А. 2000; Задионченко В. С. и соавт., 2002; Новикова Н.А., 2005;VermaS., et al., 2002; 2003):

1. нарушение биодоступности NO (считается, что именно это играет ключевую роль в наступлении дисфункции эндотелия под влиянием известных факторов риска ее развития - артериальной гипертонии, курение, дислипидемий, диабета) вследствие:

Снижения синтеза NO вследствие инактивации NO синтезы;

Уменьшения плотности на поверхности эндотелиальных клеток рецепторов (в частности, мускариновых и брадикининовых), раздражение которых в норме приводит к образованию N0;

Увеличения деградации N0 - разрушение N0 наступает прежде, чем вещество достигнет места своего действия (во время оксидативного стресса);

2. повышение активности АПФ на поверхности эндотелиальных клеток;

3.увеличение выработки эндотелиальными клетками эндотелиниа-1 и других вазоконстрикторных веществ;

4. нарушение целостности эндотелия (деэндотелизация интимы), в результате чего циркулирующие вещества, непосредственно взаимодействуя с гладкомышечными клетками, вызывают их сокращение.

При сосудистых заболеваниях снижается способность эндотелиальных клеток высвобождать релаксирующие факторы, тогда как образование сосудосуживающих факторов продолжается или усиливается, т.е. формируется дисфункция эндотелия (Lerman A. et al., 1995). Вещества, которые в нормальных условиях являлись вазодилататорами, при дисфункции эндотелия не способны больше оказывать сосудорасширяющее действие. Происходит постепенное истощение и извращение компенсаторной сосудорасширяющей способности эндотелия, и основным ответом сосудистой стенки на обычные стимулы становятся вазоконстрикция и пролиферация эндотелиоцитов (Dominiczak A.F., 1995; Vcrma S., 2003; Сидоренко Б.А., Затейщиков Д.А., 1999; Новикова Н.А., 2005).

В патологических условиях также нарушается баланс между секрецией эндотелием веществ с про- и антикоагулянтными свойствами (Суслина З.А. и соавт., 2005).

Дисфункция эндотелия имеет значение в развитии тромбоза, неоангиогенеза, ремоделирования сосудов, внутрисосудистой активации тромбоцитов и лейкоцитов и т.д (Задионченко В. С. и соавт., 2002; Петрищев Н.Н., 2003; LiebermanE.H.etal, 1996; EspcrR.J. etal, 2006).

Дисфункция эндотелия является одним из универсальных механизмов патогенеза артериальной гипертонии, атеросклероза, сахарного диабета, ишемической болезни сердца, ЦВЗ (Соболева Г.Н. и соавт., 2001; Leung W.H. et al ; 1993; Omland Т. etal, 1994; SteinbergH.O. etal, 1996; SchachingerV. etal, 2000; SuwaidiJ.A. etal, 2000; HeitzerT.etal, 2001; MatherK.J. etal, 2001; PcrticoneF. etal, 2001; GokceN., VitaJ.A. , 2002; BonettiP.O. etal, 2003; LandmesserU. еt al, 2004; YangZ. еt al, 2006). Причем эндотелиальная дисфункция не только способствует формированию и прогрессированию того или иного патологического процесса, но и само заболевание нередко усугубляет эндотелиальное повреждение (Новикова Н.А., 2005; Taddei S. et al, 1997).

Методы исследования функции эндотелия.

Для оценки функции эндотелия исследуются содержание в крови различных его продуцентов, в том числе на фоне проведения провокационных проб (в частности, «манжеточной пробы») с кратковременной ишемией тканей плеча (Балуда В.П. и соавт., 1987). К наиболее селективным маркерам эндотелиальной дисфункции относят: фактор Виллебранда, антитромбин III, десквамированные эидотелиальиые клетки, содержание клеточных и сосудистых молекул адгезии (Е-селектии, ICAM-1, VCAM-1), тромбомодулин, рецепторы к протеину С, простациклин, тканевой активатор плазминогена t-PA, Р-селектин, ингибитор тканевого пути свертывания, протеин S, NO (Петрищев Н.Н., 2003; Ridker P.M. et al, 1998).

Оценка функционального состояния эндотелия определяется также и при ультразвуковой «манжеточной пробе» на эндотелий-зависимую вазодилатацию плечевой артерии, основанная на феномене реактивной гиперемии плечевой артерии после ее компрессии манжетой сфигмоманометра (Celermajer D.S., 1992).

Внедрение в клиническую практику перечисленных лабораторных и инструментальных методов исследования функции эндотелия инициировало появление многочисленных работ, посвященных исследованию функции эндотелия при старении, гипертонической болезни, атеросклерозе, ишемической болезни сердца, сердечной недостаточности и возможностям медикаментозной коррекции выявленных нарушений.

Исследование показателей крови

С целью изучения атромбогенного потенциала сосудистой стенки реологические, гемостатические и фибринолитические показатели, а также биохимические маркеры дисфункции эндотелия исследуются до и после проведения функциональной манжеточной пробы. Манжеточная проба (МП) основана на создании кратковременной (3-5 минут) локальной ишемии руки путем компрессии плеча испытуемого манжетой сфигмоманометра и созданием в ней давления, превышающего систолическое на 10 мм рт.ст. В результате происходит активация атромбогенной активности сосудистой стенки вследствие дополнительного образования и высвобождения из неё простациклина, тканевого активатора плазминогена, антитромбина III, а также ряда других веществ, что приводит у здоровых людей к снижению агрегации тромбоцитов, увеличению в крови антитромбина III и повышению фибринолитической активности крови.

С помощью манжеточной пробы у всех больных оценивается антиагрегационная (AAСС), антикоагулянтная (АКА)и фибринолитическая активность (ФА) сосудистой стенки, которые определяются как отношение изменения показателей гемостаза до и после манжеточной пробы к исходным (формулы 1-3) .

Исследование сосудодвигательной функции эндотелия

Сосудодвигательная функция эндотелия оцениваетсяс помощью -ультразвуковой манжеточной пробы по методике D. Celermaer, (1992) с исследованием эндотелий-зависимой вазодилатации плечевой артерии. Плечевая артерия лоцируется в продольном сечении на 2-10 см выше локтевого сгиба с помощью линейного датчика (L7) с частотой 5-10 МГц при помощи УЗИ. Полученное изображение синхронизируется с зубцом R на ЭКГ. Измеряется диаметр плечевой артерии и максимальная скорость кровотока в ней, после чего проводится ее транзиторная окклюзия путем компрессии плеча манжетой сфигмоманометра выше места локации плечевой артерии и созданием в ней давления, на 50 мм рт. ст. превышающего систолическое в течение 5 минут. Сразу после выпуска воздуха из манжеты в течение первых 15 секунд измеряется скорость кровотока в артерии и через 60-90 секунд записывается ее диаметр. Оценивается максимальная степень увеличения диаметра плечевой артерии и нарастания скорости кровотока (Corretti М.С. et al., 2002). Восстановление кровотока по плечевой артерии после ее окклюзии приводит к временному увеличению напряжения сдвига (Celermajcr D.S. et al., 1992), что в свою очередь в норме сопровождается высвобождением из эндотелия ряда веществ, обладающих вазодилататорной активностью, что и обуславливает увеличение диаметра плечевой артерии. По данным многочисленных исследований, ответ плечевой артерии является воспроизводимым у одних и тех же лиц при повторных исследованиях (Oliver J.J., Webb D.J., 2003). Эксперименты с инфузией во время ультразвукового исследования ингибитора эндотелиальной синтазы NO показывают, что наблюдавшаяся вазодилатация связана в основном с NO (Joannides R. et al., 1995). Следовательно, пониженная эндотелий-зависимая вазодилатация соответствует уменьшению высвобождения N0 (Винник Т.А. и соавт., 2001; Бувальцсв В.И. и соавт., 2003; AdamsMR. еt al., 1997; VermaS. etal., 2002; 2003). Принято считать нормальной реакцией плечевой артерии в пробе с реактивной гиперемией ее дилатацию более чем на 10% от исходного диаметра; вазодилатация менее 10% или вазоконстрикция считаются патологическими (Anderson T.J. et al., 1995; Kuvin J. Т., Karas R. H., 2003; Davignon J., Ganz P., 2004).

По мнению большинства исследователей, плечевая артерия может служить адекватной моделью для изучения функционального состояния эндотелия, поскольку выраженность нарушений ее эндотелий-зависимой вазодилатации отражает степень атеросклеротического поражения коронарных и сонных артерий (Винник Т.А., 2001; Eskurza I. et al, 2001).

Лечение вариантов и патогенетических

подтипов ишемического инсульта

Ниже достаточно кратко рассмотрены основные методы, препараты и их группы, применяемые в лечении различных вариантов ишемического инсульта.

Кардиоэмболический инсульт


      • Базисная терапия.

      • Гипотензивная терапия.

      • Антикоагулянты. При кардиоэмболическом инсульте на фоне фибрилляции предсердий (пароксизмальной или постоянной), ревматического митрального стеноза (независимо от наличия фибрилляции предсердий), острого инфаркта миокарда, наличия тромбоза левых камер сердца, а также при протезированных клапанах сердца препаратами выбора являются антикоагулянты. Препаратом выбора является варфарин. Антикоагулянты прямого действия - нефракционированный гепарин по 5-10 тыс. ЕД 4 раза в сутки п/к живота или внутривенно (дозировки подбираются таким образом, что время свертывания крови увеличивается в 2 раза по сравнению с исходным). Или назначаются низкомолекулярные гепарины: фраксипарин по 50-100 ЕД/кг п/к живота 2 раза в сутки, или клексан из расчета 1,5 мг/кг 1 раз в сутки или в дозе 1 мг/кг 2 раза в сутки. Средняя продолжительность терапии одним из указанных препаратов обычно составляет не более 5-10 суток, после чего назначают оральные (непрямые) антикоагулянты длительно (4-6 месяцев). Препаратом выбора является варфарин по 5-6 мг/сутки, но также возможно назначить фенилин по 0,015-0,03 в сутки, или или аценокумарол однократно 8–16 мг (в дальнейшем дозу уменьшают до поддерживающей 1–6 мг 1 раз в сутки), при этом необходимо контролировать МНО. Рекомендованные показатели МНО при фибрилляции предсердий, ревматическом митральном стенозе, тромбозе левых камер сердца, остром инфаркте миокарда при наличии тромбоза составляют 2-3, при протезированных клапанах сердца 3-4. Необходимо помнить, что если назначают непрямые антикоагулянты, то аспирин отменяют. При рецидиве кардиоэмболического инсульта на фоне достижения целевого уровня МНО к терапии непрямыми антикоагулянтами присоединяют тромбоцитарные антиагреганты (аспирин). Альтернативно указанной выше схеме возможно назначение препарата сулодексид (Вессел Дуэ Ф). Терапию начинают с первого дня заболевания с ежедневного в/м введения 600 ЛЕ (1 ампула) в течение 15–20 дней. Затем перорально по 1 капс. (250 ЛЕ) 2 раза в сутки в течение 30-40 дней.

      • Антиагреганты. При кардиоэмболическом инсульте, связанным с другими источниками кардиогенной эмболии (пролапс митрального клапана, кальцификация митрального кольца, кальцинированный аортальный стеноз, эндокардит, аортальный порок сердца без фибрилляции предсердий) средством выбора для антитромботической терапии остаются тромбоцитарные антиагреганты (аспирин). Их сочетанное применение нерационально, но возможно при рецидиве кардиоэмболического инсульта.



      • Адекватное лечение кардиальной патологии (антиаритмические препараты, антиангинальные препараты, сердечные гликозиды и др.).

Атеротромботический инсульт


      • Базисная терапия.

      • Гипотензивная терапия.

      • Антиагреганты. Препаратами выбора являются тромбоцитарные антиагреганты (аспирин) с первого дня заболевания. При прогрессирующем течении инсульта (нарастающий тромбоз) - инсульте в развитии, показаны антикоагулянты прямого действия с переходом на непрямые антикоагулянты по схеме, описанной в терапии кардиоэмболического инсульта.

      • С первых суток инсульта назначается гиполипидемическая терапия статинами вне зависимости от уровня холестерина (аторвастатин, или симвастатин, или ловастатин, или правастатин, или флувастатин, или розувастатин в обычных дозировках).

      • Возможна нейропротекторная и репаративная терапия.


      • Возможно назначить вазоактивные препараты.

Гемодинамический инсульт


      • Базисная терапия.

      • Восстановление и поддержание системной гемодинамики. При артериальной гипотензии (АД 100 – 110/60 – 70 мм. рт. ст. и ниже) проводится в/в введение коллоидных или кристаллоидных растворов (изотонический р-р хлорида натрия, альбумин, полиглюкин) или/или назначаются вазопрессоры: допамин (50 – 200 мг. разводят в 250 мл. изотонического р-ра натрия хлорида и вводят со скоростью 6 12 капель/мин), или норадреналин, или мезатон. При артериальной гипертензии - гипотензивная терапия.

      • С первых суток инсульта назначается гиполипидемическая терапия статинами вне зависимости от уровня холестерина (аторвастатин, или симвастатин, или ловастатин, или правастатин, или флувастатин, или розувастатин в обычных дозировках).

      • С первых суток необходимо назначить ацетилсалициловую кислоту (тромбоАСС, или аспирин-кардио) в дозе 75-160 мг/сут.

      • Возможна нейропротекторная и репаративная терапия.

      • Возможно использовать вазоактивные препараты, но с учетом их гипотензивного и вазодилятаторного действия.

      • После проведения ультразвуковой допплерографии или дуплексного сканирования больным с симптомными атеросклеротическими каротидными стенозами, превышающими 70%, показана возможно более ранняя каротидная эндартерэктомия или эндоваскулярное стентирование (или баллонная ангиопластика) с продолжением в последующем терапии тромбоцитарными антиагрегантами. При симптомных каротидных стенозах средней степени (50-69%)показания к операции не столь однозначны, и определяются такими факторами риска как мужской пол пациента, возраст старше 75 лет, более высокая степень стеноза, недавно перенесенный инсульт, наличие интракраниального стеноза и отсутствие коллатералей.

Гемореологический инсульт


      • Базисная терапия.

      • Терапия гематологической патологии установленной этиологии (эритремия, вторичные эритроцитозы, коагулопатии, антифосфолипидный синдром и т.д.) и гемореологических изменений, нарушений в системе гемостаза и фибринолиза совместно с терапевтом, гематологом. Антикоагулянты назначаются по показаниям, при необходимости терапии основного гематологического заболевания.


      • С первых суток инсульта назначается гиполипидемическая терапия статинами вне зависимости от уровня холестерина (аторвастатин, или симвастатин, или ловастатин, или правастатин, или флувастатин, или розувастатин в обычных дозировках).

      • Возможна нейропротекторная и репаративная терапия.


      • Возможна гиперволемическая гемодилюция.

Лакунарный инсульт


      • Базисная терапия.

      • Гипотензивная терапия.

      • Антиагреганты. С первых суток необходимо назначить ацетилсалициловую кислоту (тромбоАСС, или аспирин-кардио) в дозе 75-160 мг/сут.

      • С первых суток инсульта назначается гиполипидемическая терапия статинами вне зависимости от уровня холестерина (аторвастатин, или симвастатин, или ловастатин, или правастатин, или флувастатин, или розувастатин в обычных дозировках).

      • Возможна нейропротекторная и репаративная терапия.

      • Возможно применение вазоактивных препаратов.

      • Возможна гиперволемическая гемодилюция.
Профилактика

В профилактиве ишемических инсультов можно выделить такие направления, как коррекция факторов риска, вторичная медикаментозная профилактика, хирургическая профилактика.


  • Коррекция факторов риска.

    • терапия артериальной гипертензии

    • терапия гиперлипидемии

    • лечение ожирения

    • отказ от курения, алкоголя, наркотических средств

    • лечение сахарного диабета

    • лечение апноэ во сне

    • лечение заболеваний сердца

  • Независимо от наличия артериальной гипертонии (АГ) в анамнезе с целью профилактики повторного инсульта всем пациентам с артериальной гипертензией назначают антигипертензивные препараты. При стойком выраженном повышении АД (АГ 3 степени) базисная антигипертензивная терапия назначается с первых суток заболевания; при высоком нормальном АД и АГ 1-2 степени - по окончании острейшего периода, со 2-3-й недели заболевания. По данным большинства исследований в качестве препаратов базисной гипотензивной терапии могут использоваться препараты любых групп. По данным некоторых исследований в качестве препаратов выбора могут рассматриваться тиазидные диуретики (хлоротиазид, гидрохлоротиазид, политиазид, индапамид, метолазон) или комбинации диуретика и ингибитора ангиотензинпревращающего фермента (каптоприл 25-50 мг, эналаприл 5 – 10 мг. внутрь или под язык, рамиприл).
Оптимальный режим назначения гипотензивных препаратов, их выбор, целевое АД в постинсультном периоде в настоящее время нахолятся в стадии исследования и окончательно не определены. Можно исходить из того, что снижение повышенного АД на 10/5 мм.рт.ст уменьшает смертность и риск повторного инсульта, и уровень нормального АД определен показателями 120/80 мм.рт.ст и менее. Выбор специфических препаратов и целевого АД индивидуализируется, в частности, с учетом особенностей пациента, таких как наличие экстракраниального цереброваскулярного сосудистого стеноза, поражения почек, заболевания сердца или диабета. При диабете возможно использование препаратов всех классов, но часто требуется назначение двух препаратов, при этом наиболее эффективно сочетать ингибиторы ангиотензинпревращающего фермента и блокаторы ангиотензиновых рецепторов (Подробнее смотрите Артериальная гипертензия, Лечение).

  • Всем пациентам с ишемическим инсультом атеросклеротической природы рекомендована с первых дней заболевания гиполипидемическая терапия статинами (аторвастатин (липитор) 80 мг/сут, или симвастатин (зокор) 5-80 мг/сут, или ловастатин (мевакор) 10-80 мг/сут, или правастатин (провакол) 10-40 мг/сут, или флувастатин (лескол) 20-80 мг/сут, или розувастатин (крестор) 5-80 мг/сут). Целевой уровень липопротеинов низкой плотности (ЛПНП) для больных с атеросклерозом составляет

  • Пациентам с ишемическим инсультом некардиоэмболического характера назначают антиагреганты.

    • Препаратом первого ряда является аспирин (тромбо АСС, аспирин кардио, кардиомагнил) в дозировке 50 - 325 мг/сут.

    • При появлении аллергических реакций, непереносимости или побочных эффектов аспирин может быть заменен на клопидогрель (плавикс) в дозировке 75 мг/сут.

    • В случае недостаточной эффективности аспирина (возникновение ТИА или инсульта на фоне его приема) рекомендовано назначение аспирина в сочетании с дипиридамолом (200 - 400 мг/сут), как более эффективная терапия по сравнению с монотерапией аспирином.

    • Сочетание клопидогреля с аспирином более эффективно, чем монотерапия аспирином, но в связи с повышенным риском развития кровоизлияния не рекомендуется для использования в большинстве случаев. Показанием для их комбинированного назначения является острый коронарный синдром или состояние после операции коронарного стентирования у больного перенесшего инсульт.

  • Пациентам с кардиоэмболическим типом инсульта назначают антикоагулянты непрямого действия (варфарин) и/или аспирин:

    • При постоянной или пароксизмальной форме фибрилляции предсердий назначают варфарин 5 - 7,5 мг/сут при целевом МНО (международное нормализованное отношение) 2,5. Если невозможен прием непрямых антикоагулянтов (непереносимость, противопоказания), то назначают аспирин в дозе 325 мг/сут.

    • Пациентам, инсульт у которых связан с острым инфарктом миокарда, осложненным тромбом в левом желудочке (выявленным с помощью ЭхоКГ), назначают варфарин при целевом МНО 2.0 - 3.0, сроком от 3 мес до 1 года. Одновременно назначают аспирин в дозе до 162 мг/сут.

    • Пациентам с дилятационной кардиомиопатией можно назначить или варфарин (МНО 2.0 - 3.0) или антиагреганты.

    • Пациентам с ревматическим поражением митрального клапана показана длительная терапия варфарином (целевое МНО 2.5). В случае недостаточной эффективности варфарина (возникновение ТИА или инсульта на фоне его приема) рекомендовано назначение аспирина в дозе 80 мг/сут.

    • Пациентам с пролапсом митрального клапана показана длительная терапия антиагрегантами (аспирин 50 - 325 мг/сут).

    • Пациентам с заболеваниями аортального клапана (при отсутствии фибрилляции предскрдий) показана терапия антиагрегантами.

    • Пациентам с митральной регургитацией вследствие кальциноза митрального клапана показана терапия антиагрегантами или непрямыми антикоагулянтами.

    • Пациентам, имеющим современные механические искусственные клапаны сердца, назначают непрямые антикоагулянты (варфарин), при этом целевой уровень МНО 3.0 (допустимые пределы колебаний 2.5 - 3.5).

    • Пациентам, имеющим искусственные клапаны сердца, и при этом, несмотря на адекватную терапию непрямыми антикоагулянтами, получившими повторный ишемический инсульт или системную эмболию в дополнение к варфарину назначают аспирин 75 - 100 мг/сут, при этом целевой уровень МНО 3.0 (допустимые пределы колебаний 2.5 - 3.5).

    • Пациентам, имеющим современные биологические искусственные клапаны сердца, назначают непрямые антикоагулянты (варфарин), при этом допустимые пределы колебаний МНО 2.0 - 3.0.

  • При симптомных каротидных стенозах с целью профилактики повторного инсульта выполняется каротидная эндартерэктомия. Технически доступ к сонной артери осуществляется через разрез на шее по переднему краю грудинно-ключично-сосцевидной мышцы, с последующим вскрытием сосуда и удалением атеросклеротической бляшки и, при необходимости, выполнением протезирования сонной артерии.
Каротидная эндартерэктомия является доказанным эффективным методом профилактики ишемического инсульта и показана при ипсилатеральных (т.е. на стороне инфаркта мозга) симптомных каротидных стенозах высокой степени (70 - 99%). Её эффективность доказана и при каротидных стенозах средней степени (50 – 69%), но менее выражена, чем при стенозах высокой степени. Операция при стенозах средней степени имеет больший эффект:

    • У мужчин.

    • В возрастной группе 75 и более лет.

    • У пациентов с большей степенью стеноза.

    • У пациентов со свежим инсультом (предпочтительнее чем при ТИА).

    • У пациентов с полушарными симптомами (гемипарез и т.п.) по сравнению с больными с преходящей монокулярной слепотой.
Проведение каротидной эндартерэктомии рекомендуется в срок до 2 недель после установления диагноза каротидного стеноза. Каротидная эндартерэктомия также выполняется при асимптомных каротидных стенозах высокой степени, но при этом риск инсульта снижается лишь на 1% в год.

  • В некоторых случаях при каротидных стенозах более 70% возможно выполнение эндоваскулярных методик - баллонной ангиопластики и стентирования сонной артерии. Баллонаая ангиопластика не является методом, более предпочтительным, чем каротидная эндартерэктомия. Необходимость её выполения может возникнуть в случаях:

    • Когда место стеноза трудно достичь при обычном хирургическом доступе.

    • При наличии тяжелых сопутствующих заболеваний, значительно увеличивающих риск эндартерэктомии.

    • При рестенозе после каротидной эндартерэктомии.

    • При стенозе, обусловленном лучевой терапией.
В этих случаях возможно проведение баллонной ангиопластики, при условии, что она проводится достаточно опытными хирургами, показатели осложнений и смертности после оперрации у которых не превышают таковые после каротидной эндартерэктомии (т.е. смертность не более 4%).

  • При клинически проявляющемся синдроме подключичного обкрадывания эффективным методом лечения и профилактики является транслюминальная (эндоваскулярная) ангиопластика подключичной артерии. Вопрос об эффективности эндоскопической ангиопластики при каротидных стенозах остается открытым.

Октябрь 31, 2017 Нет комментариев

Эндотелий и его базальная мембрана выполняют роль гистогематического барьера, отделяя кровь от межклеточной среды окружающих тканей. При этом эндотелиальные клетки связаны друг с другом плотными и щелевидными соединительными комплексами. Наряду с барьерной функцией эндотелий обеспечивает обмен различных веществ между кровью и окружающими тканями. Процесс обмена на уровне капилляров осуществляется с помощью пиноцитоза, а также диффузии веществ через финестры и поры. Энд отелиоциты поставляют в субэндотелиальный слой компоненты базальной мембраны: коллаген, эластин, ламинин, протеазы, а также их ингибиторы: тромбоспондин, мукополисахариды, вигронектин, фибронектин, фактор Виллебранда и другие белки, имеющие большое значение для межклеточного взаимодействия и образования диффузного барьера, который предотвращает попадание крови во внесосудистое пространство. Этот же механизм позволяет эндотелию регулировать проникновение биологически активных молекул в лежащий ниже слой гладких мышц.

Таким образом, эндотелиальная выстилка может быть преодолена тремя жестко регулируемыми путями. Во-первых, некоторые молекулы могут достичь гладкомышечных клеток путем проникновения через контакты между эндотелиальными клетками. Во-вторых, молекулы могут быть перенесены через эндотелиальные клетки с помощью везикул (процесс пиноцитоза). Наконец, в пределах липидного бислоя могут перемещаться жирорастворимые молекулы.

Эндотелиальные клетки коронарных сосудов, кроме барьерной функции, наделены способностью контролировать сосудистый тонус (двигательную активность гладких мышц сосудистой стенки), адгезивные свойства внутренней поверхности сосудов, а также метаболические процессы в миокарде-Эти и другие функциональные возможности эндотелиоцитов детерминиров-ны их достаточно высокой способностью продуцировать различные биологически активные молекулы, в том числе цитокины, анти- и прокоагулянты, антимитогены и т. д., из просвета сосуда к субинтимальным слоям его стенки-

Эндотелий способен продуцировать и выделять целый ряд веществ, оказывающих как сосудосуживающее, так и сосудорасширяющее действие. При участии этих веществ происходит саморегуляция тонуса сосудов, существенно дополняющая функцию сосудистой нейрорегуляции.

Интактный сосудистый эндотелий синтезирует вазодилататоры и, кроме того, опосредует действие разнообразных биологически активных веществ крови - гистамина, серотонина, катехоламинов, ацетилхолина и др. на гладкие мышцы сосудистой стенки, вызывая преимущественно их расслабление.

Наиболее сильным вазодилататором, который вырабатывает сосудистый эндотелий, является оксид азота (N0). Кроме вазодилатации, к его основным эффектам относят торможение не только адгезии тромбоцитов и подавление эмиграции лейкоцитов благодаря ингибированию синтеза эндотелиальных адгезивных молекул, но и пролиферации гладкомышечных клеток сосудов, а также предотвращение окисления, т. е. мод ификации и, следовательно, накопления, атерогенных липопротеидов в субэндотелии (антиатерогенный эффект).

Оксид азота в эндотелиальных клетках образуется из аминокислоты L-аргинина под действием эндотелиальной NO-синтазы. Различные факторы, такие как ацетилхолинэстераза, брадикинин, тромбин, аде-ниннуклеотиды, тромбоксан А2, гистамин, эндотелии, а также повышение т.н. напряжения сдвига в результате,например, интенсификации кровотока, способны индуцировать синтез NO нормальным эндотелием. Производимый эндотелием NO диффундирует через внутреннюю эластическую мембрану к гладкомышечным клеткам и вызывает их расслабление. Основным механизмом этого действия NO является активация гуанилатциклазы на уровне клеточной мембраны, что увеличивает конверсию гуанозинтрифосфата (ГТФ) в циклический гуанозинмонофосфат (цГМФ), который детерминирует релаксацию гладкомышечных клеток. Затем включается целый ряд механизмов, направленных на снижение цитозольного Са++: 1) фосфорилирование и активация Са++-АТФазы; 2) фосфорилирование специфических белков, ведущих к снижению Са2+ в саркоплазматическом ретикулуме; 3) цГМФ-опосредованное подавление инозитолтрифосфата.

Другим, кроме NO, важным сосудорасширяющим фактором, который вырабатывается клетками эндотелия, является простациклин (prostaglandin I2, РШ2). Наряду с вазодилатирующим эффектом, PGI2 ингибирует адгезию тромбоцитов, уменьшает поступление холестерина в макрофаги и гладкомышечные клетки, а также препятствует высвобождению факторов роста, вызывающих утолщение сосудистой стенки. Как известно, PGI2 образуется из арахидоновой кислоты под действием циклооксигеназы и РС12-синтазы, Продукцию PGI2 стимулируют различные факторы: тромбин, брадикинин, гистамин, липопротеиды высокой плотности (ЛПВП), адениннуклеотиды, лейкотриены, тромбоксан А2, тромбоцитарный фактор роста (PDGF) и др PGI2 активирует аденилатциклазу, что приводит к увеличению внутриклеточного циклического аденозинмонофосфата (цАМФ).

Кроме вазодилататоров, эндотелиальные клетки коронарных артерий продуцируют ряд вазоконстрикторов. Наиболее значимый из них-это эндотелии I.

Эндотелии I является одним из самых мощных вазоконстрикторов, способных вызывать длительное сокращение гладких мышц. Эндотелии I ферментативно производится в эндотелии из препропептида. Стимуляторами его высвобождения являются тромбин, адреналин и гипоксический фактор, т.е. энергодецифит. Эндотелии I связывается со специфическим мембранным рецептором, который активирует фосфолипазу С и приводит к освобождению внутриклеточных инозитолфосфатов и диацилглицерола.

Инозитолтрифосфат связывает рецептор на саркоплазматическом ретикулуме, что увеличивает высвобождение Са2+ в цитоплазму. Повышение уровня цитозольного Са2+ детерминирует усиление сокращения гладкой мышцы.

При повреждении эндотелия реакция артерий на биологически активные вещества, вхч. ацетилхолин, катехоламины, эндотелии I, ангиотензин II извращается, например, вместо дилатации артерии при действии ацетилхолина развивается вазоконстрикторный эффект.

Эндотелий - компонент системы гемостаза. Интактный эндотелиальный слой обладает антитромботическим/антикоагулянтным свойством. Отрицательный (одноименный) заряд на поверхности эндотелиоцитов и тромбоцитов вызывает их взаимное отталкивание, что противодействует адгезии тромбоцитов на сосудистой стенке. Кроме того, эндотелиальные клетки продуцируют целый ряд антитромботических и антикоагулянтных факторов PGI2, NO, гепаринподобные молекулы, тромбомодулин (активатор протеина С), тканевой активатор плазминогена (t-PA) и урокиназу.

Однако при эндотелиальной дисфункции, развивающейся в условиях поражения сосудов, эндотелий реализует свой протромботический/прокоагулянтный потенциал. Провоспалительные цитокины и другие медиаторы воспаления могут индуцировать в эндотелиоцитах продукцию веществ, способствующих развитию тромбоза / гиперкоагуляции. При повреждении сосудов увеличивается поверхностная экспрессия тканевого фактора, ингибитора активатора плазминогена, молекул адгезии лейкоцитов и фактора фон WUlebrand(a). PAI-1 (ингибитор тканевого активатора плазминогена) - это один из основных компонентов антисвертывающей системы крови, ингибирует фибринолиз, а также является маркером эндотелиальной дисфункции.

Дисфункция эндотелия может быть самостоятельной причиной нарушения кровообращения в органе, поскольку нередко провоцирует ангиоспазм или тромбоз сосудов, что, в частности, наблюдают при некоторых формах ишемической болезни сердца. Кроме того, нарушения регионарного кровообращения (ишемия, выраженная артериальная гиперемия) также могут приводить к дисфункции эндотелия.

Интактный эндотелий постоянно продуцирует NO, простациклин и др. биологически активные вещества, которые способны ингибировать адгезию и агрегацию тромбоцитов. Кроме того, на нем экспрессируется фермент АДФаза, разрушающая АДФ, выделяемый активированными тромбоцитами, и, таким образом, ограничивается их вовлечение в процесс тромбообразования. Эндотелий способен вырабатывать коагулянты и антикоагулянты, адсорбировать из плазмы крови многочисленные противосвертывающие вещества - гепарин, протеины С и S.

При повреждении эндотелия его поверхность из антитромботической превращается в протромботическую. В случае обнажения проадгезивной поверхности субэндотелиального матрикса его компоненты - адгезивные белки (фактор фон Виллебранда, коллаген, фибронектин, тромбоспондин, фибриноген и др.) немедленно включаются в процесс образования первичного (сосудисто-тромбоцитарного) тромба, а затем гемокоагуляции.

Продуцируемые эндотелиоцитами биологически активные вещества прежде всего цитокины могут по эндокринному типу действия оказывать существенное влияние на обменные процессы, в частности изменять толерантность тканей к жирным кислотам и углеводам. В свою очередь нарушения жирового, углеводного и других видов обмена неизбежно приводят к эндотелиальной дисфункции со всеми ее последствиями.

В клинической практике врачу, образно говоря, «ежедневно» приходится сталкиваться с тем или иным проявлением эндотелиальной дисфункции, будь то артериальная гипертензия, ишемическая болезнь сердца, хроническая сердечная недостаточность и т.д. При этом следует иметь в виду, что, с одной стороны, эндотелиальная дисфункция способствует формированию и прогрессированию того или иного сердечно-сосудистого заболевания, а с другой, - само это заболевание зачастую усугубляет эндотелиальное повреждение.

Примером такого порочного круга («circulus vitiosus») может являться ситуация, которая создается в условиях развития артериальной гипертензии. Длительное воздействие повышенного АД на стенку сосудов в конечном счете может привести к эндотелиальной дисфункции, в результате чего возрастет тонус гладких мышц сосудов и будут запущены процессы сосудистого ремоделирования (см. ниже), одним из проявлений которого являются утолщение медии (мышечного слоя сосудистой стенки) и соответствующее уменьшение диаметра сосуда. Активное участие эндотелиоцитов в ремоделировании сосудов обусловлено их способностью синтезировать большое количество различных факторов роста.

Сужение просвета (результат сосудистого ремоделирования) будет сопровождаться существенным увеличением периферического сопротивления, которое является одним из ключевых факторов становления и прогрессирования коронарной недостаточности. Это означает формирование («замыкание») порочного круга.

Эндотелий и пролиферативные процессы. Эндотелиальные клетки способны продуцировать как стимуляторы, так и ингибиторы роста гладких мышц сосудистой стенки. При интактном эндотелии пролиферативный процесс в гладких мышцах относительно спокойный.

Экспериментальное удаление эндотелиального слоя (деэндотелизация) приводит к пролиферации гладких мышц, которую можно ингибировать путем восстановления эндотелиальной выстилки. Как упоминалось ранее, эндотелий служит эффективным барьером для предотвращения воздействия на гладкомышечные клетки различных факторов роста, циркулирующих в крови. Кроме того, эндотелиальные клетки продуцируют вещества, которые оказывают тормозящее влияние на пролиферативные процессы в сосудистой стенке.

К ним относят NO, различные гликозоаминогликаны, в том числе гепарин и гепаринсульфат, а также трансформирующий фактор роста (3 (TGF-(3). TGF-J3, являясь самым сильным индуктором экспрессии гена интерстициального коллагена, при определенных условиях способен ингибировать сосудистую пролиферацию по механизму обратной связи.

Эндотелиальные клетки также продуцируют ряд факторов роста, которые способны стимулировать пролиферацию клеток сосудистой стенки: тромбо-цитарный фактор роста (PDGF; Platelet Derived Growth Factor), названный так потому, что впервые был выделен из тромбоцитов - чрезвычайно мощный митоген, который стимулирует синтез ДНК и деление клеток; эндотелиальный фактор роста (EDGF; Endothelial-Cell-Derived Growth Factors), способен, в частности, стимулировать пролиферацию гладкомышечных клеток при атеросклеротических поражениях сосудов; фактор роста фибробластов (FGF; Endothelial-Cell-Derived Growth Factors); эндотелии; инсулинподобный фактор роста (IGF; Insulin-Like Growth Factor); ангиотензин II (в опытах in vitro установлено, что AT II активирует фактор транскрипции ростовых цитокинов, усиливая тем самым пролиферацию и дифференцировку гладкомышечных клеток и кардиомиоцитов).

Кроме факторов роста, к числу молекулярных индукторов гипертрофий стенки сосудов относят: белки-посредники или G-белки, которые контролируют сопряжение рецепторов клеточной поверхности с эффекгорными молекулами факторов роста; белки-рецепторы, обеспечивающие специфичность восприятия и оказывающие влияние на образование вторичных мессенджеров цАМФ и цГМФ; белки, регулирующие трансдукцию генов, детерминирующих гипертрофию гладкомышечных клеток.

Эндотелий и эмиграция лейкоцитов. Эндотелиальные клетки продуцируют разнообразные факторы, которые являются важными для пополнения лейкоцитов в зонах внутрисосудистого повреждения. Эндотелиальные клетки производят хемотаксические молекулы, белок хемотаксиса моноцитов МСР-1 (monocyte chemotactic protein), который привлекает моноциты.

Эндотелиальные клетки также продуцируют молекулы адгезии, которые взаимодействуют с рецепторами на поверхности лейкоцитов: 1 - молекулы межклеточной адгезии ICAM-1 и ICAM-2 (intercellular adhesion molecules), которые связываются с рецептором на В-лимфоцитах, и 2 - сосудисто-клеточные молекулы адгезии-1 - VCAM-1 (vascular cellular adhesion molecule-1), взаимосвязанные с рецепторами на поверхности Т-лимфоцитов и моноцитов.

Эндотелий - фактор липидного обмена. Холестерин и триглицериды транспортируются через артериальную систему в составе липопротеинов, т. е. эндотелий является неотъемлемой частью липидного обмена. Эндотелиоциты могут с помощью фермента липопротеидлипазы преобразовывать триглицериды в свободные жирные кислоты. Освобожденные жирные кислоты затем проникают в субэндотелиальное пространство, обеспечивая источником энергии гладкомышечные и другие клетки. В эндотелиальных клетках присутствуют рецепторы для атерогенных липопротеидов низкой плотности, что предопределяет их участие в развитии атеросклероза.