Главная · Бронхит · Измерение твердости металлов. Что такое твердость? Обозначение и определение твердости

Измерение твердости металлов. Что такое твердость? Обозначение и определение твердости

Твёрдость – один из важнейших эксплуатационных показателей деталей механизмом и машин, который во многом определяет их стойкость и долговечность. Поэтому у нас в стране испытания на твёрдость стандартизированы, и проводятся в строго определённо последовательности.

Независимо от метода значение твёрдости устанавливается по результату контактирования рабочего элемента – индентора – с предварительно подготовленной поверхностью изделия. Если такой контакт происходит в течение некоторого времени, то испытание на твёрдость называют статическим , в противном случае – динамическим .

Выбор метода определения твёрдости зависит от условий работы детали, точности полученного результата и воспроизводимости испытания при различных условиях его проведения

Твёрдость по Виккерсу: методика и оборудование

Твёрдость по Виккерсу (HV) определяется путём вдавливания алмазной пирамиды, которая имеет угол при вершине в 136 0 .

Пирамидальный индентор прибора Виккерса должен обладать строго определённым соотношением сторон и площади основания пирамиды, которые оговариваются ГОСТ 2999. В результате внедрения на поверхности исследуемого образца остаётся отпечаток в виде ромба (иногда – неправильного). По значению диагонали этого ромба (или среднего арифметического значения обеих диагоналей) устанавливают число твёрдости Виккерса , которое имеет размерность механического давления.

Выпускаемое оборудование , при помощи которого можно определить твёрдость по Виккерсу относится к машинам статического действия. Они могут быть стационарными и переносными. Линейка видов такого оборудования отечественного производства маркируется ТП (Твёрдость Пирамидальная).

Стандартными условиями для проведения испытаний служат:

  • Измерительный диапазон усилий нагружения 49….1176 Н, который в твердомерах ТП имеет 7 ступенчато изменяемых положений;
  • Время выдержки образца под давлением – не менее 5 с.
  • Принцип измерения диагоналей отпечатка.

Измерение твёрдости по Виккерсу HV выполняется в следующей последовательности.

  • Образец или деталь устанавливается на стол прибора измеряемой поверхностью вверх. После этого стол вращением рукоятки маховика поднимают вверх, до лёгкого соприкосновения с индентором.
  • Отпускают рычаг, приводя тем самым в движение нагружающий механизм. После установленной с помощью реле времени продолжительности снимается, и рабочая головка, с закреплённым в ней индентором, возвращается в исходное положение.
  • После этого можно развернуть приборный стол с образцом к имеющемуся на станине твердомера отсчётному микроскопу , и замерить диагонали отпечатка.

Предварительные установки твердомера Виккерса производят при помощи рукоятки настройки. При этом с уменьшением толщины образца нагрузку следует принимать меньшей. Твёрдость по Виккерсу иногда указывается при значении рабочей нагрузки. Например , обозначение HV 50 940 отмечает, что твёрдость по Виккерсу в 940 единиц была получена после нагружения образца усилием 50 кг.

Достоинствами метода Виккерса являются:

  1. Постоянство отношения диагоналей получаемого отпечатка при изменении рабочей нагрузки.
  2. Возможность определения твёрдости сколь угодно тонких слоёв материала изделия, поскольку в своём крайнем положении индентор имеет весьма малую площадь поверхности.
  3. Повышенная точность результата , вследствие высокой твёрдости алмазной пирамидки индентора и, следовательно, отсутствием деформации самой испытательной головки.
  4. Широкий диапазон измерений , который охватывает как сравнительно мягкие металлы — алюминий, медь, так и высокопрочные стали и твёрдые сплавы.
  5. Метод Виккерса позволяет определять твёрдость отдельных слоёв металла , например, цементированного при химико-тнермической обработке образца, или слоя с изменённым химическим составом — после поверхностного упрочнения, либо легирования.

Практический диапазон измерения твёрдости по Виккерсу – 145….1000HV. Ввиду высокой точности метода, для оценки параметра НV больших партий заготовок широко применяются автоматизированные установки Briviscope и Briro от немецкой фирмы Reicherter с гидравлическим и электромеханическим приводом, а также с автоматизацией отсчёта результатов, которые выводятся на монитор.

Твёрдость по Бринеллю: методика и оборудование

Метод определения твёрдости по Бринеллю (НВ) заключается в вдавливании стального закалённого шарика.

Условия измерения твёрдости стандартизированы ГОСТ 9012, и распространяются на сталь, чугун, цветные металлы и сплавы, при этом температура испытания должна находиться в пределах 20±10 0 С. Метод Бринелля также относится к статическим.

Определяя НВ, полагают, что твёрдость испытуемой детали будет зависеть от площади отпечатка . В некоторых приборах в комплект рабочего индентора входит также шарик из вольфрамокобальтового твёрдого сплава , в связи с чем практический диапазон измеряемой твёрдости увеличивается.

Стандартом определены следующие начальные условия для оценки твёрдости по методу Бринелля:

  • Нагрузка на поверхность должна находиться в пределах 12,25…29420 Н;
  • Размерный ряд стальных шариков – 1,0…10 мм;
  • Длительность нагружения 10…15 с.
  • Диапазон отпечатков на образце не должен выходить за пределы (0,2…0,7) D, где D – диаметр шарика.

Измерение твёрдости производится с применением отечественных твердомеров Бринелля типа ТШ (Твёрдость Шариком), а также более современными приборами типа БТБ . С целью измерения величины НВ в полевых условиях, либо непосредственно у машины/конструкции выпускаются переносные твердомеры типа ТШП . Для измерения размеров полученного отпечатка необходим также специальный отсчётный микроскоп МПБ-2 , что делает сам процесс определения твёрдости менее мобильным.

Измерение твёрдости на твердомере БТБ происходит так:

  • Изделие устанавливают на измерительный стол и фиксируют по упору.
  • На приводе набирается требуемое значение нагрузки и через шпиндель прикладывают её к образцу .
  • После выдержки под давлением рабочая головка с индентором возвращается в исходное положение, а на экране перед рабочей головкой стрелочный индикатор показывает величину диаметра отпечатка .
  • Само значение НВ устанавливается по отсчётным таблицам на станине твердомера. Для смены рабочей нагрузки предназначен комплект переустанавливаемых штырей.

Переносные твердомеры Бринелля при помощи струбцины прикрепляются к требуемому месту на детали, а нагрузка создаётся поворотом рукоятки, снабжённой упорной резьбой.

Практический диапазон измерения твёрдости НВ составляет от 8 до 450 НВ. Это соответствует основной массе марок сталей и сплавов, применяемых для производства металлоконструкций.

При превышении верхнего предела точность метода Бринелля падает, поскольку происходит деформация самого индентора. Шарики из твёрдого сплава не рекомендуется применять, если ожидаемое значение твёрдости по Бринеллю будет находиться в диапазоне 350…450 НВ.

Методом Бринелля можно оценивать и твёрдость деталей в горячем состоянии – это положительная особенность способа. К числу недостатков следует отнести невозможность определения твёрдости на кромках и краях образцов, а также у деталей с малой толщиной.

Твёрдость по Роквеллу: методика и оборудование

Число твёрдости по Роквеллу (НR) — условная величина, которая зависит от глубины вдавливания в образец стального шарика, либо алмазного конуса.

Условия проведения испытания регламентированы ГОСТ 9013, и включают в себя:

  • Предварительное нагружение изделия, в ходе которого ликвидируется влияние всех поверхностных факторов: шероховатости, температуры, скорости внедрения индентора и др.;
  • Нагружение основным усилием , при котором и выполняется отсчёт.
  • Снятие загрузки .

В отличие от предыдущих методов, твёрдость по Роквеллу принимается по одной из трёх шкал :

  • Шкалы А (обозначение твёрдости НRA алмазный конус ), которая используется для весьма твёрдых высокоуглеродистых легированных инструментальных сталей и твёрдых сплавов . Диапазон измерений 60…80 HRA;
  • Шкалы В (обозначение твёрдости НRВ , в качестве индентора используется стальной закалённый шарик ), которая используется для сталей средней твёрдости и сплавов цветных металлов . Диапазон измерений 35…100 HRВ;
  • Шкалы С (обозначение твёрдости НRС , в качестве индентора используется алмазный конус ), которая испольуется для сталей средней твёрдости . Диапазон измерений 20…90 HRС.

Кроме того, для специфических условий измерения твёрдости (например, для холоднокатаных тонколистовых сталей ) применяется группа методов СуперРоквелл (шкалы HRN и HRT) .

Как и в предыдущем случае, твердомеры Роквелла — типа ТК (Твёрдость Конусом) могут быть стационарными и переносными. Стационарные твердомеры управляются электромеханическим или гидравлическим приводом. Замеры твёрдости по Роквеллу отличаются большей сложностью, что обуславливается необходимостью задать сначала первичную, а затем — вторичную скорость перемещения индентора.

В отличие от индентора на приборе Виккерса, в твердомерах Роквелла алмазный наконечник имеет форму конуса, поэтому точность измерения размеров отпечатка здесь несколько хуже.

Твёрдость по Шору: методика и оборудование

Твёрдость по Шору (НS) устанавливается после удара по этой поверхности стальным бойком. Она является функцией величины отскока бойка.

Все предыдущие способы измерения твёрдости отличаются одним недостатком – на поверхности исследуемой детали остаётся отпечаток. Иногда это не даёт возможность вновь установить деталь в узел или конструкцию. Метод Шора позволяет определять твёрдость изделия HS без деформации его поверхности .

Установка определения твердости по Шёру: 1 — Боек во взведённом состоянии. 2 — Образец испытаний. 3 — Направляющая труба. 4 — Положение отскочившего бойка

Способ Шора относится к динамическим , и заключается в следующем. К измеряемой поверхности (она может быть вертикальной или горизонтальной) подводится портативный твердомер Шора, чаще называемый склероскопом. Если материал – мягкий , то величина отскока будет меньше, поскольку энергия удара будет поглощаться поверхностью детали. Наоборот, если деталь – твёрдая , то вся энергия перейдёт в работу упругого отскока.

Рабочим органом склероскопа Шора является стальной боёк с алмазным наконечником . Сравнивая расстояние, на которое возвратился боёк после удара. Можно установить твёрдость испытуемой детали.

Диапазон измерений твёрдости по Шору составляет 30…140 НS, при этом твёрдости закаленной высокоуглеродистой стали соответствует значение 100 НS. Склероскоп Шора не повреждает поверхность изделия, а потому может использоваться в тех случаях, когда необходимо оценить твёрдость детали, находящейся в составе какого-либо действующего узла. Этим обеспечивается предупреждающая оперативная диагностика механизма или металлоконструкции.

Метод Шора прост в применении, отличается быстротой оценки твёрдости, возможностью повторного использования прибора на той же детали. Однако имеются и ограничения:

  • Параметр НS не стандартизирован (хотя в справочниках имеются пересчётные таблицы и графики для перевода единиц твёрдости по Шору в единицы HV, HR или НB);
  • Высота отскока бойка зависит от модуля Юнга материала детали, а потому сопоставимость единиц твёрдости по Шору для разных материалов невозможна;
  • Поскольку критерием твёрдости НS является величина отскока бойка, то рассматриваемый параметр имеет лишь сравнительное значение ;
  • Точность измерений на склероскопе Шора ниже , чем на твердомерах, которые были рассмотрены ранее.

Иные методы

Кроме перечисленных методов для оценки твёрдости ограниченно применяются также способ Мооса (царапанием сапфировой иглой по поверхности образца), пластико-динамический способ Польди и ряд других. Необходимо отметить, что для определения твёрдости тонких поверхностных слоёв широко применяют метод микротвёрдости с использованием прибора ПМТ-3 . По сути, это способ Виккерса, модернизированный под малые толщины измеряемых поверхностей.

Перевод единиц твёрдости

Перевод единиц определённой разными способами, можно выполнить с помощью следующей таблицы.

HB HRA HRC HV HS
688 84,5 65 940 96
660 83 63 867 93
627 82 61 800 90
611 81 59 756 86
588 80,5 58 704 83
569 80 57 682 81
555 79,5 56 653 79,5
547 79 55 635 77,5
534 78,5 54 618 76,5
518 78 53 594 74,5
507 77 52 578 73,5
500 76 51 563 71,5
482 76 49 542 70,5
470 76 49 521 67,5
457 75 48 503 66
445 74 47 450 64,5
435 73 46 474 63,5
426 73 45 461 61,5
415 73 44 442 59,5
402 72 43 420 56,5
393 72 42 417 56,5
383 71 41 401 55
373 70,5 40 389 53,5
362 70 39 378 52,5
350 69 38 362 50
341 69 37 351 49
330 68 36 343 48,5
321 68 35 330 46,5
311 67 34 319 44
302 67 33 307 43
297 66,5 32 302 42,5
288 66 31 294 41
282 66 30 288 39,5
275 65 29 280 39,5
266 65 28 274 39
260 64 27 262 37
253 64 26 255 36,5
245 63 25 246 35,5
240 62,5 24 241 34,5
232 62 23 233 33,5
228 62 22 229 32,5
222 61 21 222 32
219 61 20 222 31,5

Промежуточные данные получаются интерполяцией.

Твердость -- свойство материала сопротивляться внедрению в него другого, более твёрдого тела -- индентора.

Твёрдость определяется как отношение величины нагрузки к площади поверхности, площади проекции или объему отпечатка.

Различают поверхностную, проекционную и объемную твёрдость:

Поверхностная твёрдость -- отношение нагрузки к площади поверхности отпечатка;

Проекционная твёрдость -- отношение нагрузки к площади проекции отпечатка;

Объёмная твёрдость -- отношение нагрузки к объёму отпечатка.

Твёрдость определяется как отношение силы сопротивления к площади поверхности, площади проекции или объему внедренной в материал части индентора. Различают поверхностную, проекционную и объемную твёрдость:

Поверхностная твёрдость -- отношение силы сопротивления к площади поверхности внедренной в материал части индентора;

Проекционная твёрдость -- отношение силы сопротивления к площади проекции внедренной в материал части индентора;

Объёмная твёрдость -- отношение силы сопротивления к объёму внедренной в материал части индентора.

Твёрдость измеряют в трёх диапазонах: макро, микро, нано. Макродиапазон регламентирует величину нагрузки на индентор от 2Н до 30 кН. Микродиапазон регламентирует величину нагрузки на индентор до 2 Н и глубину внедрения индентора больше 0,2мкм. Нанодиапазон регламентирует только глубину внедрения индентора, которая должна быть меньше 0,2 мкм. Часто твердость в нанодиапазоне называют нанотвердостью (nanohardness).

Измеряемая твердость, прежде всего, зависит от нагрузки, прикладываемой к индентору. Такая зависимость получила название размерного эффекта, в англоязычной литературе -- indentation size effect. Характер зависимости твердости от нагрузки определяется формой индентора:

Для сферического индентора -- с увеличением нагрузки твердость увеличивается -- обратный размерный эффект (reverse indentation size effect);

Для индентора в виде пирамиды Виккерса или Берковича -- с увеличением нагрузки твердость уменьшается -- прямой или просто размерный эффект (indentation size effect);

Для сфероконического -- с увеличением нагрузки твердость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для сфероконической части индентора).

Косвенно твердость также может зависеть от:

1. Межатомных расстояний.

2. Координационного числа -- чем выше число, тем выше твёрдость.

3. Валентности.

4. Природы химической связи

5. От направления (например, минерал дистен -- его твёрдость вдоль кристалла 4, а поперёк -- 7)

6. Хрупкости и ковкости

7. Гибкости -- минерал легко гнётся, изгиб не выпрямляется

8. Упругости -- минерал сгибается, но выпрямляется

9. Вязкости -- минерал трудно сломать (например, жадеит)

10. Спайности

11. и ряда других физико-механических свойств материала.

Наиболее твёрдыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода - лонсдейлит, на 58 % превосходящий по твёрдости алмаз и фуллерит. Однако практическое применение этих веществ пока маловероятно. Самым твёрдым из распространённых веществ является алмаз.

Методы определения твёрдости по способу приложения нагрузки делятся на: 1)статические и 2) динамические (ударные).

Для измерения твёрдости существует несколько шкал:

Метод Бринелля -- твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга; размерность единиц твердости по Бринеллю МПа (кг-с/ммІ). Число твердости по Бринеллю по ГОСТ 9012-59 записывают без единиц измерения. Твёрдость, определённая по этому методу, обозначается HB, где H = hardness, B -- Бринелль;

Метод Роквелла -- твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HR, HRB, HRC и HRA; твёрдость вычисляется по формуле HR = 100 (130) ? kd, где d -- глубина вдавливания наконечника после снятия основной нагрузки, а k -- коэффициент. Таким образом, максимальная твёрдость по Роквеллу по шкалам A и C составляет 100 единиц, а по шкале B - 130 единиц.

Метод Виккерса -- твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка; размерность единиц твёрдости по Виккерсу кг-с/ммІ. Твёрдость, определённая по этому методу, обозначается HV;

Методы Шора:

Твёрдость по Шору (Метод вдавливания) -- твёрдость определяется по глубине проникновения в материал специальной закаленной стальной иглы (индентора) под действием калиброванной пружины. В данном методе измерительный прибор именуется дюрометром. Обычно метод Шора используется для определения твердости низкомодульных материалов (полимеров). Метод Шора, описанный стандартом ASTM D2240, оговаривает 12 шкал измерения. Чаще всего используются варианты A (для мягких материалов) или D (для более твердых). Твёрдость, определённая по этому методу, обозначается буквой используемой шкалы, записываемой после числа с явным указанием метода.

Дюрометры и шкалы Аскер -- по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и нац. японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами.

Твёрдость по Шору (Метод отскока) -- метод определения твёрдости очень твёрдых (высокомодульных) материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боёк (основная часть склероскопа -- измерительного прибора для данного метода), падающий с определённой высоты. Твердость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка. Основные шкалы C и D. Обозначается HSx, где H -- Hardness, S -- Shore и x -- латинская буква, обозначающая тип использованной при измерении шкалы.

Следует понимать, что хотя оба этих метода являются методами измерения твёрдости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал это -- не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

Метод Кузнецова -- Герберта -- Ребиндера -- твёрдость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл;

Метод Польди (двойного отпечатка шарика) -- твердость оценивается в сравнении с твердостью эталона, испытание производится путем ударного вдавливания стального шарика одновременно в образец и эталон;

Шкала Мооса -- определяется по тому, какой из десяти стандартных минералов царапает тестируемый материал, и какой материал из десяти стандартных минералов царапается тестируемым материалом.

Метод Бухгольца -- метод определения твердости при помощи прибора «Бухгольца». Предназначен для испытания на твердость (твердость по Бухгольцу) полимерных лакокрасочных покрытий при вдавливании индентора «Бухгольца». Метод регламентируют стандарты ISO 2815, DIN 53153, ГОСТ 22233.

Методы измерения твёрдости делятся на две основные категории: статические методы определения твёрдости и динамические методы определения твёрдости. Для инструментального определения твёрдости используются приборы, именуемые твердомерами. Методы определения твердости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам. Существующие методы определения твёрдости не отражают целиком какого-нибудь одного определённого фундаментального свойства материалов, поэтому не существует прямой взаимосвязи между разными шкалами и методами, но существуют приближенные таблицы, связывающие шкалы отдельных методов для определённых групп и категорий материалов. Данные таблицы построены только по результатам экспериментальных тестов и не существует теорий, позволяющих расчетным методом перейти от одного способа определения твердости к другому. Конкретный способ определения твёрдости выбирается исходя из свойств материала, задач измерения, условий его проведения, имеющейся аппаратуры и др.

В СНГ стандартизированы не все шкалы твёрдости.

Измерение твердости металлов.

Методы измерения твердости металлов. Одним из широко распространенных видов испытания металлов является определение твердости. Твердость металла можно определять прямыми и косвенными методами.

Прямые методы испытания на твердость состоят в том, что в образец вдавливают специальный твердый наконечник (из закаленной стали, алмаза или твердого сплава) различной формы (шарик, конус, пирамиду). После снятия нагрузки остается отпечаток, величина которого характеризует твердость образца.

При косвенных методах оцениваются свойства металла, пропорциональные его твердости.

Испытания на твердость могут быть статическими и динамическими. К первому виду относятся испытания методом вдавливания, ко второму - методом ударного вдавливания.

В зависимости от характера и способа приложения нагрузки твер­дость косвенно характеризует различные механические свойства метал­лов. Если наконечник вдавливается в образец, то твердость характеризует сопротивление пластической де­формации. Если наконечник цара­пает об-

разец, то твердость характеризует сопротивление разрушению. Твердость, определенная по отскоку наконечника, характеризует упругие свойства металла образца.

По значению твердости металла можно составить представление об уровне его свойств. Например, чем выше твердость, определенная вдав­ливанием наконечника, тем меньше пластичность металла, и наоборот.

Метод измерения твердости имеет ряд преимуществ перед другими методами механических испытаний металла: простота техники и быстрота испытаний, простота формы и небольшие размеры образцов, возможность проводить испытание непосредственно на изделии без его разрушения.

Твердость определяют на специальных приборах - твердомерах.

Твердомеры бывают стационарные и переносные. Принципиальное устройство твердомеров для всех методов испытаний на твердость одина­ково.

Основными узлами твердомеров являются станина, рабочий столик, наконечник (узел, состоящий из оправки и индентора), нагружающее уст­ройство, прибор для измерения величины деформации.

Общая схема испытания такова: деталь или образец помещают на рабочем столике, с помощью нагружающего устройства в образец вдавли­вают индентор и после снятия нагрузки определяют твердость.

В зависимости от цели испытания, свойств испытуемого металла, размеров образца выбирают форму, раз­мер и материал индентора, вели­чину и длительность приложения нагрузки.

Наиболее часто проводят определение твердости следующими ме­тодами: измерение твердости по Бринеллю - по ГОСТ 9012 - 59; измере­ние твердости по Роквеллу - по ГОСТ 9013 - 54; измерение твердости по Виккерсу - по ГОСТ 2999 - 75; изменение твердости методом ударного отпечатка - по ГОСТ 18661 - 73; измерение микротвердости вдавлива­нием алмазных наконечников - по ГОСТ 9450 - 76.

Существуют общие требования к подготовке образцов и проведе­нию испытаний:

1. Изготовление образцов и подготовка поверхности должны осуществляться способами, исключающими изменения свойств металла из-за нагрева или наклепа.

2. Поверхность образца должна быть чистой, без окислых пленок, следов ржавления или окалины, трещин и прочих дефектов.

3. Образцы должны быть определенной толщины. После нанесения отпечатка на обратной стороне образца не должно быть следов деформации.

4. Образец должен лежать на столике жестко и устойчиво. В процессе испытания образец не должен смещаться или прогибаться.

5. Прилагаемая нагрузка должна действовать перпендикулярно к поверхности образца.

6. Нагрузка должна прилагаться и возрастать плавно до заданного значения, а далее поддерживаться постоянной в течение определенного времени.

Измерение твердости по Бринеллю. При определении твердости методом Бринелля в испытуемый образец или изделие вдавливается в течение определенного времени металлический шарик (рис. 5). После снятия нагрузки на поверхности образца остается сферический отпечаток. Величина отпечатка зависит от твердости металла: чем тверже металл, тем меньше будет величина отпечатка. Число твердости по Бринеллю обозначается НВ.

Рис. 5. Схема расположения отпечатка при определении твердости методом Бринелля

Чтобы определить число твердости НВ (МПа или кгс/мм 2), надо величину приложенной нагрузки Р разделить на площадь отпечатка F :

,

где D - диаметр шарика, м (или мм);

d - диаметр отпечатка, м (или мм);

Чтобы не производить каждый раз вычисления, при определении числа твердости пользуются специально cоставленной таблицей (приложение к ГОСТ 9012- 59). Зная нагрузку, диаметры шарика и отпечатка, по этой таблице можно определить число твердости НВ.

Для испытания применяют шарики из закаленной стали или твер­дого сплава диаметром 2,5; 5,0 и 10 мм. Диаметр шарика выбирают в за­висимости от толщины испытуемого образца и его твердости: чем тоньше и тверже образец, тем меньше должен быть диаметр шарика. Обычно ис­пытание проводят на специально подготовленной горизонтальной пло­щадке образца.

Толщина испытуемого образца должна быть не меньше десятикрат­ной глубины отпечатка. Глубину отпечатка определяют пробным испытанием или, если известен уровень твердости, по формуле

где h - глубина отпечатка;

D - диаметр шарика;

НВ - число твердости.

Между временным сопротивлением и числом твердости HB существует следующая зависимость:

Для стали σ в = 0,34 HB;

Для медных сплавов σ в = 0,45 HB;

Для алюминиевых сплавов σ в = 0,35 HB.

Расстояние от центра отпечатка до края образца дол­жно быть не менее 2,5d ,а между центрами двух соседних отпечатков - не менее 4d .Диаметр отпечатка d измеряют при помощи лупы или отсчетного микроскопа (рис. 6) в двух взаимно перпендикулярных направлениях и определяют среднее арифметическое из двух определений.

В зависимости от твердости металла нагрузка на шарик может изменяться от 15,6 до 3000 кгс. Чтобы результаты испытаний были сопоставимы при любом диаметре взятого шарика, между нагрузкой и диаметром шарика должно выдерживаться соотношение: P = 2,5D 2 , Р = 10D 2 , P = = 30D 2 .

Длительность приложения нагрузки должна быть достаточной для прохождения деформации и возрастать с уменьшением твердости испытуемого металла от 10 до 30 и 60 с.

При выборе диаметра шарика D ,нагрузки Р , продолжительности выдержки под нагрузкой t и минимальной толщины образца руководствуются табл. 1.

Запись результатов испытания проводится следующим образом. Если испытание проводится шариком диаметром D = 10 мм под нагрузкой Р = 3000 кгс с выдержкой D = 10 с, то записывается число твердости с cимвoлoм НВ. Например, твердость стали 350 НВ. Если условия испытания иные, то это показывается соответствующими индексами. Например, число твердости 230 и испытание проводилось шариком диаметром D = 5,0 мм при нагрузке 750 кгс с выдержкой под нагрузкой 10 с. В этом случае результаты записываются так: НВ 5/750/10/230.

Рис. 6. Измерение диаметра отпечатка по шкале лупы

Таблица 1

Выбор параметров испытания при определении твердости

методом Бринелля

Материал Интервал твердости в числах Бринелля Минимальная толщина испытуемого образца, мм Соотношение между нагрузкой Р и диаметром шарика Диаметр шарика D, мм Выдержка под нагрузкой, с
Черные металлы 140-150 От 6 до 3 От 4 до 2 <2 P = 30D 2 10,0 5,0 2,5 187,5
<140 >6 От 6 до 3 <3 P = 10D 2 10,0 5,0 2,5 62,5
Цветные металлы >130 От 6 до 3 От 4 до 2 >2 P = 30D 2 10,0 5,0 2,5 187,5
35-130 От 6 до 3 От 6 до 3 <2 P = 10D 2 10,0 5,0 2,5 62,5
8-35 >6 От 6 до 3 <3 P = 2,5D 2 10,0 5,0 2,5 62,5 15,6

Измерение твердости по Роквеллу. При измерении твердости этим методом алмазный конус или стальной шарик вдавливается в испытуемый образец под действием общей нагрузки Р. Причем сначала прилагается предварительная нагрузка Р 0 , а затем основная P 1 , т. е. Р = Р 0 + P 1 . Твердость определяют по глубине отпечатка (рис. 7). За единицу твердости по Роквеллу принята условная величина, соответствующая осевому перемещению наконечника на 0,002 мм. В зависимости от твердо­сти испытуемого образца испытание проводят вдавлива­нием алмазного конуса или шарика при различной величине основной и общей нагрузки. При испытании твердость можно измерять по трем шкалам: А, В и С (табл. 2).

Поверхность для испытания может быть плоской и криволинейной. Радиус кривизны поверхности должен быть не менее 15 мм. Минимальная толщина образца должна быть не меньше восьмикратной глубины внедре­ния индентора после снятия основной нагрузки P 1 .

При измерении твердости расстояние между центрами двух соседних отпечатков или расстояние от центра отпечатка до края образца должно быть не менее 3,0 мм. На каждом образце проводят не менее трех измерений.

Рис. 7. Схема испытания на твердость по методу Роквелла

Таблица 2

Выбор параметров при определении твердости методом Роквелла

Измерение твердости по Виккерсу. При измерении твердости по этому методу в образец вдавливается алмазный наконечник, имеющий форму правильной четырехгранной пирамиды. Нагрузка Р действует в течение определенного времени.

Величина нагрузки может быть следующей: 1,0; 2,0; 5,0; 10,0; 20,0; 30,0; 50,0; 100,0 кгс. Чем больше нагрузка, тем более точным получается результат.

Продолжительность выдержки образца под нагрузкой составляет обычно 10-15 с.

Поверхность испытуемого образца должна быть хорошо подготовлена - шероховатость ее не должна превышать 0,16 мкм. Минимальная толщина стального образца должна быть больше диагонали от­печатка в 1,2 раза, а образцов из цветных металлов в 1,5 раза. Радиус кривизны по­верхности должен быть не менее 5 мм.

Отпечатки ставят так, чтобы расстояние между центром отпе­чатка и краем образца или краем соседнего отпечатка было не ме­нее 2,5 длины диагона­ли отпечатка (рис. 8).

Рис. 8. Схема расположения отпечатка при определении твердости методом

Виккерса

Погрешность при измерении диагоналей должна быть не более ±0,001 мм при длине диагонали до 0,2 мм, а при большей длине не более 0,5%.

Твердость по Виккерсу (HV) вычисляют по формуле:

,

α - угол между противополож­ными гранями пирамиды при вершине, равный 136°;

d - среднее арифметическое значение длин обеих диагоналей отпечатка после снятия на­грузки, мм.

Если испытания прово­дятся в стандартных усло­виях, то, чтобы не прово­дить вычисления, пользуются таблицей (приложение к ГОСТ 2999-75), в которой приведена твердость в зави­симости от длины диагонали отпечатка при различной нагрузке.

При записи результатов испытаний в обычных усло­виях твердость по Виккерсу обозначается символом HV. Обычными условиями испытания считаются нагрузка 300 Н (30 кгс) и время выдержки 10-15 с. В этом случае твердость записывается,например, HV 300. Если условия испытания другие, то это указывается индексами, причем сначала указывается величина нагрузки, потом время выдержки. Например, запись HV 20/40 - 250 значит, что при нагрузке 200 Н (20 кгс) и времени выдержки 40 с твердость по Виккерсу 250.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ

Определение твердости является одним из распространенных испытаний металлов. Оно отличается простотой техники, быстротой измерений и возможностью проведения их непосредственно на изделии.

Твердость металлов измеряют при помощи воздействия на их поверхность специального наконечника (индентора), изготовленного из малодеформирующегося материала (закаленная сталь, алмаз, твердый сплав) и имеющего форму шарика, конуса, пирамиды или иглы.

По способу воздействия индентора на испытуемый материал различают:

* статические методы определения твердости (метод вдавливания и метод царапания);

* динамические методы определения твердости (метод отскока падающего наконечника) и другие методы.

Метод вдавливания характеризует сопротивление металла пластической деформации при внедрении в него индентора из более твердого материала. Метод царапания характеризует сопротивление разрушению при воздействии на материал индентора в виде алмазной иглы. Метод отскока падающего наконечника характеризует сопротивление упругой деформации при динамическом воздействии на материал индентора в виде шарика.

Самым распространенным из перечисленных методов является метод вдавливания, который используется в приборах - твердомерах:

Роквелла

Виккерса

приборе для определения микротвердости (ПМТ).

Между твердостью пластичных материалов и другими механическими свойствами существует зависимость. Чем больше твердость металла определяемого вдавливанием, тем выше и его прочность, т.к. оба эти свойства представляют сопротивление пластической деформации. По этой же причине, чем тверже данный металл, тем ниже его пластичность.


Принципиальное устройство перечисленных твердомеров одинаково и может быть рассмотрено на примере прибора Бринеля (рис. 1). Основными узлами твердомеров являются станина, рабочий столик для измерения твердости образца или детали, наконечник (индентор), нагружающее устройство и прибор для измерения деформации.

Рисунок 1 – Устройство прибора Бринеля

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО БРИНЕЛЮ

Измерение твердости по Бринелю производится в соответствии с ГОСТ 9012-59, срок действия которого продлен до настоящего времени.

При измерении твердости по Бринелю стальной закаленный шарик диаметром D вдавливается в испытуемый образец или изделие под действием нагрузки P в течение определенного времени. После удаления нагрузки измеряется диаметр d полученного при этом сферического отпечатка (рис. 2.а).

Рисунок 2. Схемы определения твердости:

а- по Бринелю;

Б - по Роквеллу;

в - по Виккерсу

В качестве индентора при работе на приборе Бринеля используют стальной закаленный шарик диаметром d = 1; 2; 2,5; 5 и 10 мм.

Для того, чтобы значения твердости при разных испытаниях были сопоставимы, величину нагрузки при данном диаметре шарика следует выбирать используя соотношение:

ЗначенияK могут быть равны 30; 15; 10; 5; 2,5; 1 в зависимости от твердости контролируемого материала. Так для черных металлов и их сплавов (железо, сталь) и других высокопрочных материалов K = 30; для алюминия, меди, никеля и их сплавов K = 10; для олова, свинца и сплавов на их основе K = 2,5.

При выборе условий испытания также важно учитывать толщину металла и продолжительность выдержки образца под нагрузкой, в соответствии со стандартами.

Перед началом испытаний выбранный индентор закрепляется в шпинделе твердомера, с помощью сменных грузов устанавливается выбранная нагрузка. Затем, образец подлежащий измерению, устанавливается на столик прибора и столик поднимается вверх, прижимая образец к шарику, пока не загорится сигнальная лампочка. Таким образом на образец подается предварительная нагрузка, которая на приборе Бринеля составляет 100 кгс (981 Н). Затем нажатием кнопки на корпусе прибора включается механизм, который автоматически осуществляет полное нагружение, выдержку образца под нагрузкой и ее снятие.

После этого нужно опустить столик, снять образец, измерить диаметр полученного отпечатка с помощью специального микроскопа (рис. 3) и определить твердость.

Рисунок 3 – Измерение диаметра отпечатка по шкале лупы

Твердость, определяемая на приборе Бринеля обозначается HB и определяется как отношение нагрузки, действующей на индентор, к площади поверхности сферического отпечатка F :

А так как площадь сферического отпечатка равна:

(4)

Следовательно значение твердости будет равно:

(5)

Если нагрузка выражена в ньютонах, то значение твердости умножается на коэффициент равный 0,102 .

Таким образом, диаметр отпечатка является критерием твердости по Бринелю.

Обычно вычисления твердости по вышеуказанной формуле не производят, а определяют твердость по таблице, которая приведена в ГОСТ 9012-59 или справочной литературе.

Зная число твердости по Бринелю, можно приближенно оценить временное сопротивление металла разрыву (предел прочности), используя количественное соотношение между этими характеристиками, установленное опытным путем. Например, для углеродистых сталей с твердостью HB от 120 до 175 используется соотношение:

s В = 3,4 HB (6)

Временное сопротивление определяется в МПа (Н/мм 2).

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО РОКВЕЛЛУ

В ряде случаев определение твердости на приборе Бринеля оказывается невозможным. Нельзя, например, испытывать закаленную сталь, так как, индентор прибора Бринеля также изготовлен из закаленной стали. Нельзя измерять твердость тонких поверхностноупрочненных слоев изделий, подвергнутых химико-термической обработке, и твердость различных поверхностных покрытий.

В этих случаях возможно применение других приборов - Роквелла, Виккерса, ПМТ.

Измерение твердости по Роквеллу проводится в соответствии с ГОСТ 9013-59. При этом индентором может служить алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1,588мм (1/16 дюйма). При проведении испытаний индентор вдавливается в образец под действием двух последовательно прилагаемых нагрузок: предварительной Р о и основной:

Р = Р о + Р 1 , (7)

Принципиальное отличие измерения твердости на приборе Роквелла от измерения на приборе Бринеля состоит в том, что твердость определяют не по площади отпечатка, полученного при вдавливании индентора, а по его глубине, которая и является критерием твердости при этом испытании.



Глубину вдавливания h определяют после снятия основной нагрузки и по ее значениям вычисляется величина твердости по Роквеллу HR. Естественно, чем больше глубина полученного отпечатка, тем меньше значение твердости.

Твердость по Роквеллу выражается в условных единицах. За единицу твердости принята безразмерная величина, соответствующая осевому перемещению индентора на 0,002 мм.

При испытаниях твердость можно измерять по трем шкалам: А , В , С .

При использовании в качестве индентора алмазного конуса твердость определяют по двум шкалам: А и С , при использовании шарика - по шкале В .

Число твердости по Роквеллу вычисляется по формулам:

При измерении по шкалам А и С:

HRC (HRA) = 100 – e (8)

При измерении по шкале В:

HRB = 130 – e (9)

где e = (h - ho) / 0,002 (10)

При выборе условий испытания целесообразно руководствоваться следующими данными (табл. 1):

Таблица 1

Результаты определения твердости фиксируются на индикаторе прибора, где имеются две шкалы - черная ми красная. Черная используется при измерениях с помощью алмазного конуса или конуса таких же размеров, изготовленного из твердого сплава (А и С ). Красная шкала для измерений с помощью шарика (В ).

Испытания проводятся в следующем порядке:

Устанавливается образец на столике прибора; образец приводится в соприкосновение с индентором с помощью механизма подъема и осуществляется предварительное нагружение. При этом индентор вдавливается в поверхность образца на глубину h о . Достижение предварительной нагрузки Р о = 10 кгс (98 Н) отмечается на шкале установкой маленькой стрелки на красной точке. Положение большой стрелки должно при этом совпадать с цифрой “0” черной шкалы. Если этого не произошло необходимо повернуть шкалу маховичком до точного совпадения этой стрелки с указанной отметкой.

Нажать на клавишу механизма нагружения, в результате чего на индентор подается основная нагрузка Р 1 , под действием которой он углубляется в образец. Выдержка под нагрузкой и снятие нагрузки происходит автоматически. В конечном положении большая стрелка указывает на значение твердости по соответствующей шкале.

Твердость по Роквеллу обозначается цифрами, характеризующими величину твердости, и буквами HR с указанием шкалы, например: 61,0 HRC; 42,0 HRB.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО ВИККЕРСУ И МИКРОТВЕРДОСТИ

В ряде случаев необходимо определить твердость тонких поверхностных слоев или распределение ее по сечению образца. Выполнить эти задачи на приборах Бринеля или Роквелла невозможно из-за больших размеров отпечатков. Для таких измерений используют приборы Виккерса или микротвердости (ПМТ).

В указанных приборах в качестве индентора используется четырехгранная алмазная пирамида с углами при вершине 136° (рис. 2.в). Число твердости по Виккерсу и микротвердость определяются как отношение действующей нагрузки Р к площади боковой поверхности полученного пирамидального отпечатка:

(11)

где d - среднее арифметическое длин обеих диагоналей отпечатка.

Для удобства и ускорения вычислений следует пользоваться таблицами, рассчитанными по приведенной формуле.

Испытательные нагрузки при измерениях на приборе Виккерса (ГОСТ 2999 - 75) выбираются в пределах от 5 до 120 кгс (от 49 до 1176 Н). При измерениях микротвердости нагрузки значительно ниже: от 0,005 до 0,5 кгс (от 0,05 до 5 Н). Благодаря этому в последнем случае значительно меньше и размеры полученных отпечатков, что делает возможным определение твердости отдельных структурных составляющих.

Измерение диагоналей полученных отпечатков проводится с помощью микроскопов.

ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

1. Перед проведением практической части работы необходимо ознакомиться с приборами, на которых предстоит проводить измерения, с техникой измерений и методикой определения результатов.

2. Провести измерение твердости углеродистой отожженной стали (40, 60), дюралюминия и меди на приборе Бринеля. Для этого:

a. Выбрать нагрузку, исходя из данных, приведенных в методических указаниях;

b. Получить отпечаток индентора на перечисленных материалах;

c. При помощи специального микроскопа определить диаметр полученного отпечатка с точностью до сотых долей миллиметра;

d. Используя формулу для определения твердости по Бринелю (5) определить значение твердости испытуемых материалов и занести данные в таблицу 2;

e. При помощи таблиц проконтролировать правильность определения значений твердости и табличные данные также занести в таблицу 2.

3. Провести измерение твердости инструментальной закаленной стали У8 и конструкционной низкоуглеродистой стали 30 на приборе Роквелла. Для этого:

a. В соответствии с таблицей выбрать шкалу, по которой будет проводиться измерение твердости;

Тесно связана с такими ее характеристиками, как износостойкость, прочность и пр. Существует немало способов определения твердости металлов. Один из них – метод Бринелля, когда в поверхность (стали) с помощью специального пресса (пресса Бринелля) вдавливается стальной . По окончании воздействия шарика на металлическую поверхность с помощью специальной лупы производится замер диаметра лунки. На основании данных таблиц, прилагаемых к прессу, определяется твердость стали НЕ.

Следующий метод – метод Роквелла - предполагает вдавливание в стальную поверхность алмазного с углом 1200 у вершины. Вдавливание вначале с предварительной нагрузкой 10 кг, а затем полной – от 60 до 150 кг. Для этого также используется специальный .

При использовании данного метода необходимо соблюдать некоторые требования. Так, на исследуемой поверхности не должно быть окалины, трещин и выбоин. Воздействие на поверхность строго перпендикулярно. Для определения значения прочности также используются специальные таблицы. Существует четкая зависимость – чем , тем меньше глубина проникновения в нее при вдавливании и, следовательно, тем выше значение твердости.

С методом Роквелла схож метод Виккерса, в котором для вдавливания используется алмазная пирамида с углом у вершины 1360. Здесь по окончании нагрузки измеряется диагональ отпечатка. Для сталей время воздействия - 10-15 сек. При этом усилие должно прилагаться строго перпендикулярно поверхности с плавным нарастанием. Поверхность опытного образца может иметь шероховатость не более 0.16 мкм, а расстояние между центром отпечатка и краем образца или соседнего отпечатка – не менее 2.5 длины диагонали отпечатка.

Твердость стали определяется также методом ударного отпечатка посредством твердосплавного конического индентора или стального шара. К косвенным методам относится методика измерения твердости по Шору. В ней используется боек определенной массы с алмазным наконечником, вертикально падающий с определенной высоты на испытуемую поверхность. Высота бойка является характеристикой твердости, которая измеряется в условных единицах.

Видео по теме

Никому не секрет, что в промышленности, прежде чем что-то пускать в продажу, производится контроль изделий. Это необходимо для того, чтобы установить срок экспулатации продукта, его работоспособность. Одним из критериев работоспособности деталей является их твердость. Твердость измеряют при помощи специальных приборов - твердомеров.

Твердость обычно меряют в лабораториях при помощи твердомеров в исследовательских институтах или в производстве. Существует несколько типов твердомеров, использующих при измерении разные методы, но суть их близка. Каждый твердомер обычно имеет предметный столик, на который помещается исследуемый , и индентор – наконечник, вдавливаемое в этот образец тело, должно быть тверже исследуемого материала (это обязательное условие). При каждом измерении можно задавать различные – размер индентора, нагрузка, нагрузки. В зависимости от них прибор может показывать различную твердость.


Метод Бринелля


В исследуемое тело вдавливается индентор в виде шарика (стального), который оставляет отпечаток в виде круглой ямки. По диаметру (если быть более точным - по площади) отпечатка определяют твердость. То есть чем тверже материал, тем меньше отпечаток, и наоборот.


Метод Роквелла


В этом методе используется несколько инденторов в зависимости от нагрузки. Либо это также шарик, либо конус. И существует 11 шкал измерения твердости. Каждая шкала комбинацией индентора и нагрузки. Твердость в этом методе определяется как