Главная · Бронхит · Величина пути перемещения частей тела. Законы ньютона, принцип относительности галилея, принцип суперпозиции сил

Величина пути перемещения частей тела. Законы ньютона, принцип относительности галилея, принцип суперпозиции сил

Основные единицы измерения величин в системе СИ таковы:

  1. единица измерения длины - метр (1 м),
  2. времени - секунда (1 с),
  3. массы - килограмм (1 кг),
  4. количества вещества - моль (1 моль),
  5. температуры - кельвин (1 К),
  6. силы электрического тока - ампер (1 А),
  7. Справочно: силы света - кандела (1 кд, фактически не используется при решении школьных задач).

При выполнении расчетов в системе СИ углы измеряются в радианах.

Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее. При переводе величин пользуйтесь следующей таблицей.

Путь и перемещение

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать материальной точкой . Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела .

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещение может в процессе движения увеличиваться, уменьшаться и становиться равным нулю.

Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

Средняя скорость

Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

Средняя скорость пути – это отношение всего пути ко всему времени движения:

где: L полн – весь путь, который прошло тело, t полн – все время движения.

Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

  • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
  • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

Равноускоренное прямолинейное движение

Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

где: v 0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t ).

Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Аналогичные формулы получаются для остальных координатных осей.

Свободное падение по вертикали

На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х » писать «у ». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Горизонтальный бросок

При горизонтальном броске с начальной скоростью v 0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна v x = v 0 . А вертикальная возрастает по законам ускоренного движения v y = gt . При этом полная скорость тела может быть найдена по формулам:

При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

Угол между горизонтом и скоростью тела легко найти из соотношения:

Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали . Тогда этот угол будет находиться из соотношения:

Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

Бросок под углом к горизонту (с земли на землю)

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

Сложение скоростей

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны.

Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

Равномерное движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

В обеих формулах: N – количество оборотов за время t . Как видно из вышеприведенных формул, период и частота величины взаимообратные:

При равномерном вращении скорость тела будет определяется следующим образом:

где: l – длина окружности или путь, пройденный телом за время равное периоду T . При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt . Очевидно, что за время равное периоду T тело пройдет угол равный 2π , следовательно при равномерном движении по окружности выполняются формулы:

Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

Связь между модулем линейной скорости v и угловой скоростью ω :

При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением , так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Кинематика - раздел механики, изучающий движение тел без учета причин, вызвавших это движение.

    Основной задачей кинематики является нахождение положения тела в любой момент времени, если известны его положение, скорость и ускорение в начальный момент времени.

    Механическое движение - это изменение положения тел (или частей тела) относительно друг друга в пространстве с течением времени.

    Для описания механического движения надо выбрать систему отсчета.

    Тело отсчета - тело (или группа тел), принимаемое в данном случае за неподвижное, относительно которого рассматривается движение других тел.

    Это система координат, связанная с телом отсчета, и выбранный способ измерения времени (рис. 1).

    Положение тела можно определить с помощью радиуса-вектора или с помощью координат.

    Точки - направленный отрезок прямой, соединяющий начало отсчета О с точкой (рис. 2).

    X точки - это проекция конца радиуса-вектора точки на ось Ох. Обычно пользуются прямоугольной системой координат. В этом случае положение точки на линии, плоскости и в пространстве определяют соответственно одним (x), двумя (х, у) и тремя (х, у, z) числами - координатами (рис. 3).

    В элементарном курсе физики изучают кинематику движения материальной точки.

    Материальная точка - тело, размерами которого в данных условиях можно пренебречь.

    Этой моделью пользуются в тех случаях, когда линейные размеры рассматриваемых тел много меньше всех прочих расстояний в данной задаче или когда тело движется поступательно.

    Поступательным называется движение тела, при котором прямая, проходящая через любые две точки тела, перемещается, оставаясь параллельной самой себе. При поступательном движении все точки тела описывают одинаковые траектории и в любой момент времени имеют одинаковые скорости и ускорения. Поэтому для описания такого движения тела достаточно описать движение его одной произвольной точки.

    В дальнейшем под словом "тело" будем понимать "материальная точка".

    Линия, которую описывает движущееся тело в определенной системе отсчета, называется траекторией. На практике форму траектории задают с помощью математических формул (y = f(x) - уравнение траектории) или изображают на рисунке. Вид траектории зависит от выбора системы отсчета. Например, траекторией тела, свободно падающего в вагоне, который движется равномерно и прямолинейно, является прямая вертикальная линия в системе отсчета, связанной с вагоном, и парабола в системе отсчета, связанной с Землей.

    В зависимости от вида траектории различают прямолинейное и криволинейное движение.

    Путь s - скалярная физическая величина, определяемая длиной траектории, описанной телом за некоторый промежуток времени. Путь всегда положителен: s > 0.

    Перемещение тела за определенный промежуток времени - направленный отрезок прямой, соединяющий начальное (точка ) и конечное (точка М) положение тела (см. рис. 2):

    ,

    где - радиусы-векторы тела в эти моменты времени.

    Проекция перемещения на ось Ox

    где - координаты тела в начальный и конечный моменты времени.

    Модуль перемещения не может быть больше пути .

    Знак равенства относится к случаю прямолинейного движения, если направление движения не изменяется.

    Зная перемещение и начальное положение тела, можно найти его положение в момент времени t:

    Скорость - мера механического состояния тела. Она характеризует быстроту изменения положения тела относительно данной системы отсчета и является векторной физической величиной.

    - векторная физическая величина, численно равная отношению перемещения к промежутку времени, за который оно произошло, и направленная вдоль перемещения (рис. 4):

    В СИ единицей скорости является метр в секунду (м/с).

    Средняя скорость, найденная по этой формуле, характеризует движение только на том участке траектории, для которого она определена. На другом участке траектории она может быть другой.

    Иногда пользуются средней скоростью пути

    где s - путь, пройденный за промежуток времени . Средняя скорость пути - это скалярная величина.

    Мгновенная скорость тела - скорость тела в данный момент времени (или в данной точке траектории). Она равна пределу, к которому стремится средняя скорость за бесконечно малый промежуток времени . Здесь - производная от радиуса-вектора по времени.

    В проекции на ось Ох:

    Мгновенная скорость тела направлена по касательной к траектории в каждой ее точке в сторону движения (см. рис. 4).

    Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости. Оно показывает, на какую величину изменяется скорость тела за единицу времени.

    Среднее ускорение - физическая величина, численно равная отношению изменения скорости ко времени, за которое оно произошло:

    Вектор направлен параллельно вектору изменения скорости в сторону вогнутости траектории (рис. 5).

    Кинематика изучает механическое движение тел без рассмотрения причин, вызывающих это движение. Большинство задач на кинематику связано с равнопеременным прямолинейным движением. Равномерное прямолинейное движение можно рассматривать как частный случай равнопеременного движения при выполнении условия .

    Простейшим видом криволинейного движения является равномерное движение точки по окружности. Более сложным является криволинейное движение тел, брошенных горизонтально или под углом к горизонту. Такое движение можно рассматривать как результат двух одновременных прямолинейных движений по осям, одна из которых параллельна, а вторая перпендикулярна поверхности Земли.

    Материальная точка – это тело, формой и размерами которого можно пренебречь при решении данной задачи.

    Система отсчета – это система координат, снабженная часами и связанная с совокупностью тел (материальных точек), относительно которой рассматривается движение других тел (материальных точек).

    Множество точек пространства, через которые прошла материальная точка при движении относительно выбранной системы отсчета, называется траекторией материальной точки.

    Путь – это расстояние S, пройденное точкой вдоль траектории в направлении движения за рассматриваемый промежуток времени.

    Перемещение – это вектор , соединяющий положения движущейся точки в начале и в конце некоторого промежутка времени. Вектор перемещения направлен вдоль хорды траектории точки.

    Уравнение движения вдоль координатной оси:

    .

    Скорость точки – векторная физическая величина, характеризующая направление и быстроту движения точки.

    Средняя скорость – это векторная величина, равная отношению приращения радиуса-вектора точки Δrв промежутке времени отtдоt+Δtк продолжительности этого промежутка Δt:

    Мгновенная скорость:
    .

    Это скорость в данный момент времени или данной точки траектории.

    Ускорение – это векторная физическая величина, равная первой производной по времени tот скорости υ точки, характеризующая быстроту изменения скорости:

    .

    В случае равнопеременного движения зависимости пути и скорости от времени имеют следующий вид:

    ,
    ,

    где – начальная скорость движения тела.

    При движении тела в одной системе координат относительно другой скорость тела будет определяться векторным сложением скоростей тела и систем:

    .

    – вектор скорости движения тела в неподвижной системе отсчета,
    – вектор скорости движущейся системы отсчета,– вектор скорости тела в движущейся системе отсчета.

    При ускоренном криволинейном движении вектор ускорения будет лежать в плоскости криволинейной траектории. В этом случае векторудобно разложить на две составляющие вдоль двух основных направлений – касательной к траекториии главной нормали(см. рис.1.1). Тогда
    ,

    где
    – тангенциальное ускорение,
    – нормальное ускорение,R– радиус кривизны траектории.

    При вращательном равномерном движении значения угловой скорости ω и ускорения ε будут зависеть от углового перемещения φ:

    ,
    .

    Средняя угловая скорость
    ,

    где Т – период вращения, ν – частота вращения (
    , гдеN– число оборотов за времяt).

    Уравнения углового перемещения и угловой скорости для равнопеременного вращательного движения будут иметь вид:

    ,
    ,

    где φ 0 и ω 0 – начальные угловые перемещение и скорость, соответственно.

    Между линейными и угловыми величинами существует следующая связь:

    ,
    ,
    ,
    ,

    где R– расстояние от оси вращения.

    Кинематика - раздел механики, изучающий движение тел без учета причин, вызвавших это движение.

    Основной задачей кинематики является нахождение положения тела в любой момент времени, если известны его положение, скорость и ускорение в начальный момент времени.

    Механическое движение - это изменение положения тел (или частей тела) относительно друг друга в пространстве с течением времени.

    Для описания механического движения надо выбрать систему отсчета.

    Тело отсчета - тело (или группа тел), принимаемое в данном случае за неподвижное, относительно которого рассматривается движение других тел.

    Система отсчета - это система координат, связанная с телом отсчета, и выбранный способ измерения времени (рис. 1).

    Положение тела можно определить с помощью радиуса-вектора \(~\vec r\) или с помощью координат.

    Радиус-вектор \(~\vec r\) точки Μ - направленный отрезок прямой, соединяющий начало отсчета О с точкой Μ (рис. 2).

    Координата x точки Μ - это проекция конца радиуса-вектора точки Μ на ось Ох . Обычно пользуются прямоугольной системой ко ординат. В этом случае положение точки Μ на линии, плоскости и в пространстве определяют соответственно одним (x ), двумя (х , у ) и тремя (х , у , z ) числами - координатами (рис. 3).

    В элементарном курсе физики изучают кинематику движения материальной точки.

    Материальная точка - тело, размерами которого в данных условиях можно пренебречь.

    Этой моделью пользуются в тех случаях, когда линейные размеры рассматриваемых тел много меньше всех прочих расстояний в данной задаче или когда тело движется поступательно.

    Поступательным называется движение тела, при котором прямая, проходящая через любые две точки тела, перемещается, оставаясь параллельной самой себе. При поступательном движении все точки тела описывают одинаковые траектории и в любой момент времени имеют одинаковые скорости и ускорения. Поэтому для описания такого движения тела достаточно описать движение его одной произвольной точки.

    В дальнейшем под словом "тело" будем понимать "материальная точка".

    Линия, которую описывает движущееся тело в определенной системе отсчета, называется траекторией . На практике форму траектории задают с помощью математических формул (y = f (x ) - уравнение траектории) или изображают на рисунке. Вид траектории зависит от выбора системы отсчета. Например, траекторией тела, свободно падающего в вагоне, который движется равномерно и прямолинейно, является прямая вертикальная линия в системе отсчета, связанной с вагоном, и парабола в системе отсчета, связанной с Землей.

    В зависимости от вида траектории различают прямолинейное и криволинейное движение.

    Путь s - скалярная физическая величина, определяемая длиной траектории, описанной телом за некоторый промежуток времени. Путь всегда положителен: s > 0.

    Перемещение \(~\Delta \vec r\) тела за определенный промежуток времени - направленный отрезок прямой, соединяющий начальное (точка M 0) и конечное (точка М ) положение тела (см. рис. 2):

    \(~\Delta \vec r = \vec r - \vec r_0,\)

    где \(~\vec r\) и \(~\vec r_0\) - радиусы-векторы тела в эти моменты времени.

    Проекция перемещения на ось Ox \[~\Delta r_x = \Delta x = x - x_0\], где x 0 и x - координаты тела в начальный и конечный моменты времени.

    Модуль перемещения не может быть больше пути\[~|\Delta \vec r| \le s\].

    Знак равенства относится к случаю прямолинейного движения, если направление движения не изменяется.

    Зная перемещение и начальное положение тела, можно найти его положение в момент времени t:

    \(~\vec r = \vec r_0 + \Delta \vec r;\) \(~\left\{ \begin{matrix} x = x_0 + \Delta r_x ; \\ y = y_0 + \Delta r_y . \end{matrix} \right.\)

    Скорость - мера механического состояния тела. Она характеризует быстроту изменения положения тела относительно данной системы отсчета и является векторной физической величиной.

    Средняя скорость \(~\mathcal h \vec \upsilon \mathcal i\) - векторная физическая величина, численно равная отношению перемещения к промежутку времени, за который оно произошло, и направленная вдоль перемещения (рис. 4):

    \(~\mathcal h \vec \upsilon \mathcal i = \frac{\Delta \vec r}{\Delta t}; \qquad \mathcal h \vec \upsilon \mathcal i \upuparrows \Delta \vec r .\)

    В СИ единицей скорости является метр в секунду (м/с).

    Средняя скорость, найденная по этой формуле, характеризует движение только на том участке траектории, для которого она определена. На другом участке траектории она может быть другой.

    Иногда пользуются средней скоростью пути\[~\mathcal h \upsilon \mathcal i = \frac{s}{\Delta t}\], где s - путь, пройденный за промежуток времени Δt . Средняя скорость пути - это скалярная величина.

    Мгновенная скорость \(~\vec \upsilon\) тела - скорость тела в данный момент времени (или в данной точке траектории). Она равна пределу, к которому стремится средняя скорость за бесконечно малый промежуток времени \(~\vec \upsilon = \lim_{\Delta t \to 0} \frac{\Delta \vec r}{\Delta t} = \vec r \ "\). Здесь \(~\vec r \ "\) - производная от радиуса-вектора по времени.

    В проекции на ось Ох :

    \(~\upsilon_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = x".\)

    Мгновенная скорость тела направлена по касательной к траектории в каждой ее точке в сторону движения (см. рис. 4).

    Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости. Оно показывает, на какую величину изменяется скорость тела за единицу времени.

    Среднее ускорение - физическая величина, численно равная отношению изменения скорости ко времени, за которое оно произошло:

    \(~\mathcal h \vec a \mathcal i = \frac{\Delta \vec \upsilon}{\Delta t} = \frac{\vec \upsilon - \vec \upsilon_0}{\Delta t} .\)

    Вектор \(~\mathcal h \vec a \mathcal i\) направлен параллельно вектору изменения скорости \(~\Delta \vec \upsilon\) (\(~\mathcal h \vec a \mathcal i \upuparrows \Delta \vec \upsilon\)) в сторону вогнутости траектории (рис. 5).

    Мгновенное ускорение :

    \(~\vec a = \lim_{\Delta t \to 0} \frac{\Delta \vec \upsilon}{\Delta t} = \vec \upsilon \ " .\)

    В СИ единицей ускорения является метр на секунду в квадрате (м/с 2).

    В общем случае мгновенное ускорение направлено под углом к скорости. Зная траекторию, можно определить направление скорости, но не ускорения. Направление ускорения определяется направлением равнодействующей сил, действующих на тело.

    При прямолинейном движении с возрастающей по модулю скоростью (рис. 6, а) векторы \(~\vec a\) и \(~\vec \upsilon_0\) сонаправлены (\(~\vec a \upuparrows \vec \upsilon_0\)) и проекция ускорения на направление движения положительна.

    При прямолинейном движении с убывающей по модулю скоростью (рис. 6, б) направления векторов \(~\vec a\) и \(~\vec \upsilon_0\) противоположны (\(~\vec a \uparrow \downarrow \vec \upsilon_0\)) и проекция ускорения на направление движения отрицательна.

    Вектор \(~\vec a\) при криволинейном движении можно разложить на две составляющие, направленные вдоль скорости \(~\vec a_{\tau}\) и перпендикулярно скорости \(~\vec a_n\) (рис. 1.7), \(~\vec a_{\tau}\) - тангенциальное ускорение, характеризующее быстроту изменения модуля скорости при криволинейном движении, \(~\vec a_n\) - нормальное ускорение, характеризующее быстроту изменения направления вектора скорости при криволинейном движении Модуль ускорения \(~a = \sqrt{a^2_{\tau} + a^2_n}\).

    Литература

    1. Аксенович Л.А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л.А. Аксенович, Н.Н.Ракина, К.С. Фарино; Под ред. К.С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.5-8.

    Темой нашей сегодняшней статьи станет кинематика материальной точки. Что это вообще такое? Какие понятия фигурируют в ней и какое определение необходимо дать этому термину? На эти и многие другие вопросы мы сегодня и постараемся ответить.

    Определение и понятие

    Кинематика материальной точки представляет собой не что иное, как подраздел физики под названием «механика». Она, в свою очередь, изучает закономерности движения тех или иных тел. Кинематика материальной точки занимается также этой задачей, однако делает это не в общем виде. На самом деле этот подраздел изучает методы, которые позволяют описать движение тел. При этом для исследования подходят только так называемые идеализированные тела. К таковым относятся: материальная точка, абсолютно твердое тело и идеальный газ. Рассмотрим понятия подробнее. Все мы со школьной скамьи знаем, что материальной точкой принято называть тело, размерами которого в той или иной ситуации можно пренебречь. К слову, кинематика материальной точки впервые начинает фигурировать в учебниках седьмого класса по физике. Это наиболее простая отрасль, поэтому начинать знакомство с наукой при ее помощи наиболее удобно. Отдельным вопросом является то, какие имеются элементы кинематики материальной точки. Их достаточно много, причем условно их можно разбить на несколько уровней, имеющих различную сложность для понимания. Если говорить, например, о радиус-векторе, то, в принципе, в его определении нет ничего запредельно сложного. Однако согласитесь с тем, что гораздо проще его понять будет студенту, нежели ученику средней или старшей школы. Да и если честно говорить, нет никакой необходимости объяснять особенности этого термина старшеклассникам.

    Краткая история создания кинематики

    Еще много-много лет назад великий ученный Аристотель посвятил львиную долю своего свободного времени изучению и описанию физики как отдельной науки. В том числе он работал и над кинематикой, пытаясь представить ее основные тезисы и понятия, так или иначе применяемые при попытках решения практических и даже обыденных задач. Аристотель дал первоначальные представления о том, что представляют собой элементы кинематики материальной точки. Его работы и труды очень ценны для всего человечества. Тем не менее в своих выводах он сделал немалое количество ошибок, и виной тому были определенные заблуждения и просчеты. Работами Аристотеля в свое время заинтересовался другой ученный - Галилео Галилей. Один из основополагающих тезисов, выдвинутых Аристотелем, гласил о том, что движение тела происходит только в том случае, если на него действует какая-то сила, определенная по интенсивности и направлению. Галилей доказал, что это ошибка. Сила будет оказывать влияние на параметр скорости движения, но не более. Итальянец показал, что сила есть причина ускорения, и оно может возникнуть только обоюдно с ней. Также Галилео Галилей уделил немалое внимание изучению процесса выводя соответствующие закономерности. Наверное, все помнят о его знаменитых опытах, которые он проводил на Пизанской башне. В своих работах основы кинематических решений использовал и физик Ампер.

    Исходные понятия

    Как говорилось ранее, кинематика изучает способы описания движения идеализированных объектов. При этом на практике могут применяться основы математического анализа, обыкновенной алгебры и геометрии. Но какие же понятия (именно понятия, а не определения и на параметрические величины) лежат в основе этого подраздела физики? Во-первых, все должны четко усвоить, что кинематика материальной точки рассматривает движение без учета силовых показателей. То есть для решения соответствующих задач нам не понадобятся формулы, связанные с силой. Она кинематикой не учитывается, сколько бы их ни было - одна, две, три, хоть несколько сотен тысяч. Тем не менее существование ускорения все же предусматривается. В целом ряде задач кинематика движения материальной точки предписывает определить величину ускорения. Однако причины возникновения этого явления (то есть силы и их природа) не рассматриваются, а опускаются.

    Классификация

    Мы выяснили, что кинематика исследует и применяет методы описания движения тел без оглядки на воздействующие на них силы. Кстати говоря, такой задачей занимается уже другой подраздел механики, который называют динамикой. Вот уже там применяются которые позволяют на практике определить достаточно многие параметры при малом количестве известных первоначальных данных. материальной точки - это пространство и время. А в связи с развитием науки как в целом, так и в данной области, возник вопрос о целесообразности использования подобной комбинации.

    С самого начала существовала классическая кинематика. Можно говорить о том, что ей свойственно не просто наличие как временных, так и пространственных промежутков, но и их независимость от выбора той или иной системы отсчета. Кстати, об этом мы поговорим несколько позже. Сейчас же просто объясним, о чем идет речь. Пространственным промежутком в данном случае будет считаться отрезок, временным - интервал времени. Вроде бы все должно быть понятно. Так вот, эти промежутки будет в классической кинематике считаться абсолютными, инвариантными, иными словами не зависящими от перехода из одной системы отсчета в другую. То ли дело релятивистская кинематика. В ней промежутки при переходе между системами отсчета могут изменяться. Правильнее даже будет сказать, что не могут, а должны, наверное. В силу этого одновременность двух случайных событий также становится относительной и подлежит особому рассмотрению. Именно поэтому в релятивистской кинематике два понятия - пространство и время - объединяются в одно.

    Кинематика материальной точки: скорость, ускорение и другие величины

    Чтобы хотя бы немного понимать данный подраздел физики, необходимо ориентироваться в наиболее главных понятиях, знать определения и представлять, что собой представляет в общем плане та или иная величина. Ничего сложно в этом нет на самом деле, все очень легко и просто. Рассмотрим, пожалуй, для начала основные понятия, применяемые в задачах по кинематике.

    Движение

    Механическим движением мы будем считать процесс, в ходе которого тот или иной идеализированный объект изменяет свое положение в пространстве. При этом можно говорить о том, что изменение происходит относительно других тел. Необходимо учитывать и тот факт, что одновременно происходит и установление определенного временного промежутка между двумя событиями. Например, можно будет выделить определенный интервал, образовавшийся за время, прошедшее между тем, как тело прибыло из одной позиции в другую. Отметим также, что тела при этом могут и будут взаимодействовать между собой, согласно общим законам механики. Это как раз то, чем чаще всего оперирует кинематика материальной точки. Система отсчета - следующее понятие, которое неразрывно связано с ней.

    Координаты

    Их можно назвать обыкновенным данными, которые позволяют определить положение тела в тот или иной момент времени. Координаты неразрывно связаны с понятием системы отсчета, а также координатной сеткой. Чаще всего представляют собой комбинацию букв и цифр.

    Радиус-вектор

    Из названия уже должно быть понятно, что он представляет собой. Тем не менее все же поговорим об этом подробнее. Если точка движется по некоторой траектории, а мы точно знаем начало той или иной системы отсчета, то можно в любой момент времени провести радиус-вектор. Он будет соединять первоначальное положение точки с мгновенным или конечным.

    Траектория

    Ею будет называться непрерывная линия, которая прокладывается в результате движения материальной точки в той или иной системе отсчета.

    Скорость (как линейная, так и угловая)

    Это величина, которая может рассказать о том, как быстро тело проходит тот или иной промежуток дистанции.

    Ускорение (и угловое, и линейное)

    Показывает, по какому закону и как интенсивно изменяется скоростной параметр тела.

    Пожалуй, вот они - основные элементы кинематики материальной точки. Следует отметить, что и скорость, и ускорение являются А это означает то, что они не просто имеют некоторое показательное значение, но и определенное направление. К слову, они могут быть направлены как в одну сторону, так и в противоположные. В первом случае тело будет ускоряться, во втором - тормозить.

    Простейшие задачи

    Кинематика материальной точки (скорость, ускорение и расстояние в которой являются практически фундаментальными понятиями) насчитывает даже не то что огромное количество задач, а много их различных категорий. Давайте попробуем решить достаточно простенькую задачку по определению пройденного телом расстояния.

    Предположим, условия, которые мы имеем на руках, следующие. Автомобиль гонщика стоит на стартовой черте. Оператор подает отмашку флагом, и машина резко срывается с места. Определить, сможет ли она поставить новый рекорд в состязании гонщиков, если дистанцию, равную одной сотне метров, очередной лидер прошел за 7,8 секунд. Ускорение автомобиля принять равным 3 метра, деленным на секунду в квадрате.

    Итак, как же решить подобную задачу? Она достаточно интересная, поскольку от нас требуется не «сухое» определение тех или иных параметров. Она скрашена оборотами и определенной ситуацией, что разнообразит процесс решения и поиска показателей. Но чем же мы должны руководствоваться перед тем, как подступиться к заданию?

    1. Кинематика материальной точки предусматривает использование в данном случае ускорения.

    2. Предполагается решение при помощи формулы расстояния, поскольку его численное значение фигурирует в условиях.

    Решается задача вообще-то просто. Для этого берем формулу расстояния: S = VoT + (-) AT^2/2. В чем заключается смысл? Нам нужно узнать, за какое время гонщик пройдет обозначенную дистанцию, а затем сравнить показатель с рекордом, чтобы узнать, побьет он его или же нет. Для этого выделим время, получим формулу для него: AT^2 + 2VoT - 2S. Это есть не что иное, как Но автомобиль срывается с места, значит, начальная скорость будет равна 0. При решении уравнения дискриминант окажется равным 2400. Для поиска времени необходимо извлечь корень. Сделаем до второго знака после запятой: 48,98. Найдем корень уравнения: 48,98/6 = 8,16 секунд. Получается, что гонщик не сможет побить существующий рекорд.