Главная · Бронхит · Уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. Уравнение Шрёдингера для стационарных состояний

Уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. Уравнение Шрёдингера для стационарных состояний

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны - они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики - и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) - в такой передаче энергии участвуют частицы - или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа - корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений - волновыми уравнениями. Все без исключения волны - волны океана, сейсмические волны горных пород, радиоволны из далеких галактик - описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу - в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное - примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):


где - расстояние, - постоянная Планка , а , и - соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера - Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий - то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч - это частица, звук - это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле - и эксперименты это вскоре показали - в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, - яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».

Джеймс Трефил - профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.

Комментарии: 0

    Макс Планк - один из основоположников квантовой механики - пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами и атомами и, тем самым, разрешить проблему излучения черного тела. Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами) и лишь на отдельных волновых частотах.

    Абсолютно черное тело, полностью поглощающее электромагнитное излучение любой частоты, при нагревании излучает энергию в виде волн, равномерно распределенных по всему спектру частот.

    Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк для описания взаимодействия света с атомами.

    Один из фактов субатомного мира заключается в том, что его объекты - такие как электроны или фотоны - совсем не похожи на привычные объекты макромира. Они ведут себя и не как частицы, и не как волны, а как совершенно особые образования, проявляющие и волновые, и корпускулярные свойства в зависимости от обстоятельств. Одно дело - это заявить, и совсем другое - связать воедино волновые и корпускулярные аспекты поведения квантовых частиц, описав их точным уравнением. Именно это и было сделано в соотношении де Бройля.

    В повседневной жизни имеется два способа переноса энергии в пространстве - посредством частиц или волн. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч - это частица, а звук - это волна, и всё ясно. Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны.

    Больше всего Эйнштейн протестовал против необходимости описывать явления микромира в терминах вероятностей и волновых функций, а не с привычной позиции координат и скоростей частиц. Вот что он имел в виду под «игрой в кости». Он признавал, что описание движения электронов через их скорости и координаты противоречит принципу неопределенности. Но, утверждал Эйнштейн, должны существовать еще какие-то переменные или параметры, с учетом которых квантово-механическая картина микромира вернется на путь целостности и детерминизма. То есть, настаивал он, нам только кажется, будто Бог играет с нами в кости, потому что мы не всё понимаем. Тем самым он первым сформулировал гипотезу скрытой переменной в уравнениях квантовой механики. Она состоит в том, что на самом деле электроны имеют фиксированные координаты и скорость, подобно ньютоновским бильярдным шарам, а принцип неопределенности и вероятностный подход к их определению в рамках квантовой механики - результат неполноты самой теории, из-за чего она и не позволяет их доподлинно определить.

    Юлия Зотова

    Вы узнаете: Какие технологии называются квантовыми и почему. В чем преимущество квантовых технологий перед классическими. Что может и что не может квантовый компьютер. Как физики делают квантовый компьютер. Когда он будет создан.

    Французский физик Пьер Симон Лаплас поставил важный вопрос, о том, всё ли в мире предопределено предыдущим состоянием мира, либо же причина может вызвать несколько следствий. Как и предполагается философской традицией сам Лаплас в своей книге «Изложение системы мира» не задавал никаких вопросов, а сказал уже готовый ответ о том, что да, всё в мире предопределено, однако как часто и случается в философии предложенная Лапласом картина мира не убедила всех и тем самым его ответ породил дискуссию вокруг того вопроса, которая продолжается и по сей день. Несмотря на мнение некоторых философов от том, что квантовая механика разрешила данный вопрос в пользу вероятностного подхода, тем не менее, теория Лапласа о полной предопределенности или как её иначе называют теория лапласовского детерминизма обсуждаема и сегодня.

    Гордей Лесовик

    Некоторое время назад мы с группой соавторов начали выводить второй закон термодинамики с точки зрения квантовой механики. Например, в одной из его формулировок, гласящей, что энтропия замкнутой системы не убывает, типично растет, а иногда остается постоянной, если система энергетически изолирована. Используя известные результаты квантовой теории информации, мы вывели некоторые условия, при которых это утверждение справедливо. Неожиданно выяснилось, что эти условия не совпадают с условием энергетической изолированности систем.

    Профессор физики Джим Аль-Халили исследует наиболее точную и одну из самых запутанных научных теорий - квантовую физику. В начале 20-го века учёные проникли в скрытые глубины материи, в субатомные строительные блоки мира вокруг нас. Они обнаружили явления, которые отличаются от всего увиденного ранее. Мир, где всё может находится во многих местах одновременно, где действительность по-настоящему существует, лишь когда мы наблюдаем за ней. Альберт Эйнштейн противился одной только мысли о том, что в основе сущности природы лежит случайность. Квантовая физика подразумевает, что субатомные частицы могут взаимодействовать быстрее скорости света, а это противоречит его теории относительности.

Классическая механика в силу наличия волновых свойств у микрочастиц не может дать правильного описания их поведения. Это возможно сделать с помощью квантовой механики, созданной Шредингером, Гейзенбергом, Дираком и др.

Основным уравнением квантовой механики является уравнение Шредингера. Состояние микрочастиц в квантовой механике описывается волновой функцией или Ψ (пси)-функцией. Эта функция является функцией координат и времени и может быть найдена путем решения уравнения


(уравнение Шредингера),

где m - масса частицы; h = h/2π – постоянная Планка; Ψ – волновая функция или пси-функция, являющаяся функцией координат и времени
- оператор Лапласа;U=U(x,y,z, t) – потенциальная энергия частицы в силовом поле, в котором она движется; i =
- мнимая единица.

Уравнение Шредингера, как и уравнение Ньютона в классической механике, не может быть получено теоретически, а представляет собой обобщение большого числа опытных фактов. Справедливость этого соотношения доказывается тем, что все вытекающие из него следствия самым точным образом согласуются с опытными фактами.

Из уравнения Шредингера следует, что вид волновой функции Ψ определяется потенциальной энергией U, т.е. характером тех сил, которые действуют на частицу. В общем виде потенциальная энергия U есть функция координат и времени. Для стационарного (не меняющегося во времени) силового поля потенциальная энергия U явно от времени не зависит. В этом случае волновая функция Ψ распадается на два множителя, один из которых зависит только от времени, второй – только от координат.

,

где Е – полная энергия частицы.

Подставляя эту функцию в уравнение Шредингера, получим

;
или

Это уравнение Шредингера для стационарных состояний. Оба уравнения справедливы для любой частицы, движущейся с малой (v«c) скоростью. Кроме того, на волновую функцию накладываются дополнительные условия:


В последнее уравнение в качестве параметра входит полная энергия Е частицы. Из теории дифференциальных уравнений подобные уравнения имеют решения (из бесчисленного их множества), отражающие физический смысл, не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Решения, имеющие физический смысл, получают лишь при наложении вышеперечисленных условий. Значения энергии Е, при которых решения уравнения Шредингера имеют физический смысл, называются собственными . Решения, т.е. волновые функции, которые соответствуют собственным значениям энергии, называются собственными функциями.

Волновая функция и ее статистический смысл

Положение частицы в пространстве в данный момент времени в квантовой механике определяется знанием волновой функции Ψ. Вероятность dw того, что частица находится в элементе объема dV, пропорциональна квадрату модуля волновой функции |Ψ| 2 и объему элемента dV

Величина |Ψ| 2 = (квадрат модуля Ψ-функции) имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами x, y, z.

Таким образом, физический смысл имеет не сама Ψ-функция, а квадрат ее модуля |Ψ| 2 . Вероятность найти частицу в момент времени t в конечном объеме V согласно теореме сложения вероятностей, равна

.

Волновую функцию необходимо нормировать таким образом, чтобы вероятность достоверного события обращалась в единицу. Это будет выполняться, если за объем интегрирования V принять бесконечный объем всего пространства. Условия нормировки вероятностей

,

где интеграл вычисляется по всему бесконечному пространству, т.е. по координатам x, y, z от -∞ до +∞.

При этом волновая функция должна удовлетворять трем раннее перечисленным условиям:

1. Должна быть конечной (вероятность не может быть больше 1).

2. Должна быть однозначной (вероятность не может быть неоднозначной величиной).

    Должна быть непрерывной (вероятность не может изменяться скачком).

Статистическое толкование волн де Бройля (см. §216) и соотношение неопределенностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z, t), так как именно она, или, точнее, величина || 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами х и х +d х, у и y+dy, z и z+dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны. Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

где h =h/(2 ), m - масса частицы -

оператор Лапласа (=д 2 / д x 2 2 / д y 2

+д 2 /д z 2), i - мнимая единица, U (х, у, z, t)

Потенциальная функция частицы в силовом поле, в котором она движется,

(х, у, z, t) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. §225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. §216); 2) производные д /д x, д /д y, д /д z, д /д t должны быть непрерывны;

3) функция || 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

(x,t)=Acos(t-kx), или в комплексной записи

(х, t) =Aе i ( t-kx) .

Следовательно, плоская волна де Бройля имеет вид

=Ae -(i/h)(Et-px) (217.2)

(учтено, что =E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только| | 2 , то это (см. (217.2)) несущественно. Тогда

Используя взаимосвязь между энергией Е и импульсом р(Е=р 2 /(2 m )) и подставляя выраже-

ния (217.3), получим дифференциальное уравнение

которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь между Е и р для данного случая р 2 /(2 m )=Е -U, придем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость  от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U =U (х, у, z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем е - i  t =е -i(E/h0t , так что

(х, у, z , t) =(х, у, z) e -i(E/h)t ,

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель e -i(E/h)t и соответствующих преобразований придем к уравнению, определяющему функцию :

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями  Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

  • В приближении идеального газа уравнение Клапейрона -Клаузиуса примет вид
  • Второе уравнение Максвелла является обобщением …: закона электромагнитной индукции
  • Где a - коэффициент трения. Это уравнение может быть переписано в виде
  • Гидростатика. Основные свойства гидростатического давления. Основное уравнение гидростатики.
  • Дифференциальное уравнение. Характеристический полином.
  • В развитие идеи де Бройля о волновых свойствах частиц Шредингер в 1926 г. получил уравнение

    104. (20)

    где m - масса частицы, - мнимая единица, U - потенциальная энергия частицы, D - оператор Лапласа [ см. (1.10)].

    Решение уравнения Шредингера позволяет найти волновую функцию Y(x, y, z, t) частицы, которая описывает микросостояние частицы и ее волновые свойства.

    Если поле внешних сил постоянно во времени (т.е. стационарно), то U не зависит явно от t. В этом случае решение уравнения (20) распадается на два множителя

    Y(x, y, z, t) =y(x, y, z) exp[-i(E/ )t] (21)

    В стационарном случае уравнение Шредингера имеет вид

    (22)

    где Е, U - полная и потенциальная энергия, m - масса частицы.

    Следует заметить, что исторически название "волновой функции" возникло в связи с тем, что уравнение (20) или (22), определяющее эту функцию, относится к виду волновых уравнений.


    104. Атом водорода и водородоподобные «атомы» (He + , Li 2+ и др.) как простейшие квантовомеханические системы: квантовые состояния, радиальная и угловая составляющие волновой функции, симметрия орбиталей.

    На основании своих исследований Резерфорд в 1911 г. предложил ядерную (планетарную) модель атома. Согласно этой модели вокруг положительного ядра по замкнутым орбитам движутся электроны, образуя электронную оболочку атома, в области с линейными размерами порядка 10 -10 м. Заряд ядра равен (Z. -- порядковый номер элемента в системе Менделеева, е - .элементарный заряд), размер 10 -15 – 10 -14 м, масса, практически равна массе атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т. е. вокруг ядра должно вращаться Z электронов.

    Атом водорода и водородоподобные системы – это системы, состоящие из ядра с зарядом Ze и одного электрона (например, ионы He + , Li 2+).

    Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия Не + , двукратно ионизованного лития Li + + и др.) сводится к задаче о движении электрона в кулоновском поле ядра.

    Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом (для атома водорода Z =1),

    где r – расстояние между электроном и ядром. Графически функция U (r )изображена жирной кривой на рис. 6, неограниченно убывающей (возрастающей.по модулю) при уменьшении r , т. е. при приближении электрона к ядру.



    Состояние электрона в атоме водорода описывается волновой функцией Ψ, удовлетворяющей стационарному уравнению Шредингера, учитывающему значение (1):"

    , (2)

    где m – масса электрона, Е – полная энергия электрона в атоме.

    Это так называемое стационарное уравнение Шрёдингера для электрона водородоподобного атома ВДПА.

    1. Энергия. В теории дифференциальных уравнений доказывается, что уравнения типа (2) имеют решения, удовлетворяющие требованиям однозначности, конечности и непрерывности волновой функции Ψ, только при собственных значениях энергии

    (n = 1, 2, 3,…), (3)

    т. е. для дискретною набора отрицательных значений энергии.

    Таким образом, как и в случае «потенциальной ямы» с бесконечно высокими «стенками» , решение уравнения Шредингера для атома водорода приводит к появлению дискретных энергетических уровней. Возможные значения Е 1 , Е 2 , Е 3 , ... показаны па рис. 6 в виде горизонтальных прямых. Самый нижний уровень Е 1 , отвечающий минимальной возможной энергии, – основной, все остальные (Е n >E 1 , n = 2, 3,…) – возбужденные . При Е < 0 движение электрона является связанным он находится внутри гиперболической «потенциальной ямы». Из рисунка следует, что по мере роста главного квантового числа п энергетические уровни располагаются теснее и при п=∞ Е ∞ = 0. При Е > 0 движение электрона является свободным; область непрерывного спектра Е >0 (заштрихована на рис. 6) соответствует ионизованному атому. Энергия ионизации атома водорода равна



    E i = - E 1 = me 4 / (8h 2 ε 0 2) = 13,55 эВ.

    2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредингера (2) удовлетворяют собственные функции , определяемые тремя квантовыми числами: главным п, орбитальным l и магнитным m l .

    Главное квантовое число n,согласно (3), определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения, начиная с единицы:

    Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ(х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме ΔV, т. е. в области с координатами х и х + dх, у и у + dу, z и z + dz .

    Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером . Уравнение Шрёдингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы.

    Общее уравнение Шредингера имеет вид:

    где ? = h / (), m - масса частицы, Δ - оператор Лапласа , i - мнимая единица, U (x, y, z, t ) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x, y, z, t ) - искомая волновая функция частицы.

    Уравнение (1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ «с.

    Оно дополняется условиями , накладываемыми на волновую функцию:

    1) волновая функция должна быть конечной, однозначной и непрерывной;

    2) производные должны быть непрерывны;

    3) функция |Ψ| 2 должна быть интегрируема (это условие в простейших случаях сводится к условию нормировки вероятностей).

    Уравнение (1) называют уравнением Шредингера, зависящим от времени.

    Дли многих физических явлений, происходящих в микромире, уравнение (1) можно упростить, исключив зависимость Ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U (х, у , z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде

    . (2)

    Уравнение (2) называется уравнением Шредингера для стационарных состояний.

    В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций : вол новые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными.


    Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями Ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения, которые соответствуют собственным значениям энергии, называются собственнымифункциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

    Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

    где l — ширина «ямы», а энергия отсчитывается от ее дна (рис. 2).

    Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

    . (1)

    По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = 1) непрерывная волновая функция также должна обращаться в нуль.

    Следовательно, граничные условия в данном случае имеют вид:

    Ψ (0) = Ψ (l ) = 0. (2)

    В пределах «ямы» (0 ≤ х ≤ 0) уравнение Шредингера (1) сведется к уравнению:

    или . (3)

    где k 2 = 2mE / ? 2 . (4)

    Общее решение дифференциального уравнения (3):

    Ψ (x ) = A sin kx + B cos kx .

    Так как по (2) Ψ (0) = 0, то В = 0. Тогда

    Ψ (x ) = A sin kx . (5)

    Условие Ψ (l ) = A sin kl = 0 (2) выполняется только при kl = nπ , где n - целые числа, т.е. необходимо, чтобы

    k = nπ / l . (6)

    Из выражений (4) и (6) следует, что:

    (n = 1, 2, 3,…), (7)

    т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Е п, зависящих от целого числа п. Следовательно, энергия Е п частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется.

    Квантованные значения энергии Е п называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Е п, или, как говорят, частица находится в квантовом состоянии п.

    Подставив в (5) значение k из (6), найдем собственные функции:

    .

    Постоянную интегрирования А найдем из условия нормировки, которое для данного случая запишется в виде:

    .

    В результате интегрирования получим , а собственные функции будут иметь вид:

    (n = 1, 2, 3,…). (8)

    Графики собственных функций (8), соответствующие уровням энергии (7) при n = 1,2,3, приведены на рис. 3, а. На рис. 3, б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная ‌‌‌‌‌‌ Ψ n (x )‌ 2 = Ψ n (x )·Ψ n * (x ) для п = 1, 2 и 3. Из рисунка следует, что, например, в квантовом состоянии с п= 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

    Из выражения (7) вытекает, что энергетический интервал между двумя соседними уровнями равен:

    Например, для электрона при размерах ямы l = 10 -1 м (свободные электроны в металле), ΔЕ n ≈ 10 -35 ·n Дж ≈ 10 -1 6 n эВ, т.е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l ≈ 10 -10 м), то для электрона ΔЕ n ≈ 10 -17 n Дж 10 2 n эВ, т.е. получаются явно дискретные значения энергии (линейчатый спектр).

    Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

    Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная π 2 ? 2 /(2т1 2 ). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Δх частицы в «яме» шириной l равна Δх = l .

    Тогда, согласно соотношению неопределенностей, импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса Δр h / l . Такому разбросу значений импульса соответствует кинетическая энергия Е min ≈ p ) 2 / (2m ) = ? 2 / (2ml 2 ). Все остальные уровни (п > 1) имеют энергию, превышающую это минимальное значение.

    Из формул (9) и (7) следует, что при больших квантовых числах (n »1) ΔЕ n / E п ≈ 2/п «1, т. е. соседние уровни расположены тесно: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность - сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.