Главная · Кашель · Переменные звёзды — что это и какие они бывают. Виды, типы и общая классификация переменных звезд

Переменные звёзды — что это и какие они бывают. Виды, типы и общая классификация переменных звезд

Переменные звезды

Хотя на первый взгляд сверкающие на небе звезды кажутся постоянными, оказывается, что у многих из них видимый блеск меняется со временем. Звезда становится то ярче, то слабее. Такие звезды называются переменными звездами. У одних переменных звезд блеск меняется строго периодически. У других он меняется более или менее периодически, у третьих -- вовсе хаотическим образом. Есть звезды, вспыхивающие неожиданно. Там, где несколько дней назад была еле заметная на фотографиях звездочка, сегодня сверкает звезда, видимая невооруженным взглядом. Через несколько месяцев блеск звезды снова падает. У некоторых звезд вспышки повторяются. Есть такие звезды, у которых наблюдаются очень быстрые вспышки. За несколько минут звезда становится ярче в сотни раз, а через час возвращается к исходному состоянию.

Амплитуды колебаний блеска различных переменных звезд составляют от нескольких сотых долей звездной величины Звездная величина -- характеристика видимого блеска звезд. Коэффициент для определения звездных величин светил равен 2,512. Нуль пункт для системы звездных величин был условно определен по группе звезд в области Полярной звезды, называемых северным полярным рядом. Видимая звездная величина не имеет ничего общего с размером звезды. Этот термин имеет историческое происхождение и характеризует только блеск звезды. Самые яркие звезды имеют нулевую и даже отрицательную звездную величину. Например, такие звезды, как Вега и Капелла, имеют примерно нулевую величину, а самая яркая звезда нашего неба -- Сириус -- минус 1.5. Звездная величина обозначается вверху маленькой латинской буквой m (от слова “магнитудо” -- величина). Для не видимых глазом звезд используется та же шкала звездных величин. до 15-17 звездных величин. С развитием техники и усовершенствованием приемников, регистрирующих блеск звезд, стало возможным открыть новые переменные звезды с яочень маленькими амплитудами и короткими периодами. Общее число обнаруженных переменных звезд в Галактике Галактика. В отличие от других галактик ее название пишется с заглавной буквы. около 40000, а в других галактиках Галактика -- огромная вращающаяся звездная система.-- более 5000. Для обозначения переменных звезд используются латинские буквы с указанием созвездия, в котором звезда расположена. В пределах одного созвездия переменным звездам последовательно присваивается одна латинская буква, комбинация из двух букв либо буква V с номером. Например: S Car, RT Per, V557 Sgr.

Переменные звезды делятся на три больших класса: пульсирующие, эруптивные (взрывные) и затменные. Пульсирующие звезды обладают плавным изменением блеска. Оно обусловлено периодическими изменениями радиуса и температуры поверхности. При сжатии звезд температура возрастает. Повышение температуры приводит к увеличению светимости Светимость -- полная энергия, которую излучает звезда в единицу времени., не смотря на то, что радиус уменьшается. Периоды пульсирующих звезд меняются от долей дня (звезды типа RR Лиры) до десятков (цефеиды) и сотен дней (мириды -- звезды типа Мира Кита). У цефеид и звезд типа RR Лиры периодичность выдерживается с удивительной точностью. У переменных звезд с полуправильным или хаотичным изменением блеска пульсации, хотя и более мощные, происходят нерегулярно. Все цефеиды -- гиганты, звезды большой светимости, многие из них сверхгиганты, к ним относятся звезды с наибольшей светимостью. Мириды называются долгопериодическими переменными звездами. Изменения их блеска сопровождаются изменениями их температуры. Мира Кита в наибольшем блеска почти так же ярка, как Полярная звезда. Переменные звезды этого типа также являются взездами-сверхгигантами. Пульсирующих звезд открыто около 14 тыс.

Второй класс переменных звезд -- взрывные, или, как их еще называют, эруптивные, звезды. К ним относятся, во-первых, сверхновые Сверхновые звезды -- самые яркие звезды из тех, которые появляются на небе в результате звездных вспышек., новые Новые звезды -- звезды, блеск которых неожиданно возрастает в сотни, тысячи, а иногда и в миллионы раз., повторные новые, звезды типа U Близнецов, новоподобные и симбиотические звезды. Всем этим звездам свойственны однократные или повторяющиеся вспышки взрывного характера с внезапным увеличением яркости. Многие из этих звезд являются компонентами тесных двойных систем, и бурные процессы в возникают при взаимодействии компонентов в таких системах. переменная звезда спутник

Раньше думали, что новые звезды действительно являются вновь появившимися. Но эти звезды существовали и ранее -- они обнаруживаются как слабые звезды на фотографиях звездного неба, сделанных ранее.

Некоторые из новых звезд (а может быть, и все) вспыхивают неоднократно. Так внезапно вспыхивать и увеличиваться в размерах со скоростью, равной сотням километров в секунду, могут очень горячие звезды, имеющие особое, неустойчивое состояние. При вспышке их наружные газовые слои срываются и с огромной скоростью несутся в пространство.С течением времени эти газы рассеиваются.

В редких случаях наблюдаются вспышки сверхновых звезд. Они отличаются тем, что их светимость во время вспышки бывает в десятки и сотни миллионов раз больше светимости Солнца. В настоящее время ученые-астрономы и физики много работают над решением вопроса о том, какие физические причины вызывают такое грандиозное явление, как вспышки сверхновых звезд.

Во-вторых, к эруптивным звездам относятся молодые быстрые неправильные переменные звезды, звезды типа UV Кита и ряд родственных им объектов. Число открытых эруптивных превышает 2000.

Пульсирующие и эруптивные звезды называются физическими переменными звездами, поскольку изменения их видимого блеска связаны с физическими процессами, протекающими на них. При этом изменяется температура, цвет, а иногда и размеры звезды.

К третьему классу переменных звезд относятся затменные переменные. Это двойные системы, плоскость орбиты которых параллельна лучу зрения. При движении звезд вокруг общего центра тяжести они поочередно затмевают друг друга, что и вызывает колебания их блеска.

Кривая изменения блеска взезды Алголь. По горизонтали указано время в часах


Схема движения спутника Алголя

В тесных системах изменения суммарного блеска могут быть вызваны искажениями формы звезд.. Периоды изменения блеска затменных двойных -- от нескольких часов до десятков лет. В Галактике известно более 4000 таких звезд.

Существует еще небольшой отдельный класс переменных звезд -- магнитные звезды. Кроме большого магнитного поля они имеют сильные неоднородности поверхностных характеристик. Такие неоднородности при вращении звезды приводят к изменению блеска.

Примерно для 20000 звезд класс переменности не определен.

Переменные звезды очень внимательно изучаются астрономами. Наблюдаемые изменения блеска, спектра и других величин дают возможность определить основные характеристики звезды, такие, как светимость, радиус, температура, плотность, масса, а также изучить строение атмосфер и характеристики различных газовых потоков. По наблюдениям переменных звезд в различных звездных системах можно определить возраст этих систем и тип их звездного населения. Замечательная зависимость “период -- светимость”, обнаруженная для цефеид, позволяет по установленному периоду вычислить истинную яркость звезды, а следовательно, и расстояния до нее. Если в каком-либо очень отдаленном скоплении звезд обнаружена цефеида, то по наблюдениям измеряют период изменения ее блеска, а отсюда и светимость. А после этого легко вычислить, на каком расстоянии находится эта цефеида, если она при данной светимости представляется нам по своему блеску звездой такой-то величины. Размеры скопления, как бы ни были они велики, ничтожны по сравнению с расстоянием до него, а это значит, что все входящие в него звезды находятся на приблизительно одинаковых расстояниях от нас. Таким образом были измерены расстояния до удаленных частей нашей Галактики, а также до других галактик. Современные наблюдения показали, что некоторые переменные двойные звезды являются космическими источниками рентгеновского излучения.

Каталоги переменных звёзд

Первый каталог переменных звёзд был составлен английским астрономом Эдуардом Пиготтом в 1786 году . В этот каталог входило 12 объектов: две сверхновые , одна новая , 4 звезды типа ο Cet (Мириды), две цефеиды (δ Cep, η Aql), две затменные (β Per , β Lyr) и P Cyg. В XIX - начале XX вв. ведущую роль в изучении переменных звёзд заняли немецкие астрономы. После второй мировой войны по решению Международного астрономического союза (МАС) от 1946 года работа по созданию каталогов переменных была поручена советским астрономам - и Астросовету АН СССР (ныне ИНАСАН). Приблизительно раз в 15 лет эти организации издают Общий каталог переменных звёзд (ОКПЗ, англ. GCVS ). Последнее 4-е издание выходило с по гг. В промежутках между очередными изданиями ОКПЗ публикуются дополнения к нему. Параллельно с созданием ОКПЗ ведётся работа по созданию каталогов звёзд, заподозренных в переменности блеска (КПЗ, англ. NSV ).
Каталоги переменных звёзд
год автор страна число звёзд
1786 Э. Пиготт Англия 12
1844 Ф. Аргеландер Пруссия 18
1926 Р. Прагер Германия 2906
1943 Х. Шнеллер Германия 9476
1948 ОКПЗ-1 (Б. В. Кукаркин и П. П. Паренаго) СССР 10930
??? ОКПЗ-2 СССР ???
1969-1971 ОКПЗ-3 СССР 20437
1985-1995 ОКПЗ-4 СССР -Россия 28435

Система обозначений переменных звёзд

Современная система обозначений переменных звёзд является развитием системы, предложенной Ф. Аргеландером в середине XIX века. Аргеландер в г. предложил именовать те переменные звезды, которые не получили ещё своего обозначения, буквами от R до Z в порядке обнаружения в каждом созвездии. Например, например R Hydrae - первая по времени открытия П. звезда в созвездии Гидра (созвездие) , S Hydrae - вторая и т. д. Таким образом, было зарезервировано по 9 обозначений переменных на каждое созвездие, т.е. 792 звезды. Во времена Аргеландера такой запас казался вполне достаточным. Однако, уже к 1881 году лимит 9 звёзд на созвездие был превзойдён и Э. Хартвиг предложил дополнить номенклатуру двухбуквенными обозначениями по следующему принципу:

RR RS RT RU RV RW RX RY RZ
SS ST SU SV SW SX SY SZ
TT TU TV TW TX TY TZ
UU UV UW UX UY UZ
VV VW VX VY VZ
WW WX WY WZ
XX XY XZ
YY YZ
ZZ

Например RR Lyr. Впрочем, в скором времени и эта система исчерпала в ряде созвездий все возможные варианты. Тогда астрономы ввели дополнительные двубуквенные обозначения:

AA AB AC ... AI AK ... AZ
BB BC ... BI BK ... BZ
...
II IK ... IZ
KK ... KZ
...
QQ ... QZ

Из двубуквенных комбинаций исключена буква J дабы не путать её с I в рукописном написании. Лишь только после того, как двубуквенная система обозначений полностью себя исчерпала решено было использовать простую нумерацию звёзд с указанием созвездия , начиная с номера 335, например V335 Sgr. Эта система используется по сей день. Больше всего переменных звёзд обнаружено в созвездии Стрельца . Примечательно, что последнее место в классификации Аргеландера было занято в 1989 году звездой Z Резца.

Классификация переменных звёзд

За всю историю изучения переменных звёзд неоднократно предпринимались попытки создать их адекватную классификацию. Первые классификации, основанные на малом количестве наблюдательного материала в основном группировали звёзды по сходным внешним морфологическим признакам, таким как форма кривой блеска, амплитуда и период изменения блеска и др. В последствии, вместе с увеличением числа известных переменных звёзд, увеличилось и количество групп со сходными морфлогическими признаками, некоторые большие были разделены на ряд меньших. Вместе с тем, благодаря развитию теоретических методов, стало возможным проводить классификацию не только по внешним, наблюдаемым признакам, но и по физическим процессам, приводящим к тому или иному виду переменности.

Для обозначения типов переменных звёзд используют т. н. прототипы - звёзды, чьи характеристики переменности принимаются за стандартные для данного типа. Например, переменные звезды типа RR Lyr .

Система Гузо

Следующее деление переменных звёзд на классы предложено Гузо (Houzeau) в XIX в.:

  1. Звёзды, блеск которых непрерывно увеличивается или уменьшается.
  2. Звёзды с периодическим изменением блеска.
  3. * Звёзды типа Миры Кита - звёзды с большими периодами и значительными изменениями яркости.
  4. * Звёзды с довольно быстрым и правильным изменением блеска. Характерные представители β Lyrae , δ Cephei, η Aquilae.
  5. * Звёзды типа Альголя (β Persei). Звёзды с очень коротким периодом (два-три дня) и чрезвычайной правильностью измерения яркости, которое занимает только незначительную часть периода. Остальное время звезда сохраняет свой наибольший блеск. Другие звёзды типа Алголя: λ Tauri, R Canis majoris, Y Cygni, U Cephei и т. д.
  6. Звёзды с неправильными изменениями блеска. Представитель - η Argus

Система классификации принятая в ОКПЗ-3

В ОКПЗ-3 все переменные звезды разделены на три больших класса: пульсирующие переменные, эруптивные переменные и затменные переменные. Классы подразделяются на типы, некоторые типы - на подтипы.

К пульсирующим переменным относят те звезды, переменность которых вызвана процессами, происходящими в их недрах. Эти процессы приводят к периодическому изменению блеска звезды, а вместе с ним и других характеристик звезды - температуры поверхности, радиуса фотосферы и пр. Класс пульсирующих переменных делится на следующие типы:

Кривая блеска звезды δ Цефея

  1. Долгопериодические цефеиды (Cep) - звёзды высокой светимости с периодами от 1 до ~70 суток. Разделяются на два подтипа:
  2. * Классические цефеиды (Cδ) - цефеиды плоской составляющей Галактики
  3. * Звёзды типа W Девы (CW) - цефеиды сферической составляющей Галактики
  4. Медленные неправильные переменные (L)
  5. Переменные типа RR Лиры (RR)
  6. Переменные типа RV Тельца (RV)
  7. Переменные типа β Цефея или типа β Большого Пса (βC)
  8. Переменные типа δ Щита (δ Sct)
  9. Переменные типа ZZ Кита - пульсирующие белые карлики
  10. Магнитные переменные типа α² Гончих Псов (αCV)

Эруптивные переменные звезды

К данному классу относятся звезды, меняющие свой блеск нерегулярно или единожды за время наблюдений. Все изменения блеска эруптивных звёзд связывают с взрывными процессами происходящими на звёздах, в их окрестности или со взрывами самих звёзд. Этот класс переменных звёзд делят на два подкласса: неправильные переменные, связанные с диффузными туманностями, и быстрые неправильные, а также подкласс новых и новоподобных звёзд.

Неправильные переменные, связанные с диффузными туманностями, и быстрые неправильные
  1. Переменные типа UV Кита (UV) - звезды спектрального класса d Me, испытывающие кратковременные вспышки значительной амплитуды.
  2. * Звезды типа UVn - подтип звёзд UV, связанный с диффузными туманностями
  3. Переменные типа BY Дракона (BY) - эмиссионные звёзды поздних спектральных классов, показывающие периодические изменения блеска с переменной амплитудой и меняющейся формой кривой блеска.
  4. Неправильные переменные (I). Характеризуются индексами a, b, n, T, s. Индекс a указывает на то, что звезда относится к спектральному классу O-A, индекс b обозначает спектральный класс F-M, n символизирует связь с диффузными туманностями, s - быструю переменность, T описывает эмиссионный спектр характерный для звезды T Тельца. Так обозначение Isa присваивается быстрой неправильной переменной раннего спектрального класса.
Новые и новоподобные звезды
  1. * Быстрые новые (Na)
  2. * Медленные новые (Nb)
  3. * Очень медленные новые (Nc)
  4. * Повторные новые (Nr)
  5. Новоподобные звезды (Nl)
  6. Симбиотические переменные типа Z Андромеды (ZAnd)
  7. Переменные типа R Северной короны (RCB)
  8. Переменные типа U Близнецов (UG)
  9. Переменные типа Z Жирафа (ZCam)
  10. Переменные типа S Золотой Рыбы (SD)
  11. Переменные типа γ Кассиопеи (γC)

Затменные переменные звёзды

К затменно-переменным звёздам относят системы из двух звёзд, суммарный блеск которых периодически изменяется с течением времени. Причиной изменения блеска могут быть затмения звёзд друг другом, или изменение их формы взаимной гравитацией в тесных системах, то есть переменность связана с изменением геометрических факторов а не с физической переменностью.

  1. Затменные переменные типа Алголя (EA) - кривые блеска позволяют фиксировать начало и конец затмений; в промежутках между затмениями блеск остаётся практически постоянным.

Кривая блеска звезды β Лиры

  1. Затменные переменные типа β Лиры (EB) - Двойные звезды с эллипсоидальными компонентами, непрерывно меняющими блеск, в том числе и в промежутке между затмениями. Обязательно наблюдается вторичный минимум. Периоды, как правило больше 1 дня.
  2. Затменные переменные типа W Большой Медведицы (EW) - контактные системы звёзд спектральных классов F и более поздних. Имеют периоды менее 1 дня и амплитуды обычто меньшие 0,8 m .
  3. Эллипсоидальные переменные (Ell) - двойные системы не показывающие затмений. Их блеск меняется из-за изменения обращённой к наблюдателю площади излучающей поверхности звезды.

Система классификации принятая в ОКПЗ-4

За время, прошедшее между выходом третьей и четвёртой редакцией ОКПЗ увеличилось не только количество наблюдаемого материала, но и его качество. Это позволило ввести более подробную классификацию, внедряя в неё представление о физических процессах, вызывающих переменность звёзд. Новая классификация содержит 8 различных классов переменных звёзд.

  1. Эруптивные переменные звёзды - это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно в следствии изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
  2. Пульсирующие переменные звезды - это звезды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
  3. Вращающиеся переменные звезды - это звезды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвано наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
  4. Катаклизмические (взрывные и новоподобные) переменные звёзды . Переменности этих звёзд вызвана взрывами, причиной которых являются взрывные процессы в их поверхностных слоях (новые) или глубоко в их недрах (сверхновые).
  5. Затменно-двойные системы
  6. Оптические переменные двойные системы с жёстким рентгеновским излучением
  7. Новые типы переменных - типы переменности, открытые в процессе издания каталога и поэтому не попавшие в уже изданные классы.

Переменные звёзды

Переменные звезды - это звезды, блеск которых меняется. Звезды бывают затменно-переменными и физически переменными. В первом случае сама звезда свой блеск не меняет, просто одна звезда при движении закрывает другую и наблюдатель видит изменение блеска звезды. К этим звездам относится Алголь (созвездие Персея).

Физическими переменными называются звезды, которые меняют свою светимость за относительно короткие промежутки времени в результате физических процессов, происходящих в самой звезде. В зависимости от характера переменности различаются пульсирующие переменные и эруптивные переменные, новые и сверхновые звезды, являющиеся частным случаем эруптивных переменных, а также пульсары и тесные двойные звезды (с перетеканием вещества от одного компонента к другому). Сейчас известно десятки тысяч физически переменных звезд.

Все переменные звезды, в том числе и затменные переменные, имеют специальные обозначения, если только они не были ранее обозначены буквой греческого алфавита. Первые 334 переменные звезды каждого созвездия обозначаются последовательностью букв латинского алфавита R, S, Т, ..., Z, RR, RS, ... ..., RZ, SS, ST, ..., SZ, ..., ZZ, AA, .... AZ, ..., QQ, ..., QZ с добавлением названия соответствующего созвездия (например. RR Lyr). Следующие переменные обозначаются V 335, V 336 и т.д. (например, V 335 Cyg)

А теперь рассмотрим все известные классы физически переменных звёзд.

Цефеиды. Цефеидами называются физические переменные звезды, характеризующиеся особой формой кривой блеска. Видимая звездная величина плавно и периодически меняется со временем и соответствует изменению светимости звезды в несколько раз (обычно от 2 до 6). К цефеидам принадлежит Полярная звезда. Уже давно открыли, что она меняет свой блеск в довольно незначительных пределах.

Этот класс звезд назван по имени одной из типичных его представительниц - звезды d Цефея.

Цефеиды относятся к гигантам и сверхгигантам классов F и G. Это обстоятельство позволяет наблюдать их с огромных расстояний, в том числе и далеко за пределами нашей звездной системы - Галактики.

Период - одна из важнейших характеристик цефеид. Для каждой данной звезды он постоянен с большой степенью точности, но у разных цефеид периоды весьма различны (от суток до нескольких десятков суток).

Одновременно с видимой звездной величиной у цефеид меняется спектр, в среднем в пределах одного спектрального класса Это означает, что изменение светимости цефеид сопровождается изменением температуры их атмосфер в среднем на 1500°.

В спектрах цефеид по смещению спектральных линий обнаружено периодическое изменение лучевых скоростей. Наибольшее смещение линий в красную сторону происходит в минимуме, а в синюю - в максимуме блеска. Таким образом, периодически меняется и радиус звезды.

Звезды типа d Цефея относятся к молодым объектам, расположенным преимущественно вблизи основной плоскости пашей звездной системы - Галактики. Цефеиды, встречающиеся в шаровых звездных скоплениях, старше и отличаются несколько меньшей светимостью. Это менее массивные, а потому медленнее эволюционирующие звезды, достигшие стадии цефеид. Их называют звездами типа W Девы.

Описанные наблюдаемые особенности цефеид свидетельствуют о том, что атмосферы этих звезд испытывают регулярные пульсации. Следовательно, в них имеются условия для поддержания в течение долгого времени на постоянном уровне особого колебательного процесса.

Период механических колебаний звезды типа Солнца оказывается около трех часов. У Солнца действительно наблюдаются очень слабые пульсации с периодами меньше 2- 3 часов. Однако для того, чтобы подобные пульсации могли достигнуть столь значительных амплитуд, как это наблюдается у цефеид, должен существовать определенный механизм, обеспечивающий энергией эти колебания.

В настоящее время полагают, что эта энергия возникает за счет излучения звезды, а раскачка колебаний происходит благодаря своеобразному клапанному механизму, когда непрозрачность наружных слоев звезды задерживает часть излучения внутренних слоев.

Расчеты показывают, что фактически роль такого клапана играет тот слой звезды, в котором частично ионизован гелий (при этом водород и остальные элементы практически полностью ионизованы). Нейтральный гелий непрозрачен к ультрафиолетовому излучению звезды, которое задерживается и нагревает газ. Этот нагрев и вызванное им расширение способствует ионизации гелия. слой становится прозрачным, поток выходящего излучения увеличивается. Но это приводит к охлаждению и сжатию, из- за чего гелий снова становится нейтральным и весь процесс повторяется снова.

Для осуществления этого механизма необходимо, чтобы на определенной глубине под поверхностью звезды, где плотность уже достаточно велика, достигалась температура, как раз необходимая для ионизации гелия. Это возможно только у звезд с определенными значениями эффективных температур, т.е. светимостей. В итоге пульсации возможны только у определённых звезд.

Если предположить, что для цефеид имеет место некоторая зависимость между массой и светимостью, то в силу соотношения следует ожидать существования и зависимости между периодом и светимостью.

Наличие такой зависимости было установлено задолго до того, как удалось выяснить природу пульсаций цефеид. При изучении цефеид в одной из ближайших к нам звездных систем (в Малом Магеллановом Облаке) было замечено, что чем меньше видимая звездная величина цефеиды (т.е. чем ярче она кажется), тем больше период изменения ее блеска. Зависимость эта оказалась линейной. Из того, что все изученные звезды принадлежали одной и той же системе, следовало, что расстояния до них практически одинаковы. Поэтому обнаруженная зависимость одновременно оказалась зависимостью между периодом Р и абсолютной звездной величиной М (или светимостью L) для цефеид.

Основной трудностью определения нуль- пункта этой зависимости является то, что расстояния ни до одной из известных цефеид не удается определить тригонометрическим путем и приходится пользоваться значительно менее надежными косвенными методами.

Существование зависимости между периодом и абсолютной звездной величиной у цефеид играет исключительно важную роль в астрономии: по ней определяют расстояния до весьма удаленных объектов, когда не могут быть применены иные методы.

Кроме цефеид, существует еще несколько типов пульсирующих переменных звезд. Наиболее известны среди них звезды типа RR Лиры , прежде называвшиеся короткопериодическими цефеидами из-за сходства их характеристик с обычными цефеидами. Звезды типа RR Лиры - гиганты спектрального класса А. Они занимают очень узкий участок на диаграмме Герцшпрунга-Рессела, соответствующий почти одинаковой для всех звезд этого типа светимости, более чем в сто раз превышающей светимость Солнца. Периоды звезд типа RR Лиры заключены в пределах от 0,2 до 1,2 суток. Амплитуда изменения блеска достигает одной звездной величины.

Интересным типом пульсирующих переменных является небольшая группа звезд типа b Цефея (или типа b Большого Пса), принадлежащих преимущественно к гигантам ранних спектральных подклассов В (в среднем класс В2-3). На диаграмме Герцшпрунга-Рессела они расположены справа от верхней части главной последовательности. По характеру переменности и форме кривой блеска эти звезды напоминают звезды типа RR Лиры, отличаясь от них исключительно малой амплитудой изменения звездной величины, не более 0,2m. Периоды заключены в пределах от 3 до 6 часов, причем, как и у цефеид, наблюдается зависимость периода от светимости. Кривые изменения лучевых скоростей часто оказываются меняющимися по фазе, форме и амплитуде.

Помимо пульсирующих звезд с правильным изменением светимости существует ряд типов звезд, характер кривой блеска которых меняется. Среди них выделяются звезды типа RV Тельца , у которых изменения светимости характеризуются чередованием глубоких и мелких минимумов, происходящим с периодом от 30 до 150 дней и с амплитудой от 0,8 до 3,5 звездных величин. Звезды типа RV Тельца принадлежат к спектральным классам F, G или К. У многих из них вблизи эпохи максимума в спектре появляются яркие эмиссионные линии, а около минимума - полосы поглощения титана. Это говорит о том, что спектр звезд типа RV Тельца сочетает признаки как ранних спектральных классов горячих звезд, так и поздних холодных. Звезды типа RV Тельца - промежуточное звено между цефеидами и другими типами пульсирующих переменных.

Звезды типа m Цефея принадлежат к спектральному классу М и называются красными полуправильными переменными. Они отличаются иногда очень сильными неправильностями изменения светимости, происходящими за время от нескольких десятков до нескольких сотен суток.

Рядом с полуправильными переменными на диаграмме спектр-светимость располагаются звезды класса М , в которых не удается обнаружить повторяемости изменения светимости (неправильные переменные). Ниже их находятся звезды с эмиссионными линиями в спектре плавно меняющие свою светимость за очень большие промежутки времени (от 70 до 1300 дней) и в очень больших пределах (до 10m). Замечательной представительницей звезд этого типа является "омикрон" (o) Кита, или, как ее иначе называют, Мира (Дивная). Её открыл немецкий астроном Д. Фабрициус. В 1596 г. она была видна на небе, затем исчезла и появилась только в 1609 г.

По звезде Мира весь этот класс звезд называют долгопериодическими переменными типа Миры Кита или миридами. Мириды - пульсирующие звезды, яркость которых меняется из- за колебаний размеров. В спектрах этих звезд всегда присутствуют эмиссионные линии водорода (в максимуме) или металлов (перед минимумом). Длина периода у долгопериодических переменных звезд колеблется около среднего значения в пределах от 10% в обе стороны.

Рассмотренные группы пульсирующих переменных образуют единую последовательность звезд с увеличивающейся продолжительностью периода (или цикла) пульсации. Особенно наглядно эта последовательность выступает, если учесть количество звезд различных типов с данным значением периода, содержащихся в определенном объеме пространства. Большинство пульсирующих переменных имеет периоды, близкие к значениям 0d,2 (тип RR Лиры), 0d,5 и 5d (цефеиды), 15d (разновидность цефеид - звезды типа W Девы), l00d (полуправильные) и 300d (долгопериодические переменные). Все эти звезды
относятся к гигантам, т.е. согласно современным представлениям об эволюции звезд, к объектам, прошедшим стадию пребывания на главной последовательности.

Дальнейший путь эволюции соответствует перемещению на диаграмме Герцшпрунга-Рессела вправо. При этом все звезды верхней части главной последовательности должны пересечь полосу нестабильности, упоминавшуюся выше, а массивные звезды пересекают ее дважды и задерживаются на ней дольше.

Помимо неустойчивости, характерной для цефеид, на диаграмме Герцшпрунга-Рессела, возможно, существуют и другие области неустойчивости, соответствующие остальным пульсирующим переменным. Таким образом, пульсации, скорее всего, закономерное явление, отличающее некоторые этапы эволюции звезд.

Среди звезд меньшей светимости (карликов) также имеются переменные различных типов, общее известное число которых примерно раз в 10 меньше количества пульсирующих гигантов. Все они проявляют свою переменность в виде повторяющихся вспышек, которые могут быть объяснены различного рода выбросами вещества - эрупциями. Поэтому всю эту группу звезд вместе с новыми звездами называют эруптивными переменными .

Следует иметь в виду, однако, что здесь оказались звезды самой различной природы, как находящиеся на ранних этапах своей эволюции, так и завершающие свой жизненный путь.

Наиболее молодыми звездами, по- видимому, еще не завершившими процесса гравитационного сжатия, следует считать переменные типа Т Тельца (Т Таu). Это карлики спектральных классов чаще всего F- G, с эмиссионными линиями в спектре, напоминающими яркие линии солнечной хромосферы. Они в большом количестве обнаружены, например, в туманности Ориона.

Очень похожи на них звезды типа RW Возничего (RW Aur), принадлежащие спектральным классам от В до М. У всех этих звезд изменение светимости происходит настолько неправильно, что нельзя установить никакой закономерности. Хаотические изменения блеска могут происходить с амплитудами, достигающими 3m, причем иногда до 1m на протяжении часа.

Звезды типа Т Тельца чаще всего встречаются группами, особенно в пределах больших газопылевых туманностей. Небольшие яркие туманности наблюдаются и непосредственно вокруг самих этих звезд, что говорит о существовании у них обширных газовых оболочек. Движение вещества в этих оболочках, связанное с процессом гравитационного сжатия звезды, по- видимому, является причиной хаотической ее переменности. Отсюда следует, что звезды типа Т Тельца - самые молодые образования, которые уже можно считать звездами. Известны еще более молодые объекты - источники инфракрасного излучения. Но это еще не звезды, а сжимающиеся в дозвездные тела (протозвезды) газо-пылевые облака.

Вспыхивающие звезды типа UV Кита всегда встречаются в тех областях, где имеются переменные типа Т Тельца. Это карлики спектральных классов К и М. У них в спектре также наблюдаются эмиссионные линии кальция и водорода. Отличаются они необычайной быстротой возрастания светимости во время эпизодических вспышек: менее чем за минуту поток излучения может увеличиться в десятки раз. После этого за полчаса- час он возвращается к исходному уровню. Во время вспышки усиливается также яркость эмиссионных линий. Характер явления сильно напоминает хромосферную вспышку на Солнце, отличающуюся, однако, значительно большими масштабами. Звезды типа UV Кита скорее всего находятся на заключительных стадиях гравитационного сжатия.

Звезды типа Be. Массивные, быстро эволюционирующие звезды гораздо труднее застать на ранних стадиях эволюции. Тем не менее, среди горячих звезд класса В, преимущественно обладающих быстрым вращением, часто встречаются звезды с эмиссионными линиями, принадлежащими водороду, иногда гелию и другим элементам. Как правило, такие звезды отличаются переменными спектрами и меняют блеск на 0,1m-0,2m, причем эти изменения имеют нерегулярный характер и связаны, по-видимому, с истечением вещества, вызванным быстрым вращением. Массы Be-звезд порядка 10M¤. По-видимому, это недавно возникшие молодые объекты.

Звезды типа Вольфа-Райе (обозначаются WR) образуют немногочисленную группу звезд, принадлежащих к наиболее ярким объектам в нашей Галактике. В среднем их абсолютная звездная величина -4m, а общее известное их число не превышает 200. Спектры звезд типа WR состоят из широких ярких линий, принадлежащих атомам и ионам с высокими потенциалами ионизации (Н, 1 Не, 2 He, 3 С, 3 N, 3 О и т.д.), налагающихся на сильный непрерывный фон. Вид спектральных линий указывает на расширение оболочек, окружающих эти звезды, происходящее с ускорением. Энергия, излучаемая в линиях, сравнима с энергией в непрерывном спектре. Её источником является мощное ультрафиолетовое излучение очень горячей звезды, эффективная температура которой достигает 100 000 К! Световое давление столь горячего излучения, по- видимому, и является причиной наблюдаемого ускоренного движения атомов в атмосферах звезд типа WR. Как и Ве-звезды, это - молодые объекты, часто двойные системы.

Наряду с процессами сжатия или расширения блеск звезды может меняться из- за того, что на поверхности образуются темные и светлые пятна. Вращаясь вокруг оси, звезда поворачивается к наблюдателю то светлой, то темной стороной. На некоторых звездах темные пятна занимают большие площади, поэтому переменность становится заметной. На Солнце количество темных пятен тоже периодически возрастает. Установлено, что при прохождении темных пятен на видимом диске Солнца на Землю поступает меньше света. Так что Солнце можно считать пятнистой переменной звездой.

Новые звезды. Термин «новая» звезда вовсе не означает появления вновь возникшей звезды, а отражает только определенную стадию переменности некоторых звезд. Новыми звездами называют эруптивные переменные звезды особого типа, у которых хотя бы однажды наблюдалось внезапное и резкое увеличение светимости (вспышка) не менее чем на 7- 8 звездных величин. Чаще всего во время вспышки видимая звездная величина уменьшается на 10m- 13m, что соответствует росту светимости в десятки и сотни тысяч раз. В среднем абсолютная звездная величина в максимуме достигает 8,5m. После вспышки новые звезды являются очень горячими карликами. В максимальной фазе вспышки они похожи на сверхгиганты спектральных классов А- F.

Как показывают наблюдения, ежегодно в нашей Галактике вспыхивает около сотни новых звезд.

Если вспышка одной и той же новой звезды наблюдалась не менее двух раз, то такая новая называется повторной. У повторных новых звезд, как правило, возрастание светимости несколько меньше, чем у типичных новых.

После вспышки новые звезды часто обнаруживают слабую переменность.

Кривые блеска новых звезд имеют особый вид, позволяющий разделить все явления на несколько этапов. Начальный подъем блеска происходит очень быстро (2- 3 суток), но незадолго до максимума рост светимости несколько замедляется (окончательный подъем). После максимума происходит уменьшение светимости, длящееся годы. Падение блеска на первые три звездные величины обычно плавное. Иногда наблюдаются вторичные максимумы. Затем следует переходная стадия, отличающаяся либо плавным уменьшением светимости ещё на три звездные величины, либо колебаниями ее. Иногда происходит резкое падение светимости с последующим медленным возвращением к прежнему значению. Окончательное падение блеска происходит довольно плавно. В результате звезда приобретает ту же светимость, что и до вспышки.

Описанная картина изменения светимости новой звезды показывает, что во время вспышки происходит внезапный взрыв, вызванный неустойчивостью, возникшей в звезде. Согласно различным гипотезам, эта неустойчивость может возникать у некоторых горячих звезд в результате внутренних процессов, определяющих выделение энергии в звезде, либо вследствие воздействия каких- либо внешних факторов.

Возможной причиной взрыва новой является обмен вещества между компонентами тесных двойных систем, к которым принадлежат все такие звезды. В паре одна звезда, как правило, звезда главной последовательности, вторая - белый карлик. Нормальная звезда сильно деформируется воздействием белого карлика. Плазма из нее начинает перетекать на белый карлик, образуя вокруг него светящийся диск. По мере падения вещества на белый карлик возникает слой газа с высокой температурой и плотностью, столкновения протонов вызывают термоядерную реакцию. Именно этот термоядерный взрыв на поверхности белого карлика и приводит к сбросу накопившейся оболочки. Свечение оболочки наблюдатель видит как вспышку новой звезды. Общее количество энергии, выделяющейся при вспышке новой, превышает 10 45 -10 46 эрг. Солнце излучает столько энергии за десятки тысяч лет! Все же это существенно меньше запасов всей термоядерной энергии звезды. На этом основании полагают, что взрыв новой звезды не сопровождается изменением общей её структуры, а затрагивает только поверхностные слои.

Следствием нагрева газа, происходящего в результате взрыва, является выброс звездой вещества, приводящий к отрыву от нее внешних слоев - оболочки с массой 10 -4 -10 -5 M¤. Эта оболочка расширяется с огромной скоростью от нескольких сотен до 1500-2000 км/сек. Звезда быстро сбрасывает ее и в результате образует вокруг себя туманность. Расширяющиеся газовые туманности были обнаружены почти у всех наиболее близких к нам новых звезд.

На первых стадиях вспышки, когда в результате расширения радиус оболочки возрастает в сотни раз, уменьшается плотность и температура внешних слоев звезды. Первоначально горячая звезда класса О приобретает спектр класса А-F. Однако, несмотря на охлаждение, общая светимость звезды быстро возрастает вследствие мощного свечения газов и увеличения радиуса оболочки. Поэтому незадолго перед максимумом новая звезда имеет спектр сверхгиганта.

На этом этапе спектр новой обладает всеми особенностями, присущими сверхгигантам класса А или F (узкие линии, среди которых выделяются линии водорода). Однако важной особенностью этого спектра, называемого предмаксимальным, является сильный сдвиг линий поглощения в фиолетовую сторону, соответствующий приближению излучающего вещества к нам со скоростью в несколько десятков или сотен километров в секунду. В это время происходит расширение плотной оболочки, которую имеет новая на этой стадии.

В максимуме резко меняется вид спектра. Появляется так называемый главный спектр. Его линии смещены в фиолетовую сторону на величину, соответствующую скорости расширения около 1000 км/сек. Причина этого изменения спектра связана с тем, что при своем расширении оболочка становится тоньше и, следовательно, прозрачнее. Поэтому становятся видными более глубокие ее слои, которые движутся гораздо быстрее. Сразу после максимума в спектре новой появляются яркие, очень широкие эмиссионные линии, имеющие вид полос, принадлежащих главным образом водороду, железу и титану. Каждая из этих полос занимает весь интервал спектра от соответствующей смещенной в фиолетовую сторону линии поглощения главного спектра до несмещенного положения той же линии. Это означает, что оболочка становится уже настолько разреженной, что видны различные ее слои, обладающие всевозможными скоростями.

Когда это уменьшение светимости составляет около 1m, появляется диффузно- искровой спектр, состоящий из сильно размытых линий поглощения водорода и ионизованных металлов, а также из специфичных ярких полос. Диффузно-искровой спектр накладывается на главный, постепенно усиливаясь по своей интенсивности. В дальнейшем к нему добавляется так называемый орионов спектр, характерный для горячих звезд класса В. Появление диффузно-искрового, а затем и орионова спектров свидетельствует о том, что вещество выбрасывается звездой с увеличивающейся скоростью постепенно из все более глубоких и более горячих слоев.

К началу переходной стадии диффузно-искровой спектр исчезает, а орионов достигает наибольшей интенсивности. После того как последний также исчезает, на фоне непрерывного спектра новой звезды, пересеченного широкими полосами поглощения, возникают и постепенно усиливаются эмиссионные линии, наблюдаемые в спектрах разреженных газовых туманностей (небулярная стадия). Это свидетельствует о еще более сильном разрежении вещества оболочки.

Сверхновые звезды. Сверхновыми называются звезды, вспыхивающие подобно новым и достигающие в максимуме абсолютной звездной величины от -18m до -19m и даже -21m. Возрастание светимости происходит более, чем на 19m, т.е, в десятки миллионов раз. Общая энергия, излучаемая сверхновой за время вспышки, превышает 10 48 -10 49 эрг, что в тысячи раз более, чем для новых.

Сверхновые звезды образуются в результате взрыва звезды, когда большая часть ее массы разлетается со скоростью до 10 000 км/сек, а остаток сжимается в сверхплотную нейтронную звезду.

Фотографически зарегистрировано около 60 вспышек сверхновых в других галактиках, причем нередко их светимость оказывалась сравнимой с интегральной светимостью всей галактики, в которой произошла вспышка. Сверхновые звезды являются финалом жизни звезд, которые по массе в 8-10 раз больше Солнца, они рождают нейтронные звезды и обогащают межзвездную среду тяжелыми элементами.

По описаниям более ранних наблюдений, выполненных невооруженным глазом, удалось установить несколько случаев вспышек сверхновых в нашей Галактике. Наиболее интересной из них является упоминаемая в летописях Сверхновая 1054 г., вспыхнувшая в созвездии Тельца и наблюдавшаяся китайскими и японскими астрономами в виде внезапно появившейся "звезды- гостьи", которая казалась ярче Венеры и была видна даже днем.

Другое наблюдение подобного явления в 1572 г. описано значительно подробнее датским астрономом Тихо Браге. Было отмечено внезапное появление "новой" звезды в созвездии Кассиопеи. За несколько дней эта звезда, быстро увеличивая свою светимость, стала казаться ярче Венеры.

Вскоре её излучение начало постепенно ослабевать, причем угасание сопровождалось колебаниями интенсивности и небольшими вспышками. Через два года она перестала быть видна невооруженным глазом.

В 1604 г. вспышку сверхновой звезды наблюдал Кеплер в созвездии Змееносца. Хотя это явление похоже на вспышку обычной новой, оно отличается от нее своим масштабом, плавной и медленно меняющейся кривой блеска и спектром.

По характеру спектра вблизи эпохи максимума различаются два типа сверхновых звезд.

Сверхновые I типа вблизи максимума отличаются непрерывным спектром, в котором не видно никаких линий. Позднее появляются очень широкие эмиссионные полосы, положение которых не совпадает ни с какими известными спектральными линиями. Ширина этих полос соответствует расширению газов со скоростью до 6000 км/с. Интенсивность, структура и положение полос часто меняются со временем. Через полгода после максимума появляются полосы, которые удается отождествить со спектром нейтрального кислорода.

У сверхновых II типа светимость в максимуме несколько меньше, чем у сверхновых I типа. Их спектры отличаются усилением ультрафиолетового свечения. Как и в спектрах обычных новых, в них наблюдаются линии поглощения и излучения, отождествляемые с водородом, ионизованным азотом и другими элементами.

Большой интерес представляют быстро расширяющиеся газовые туманности, которые в нескольких случаях удалось обнаружить на месте вспыхнувших сверхновых звезд I типа. Самой замечательной из них является знаменитая Крабовидная туманность в созвездии Тельца. Форма эмиссионных линий этой туманности говорит о её расширении со скоростью около 1000 км/с. Современные размеры туманности таковы, что расширение с этой скоростью могло начаться не более 900 лет назад, т.е. как раз в эпоху вспышки Сверхновой 1054 г. Совпадение по времени и местоположению Крабовидной туманности со "звездой- гостьей", описанной в китайских летописях, говорит о возможности того, что туманность в созвездии Тельца является результатом вспышки сверхновой.

Крабовидная туманность имеет ряд замечательных особенностей:

1) более 80% видимого излучения приходится на непрерывный спектр;

2) в белом свете она имеет аморфный вид;

3) обычный для туманностей эмиссионный спектр с линиями ионизованных металлов и водорода (последние более слабые) излучается отдельными волокнами;

4) излучение поляризовано, причем в некоторых областях туманности почти полностью;

5) Крабовидная туманность является одним из самых мощных источников радиоизлучения в нашей Галактике.

Одним из возможных объяснений этих интересных особенностей Крабовидной туманности является следующее. Во время вспышки Сверхновой 1054 г. начали возникать в большом количестве свободные электроны, обладающие огромными кинетическими энергиями (релятивистские электроны). Они движутся со скоростями, близкими к скорости света. Процессы столь сильного ускорения частиц продолжаются и в настоящее время. Непрерывное излучение как в видимой области спектра, так и в радиодиапазоне возникает вследствие торможения релятивистских электронов при их движении по спирали вокруг силовых линий слабых магнитных полей. Такое излучение должно быть поляризовано, что и наблюдается в действительности.

Слабые туманности и различной мощности источники радиоизлучения обнаружены также в местах вспышек других сверхновых звезд нашей Галактики.

До последнего времени оставалось совершенно не ясным, каким образом происходит в Крабовидной туманности постоянный приток новых релятивистских электронов, несмотря на то, что явление вспышки сверхновой давно закончилось. Вопрос начал проясняться только после того как были открыты совершенно новые объекты.

Пульсары. В августе 1967 г. в Кембридже (Англия) было зарегистрировано космическое радиоизлучение, исходящее от точечных источников в виде строго следующих друг за другом четких импульсов. Длительность отдельного импульса у таких источников составляет от нескольких миллисекунд до нескольких десятых долей секунды. Резкость импульсов и необычайная правильность их повторений позволяют с очень большой точностью определить периоды пульсаций этих объектов, названных пульсарами. Период одного из пульсаров составляет 1,337301133 с, в то время как у других периоды заключены в пределах от 0,03 до 4 с. В настоящее время известно около 200 пульсаров. Все они дают сильно поляризованное радиоизлучение в широком диапазоне длин волн, интенсивность которого круто возрастает с ростом длины волны. Это означает, что излучение имеет нетепловую природу. Удалось определить расстояния до многих пульсаров, оказавшиеся в пределах от сотен до тысяч парсеков. Таким образом, это сравнительно близкие объекты, заведомо принадлежащие нашей Галактике.

Наиболее замечательный пульсар, который принято обозначать номером NP 0531, в точности совпадает с одной из звездочек в центре Крабовидной туманности. Специальные наблюдения показали, что оптическое излучение этой звезды также меняется с тем же периодом. В импульсе звезда достигает 13m, а между импульсами она не видна. Такие же пульсации у этого источника испытывает и рентгеновское излучение, мощность которого в 100 раз превышает мощность оптического излучения.

Совпадение одного из пульсаров с центром такого необычного образования, как Крабовидная туманность, наводит на мысль о том, что они являются как раз теми объектами, в которые после вспышек превращаются сверхновые звезды. Согласно современным представлениям, вспышка сверхновой звезды связана с выделением огромного количества энергии при ее переходе в сверхплотное состояние, после того как в ней исчерпаны все возможные ядерные источники энергии.

Для достаточно массивных звезд наиболее устойчивым состоянием оказывается слияние протонов и электронов в нейтроны и образование так называемой нейтронной звезды. Если вспышки сверхновых звезд действительно завершаются образованием таких объектов, то весьма возможно, что пульсары - нейтронные звезды, В этом случае при массе порядка 2M¤ они должны иметь радиусы около 10 км. При сжатии до таких размеров плотность вещества становится выше ядерной (до 10 6 т/см 3), а вращение звезды в силу закона сохранения момента количества движения ускоряется до нескольких десятков оборотов в секунду. На поверхности нейтронной звезды нейтроны распадаются на протоны и электроны. Сильное поле разгоняет электроны до скорости, близкой к скорости света, и они вылетают в космическое пространство. Электроны покидают звезду только в районах магнитных полюсов, где магнитные силовые линии выходят наружу. Если магнитная ось звезды не совпадает с осью вращения, то пучки излучения будут вращаться с периодом, равным периоду вращения звезды. Так что название пульсар не совсем правильно: звезды не пульсируют, а вращаются.

У некоторых пульсаров обнаружено медленное увеличение периодов (с удвоением за 10 3 -10 7 лет), по-видимому, вызванное тормозящим влиянием магнитного поля, связанного с пульсаром, в результате чего вращательная энергия переходит в излучение. Наряду с этим наблюдались внезапные уменьшения периодов, возможно, отражающие резкую перестройку поверхности звезды, временами происходящую по мере её остывания.

Кроме радио- пульсаров открыты т.н. пульсары, наблюдающиеся только в рентгеновском или гамма-диапазонах; они имеют периоды от нескольких до сотен секунд и входят в тесные двойные звёздные системы. Источник энергии их излучения, согласно современным представлениям, - гравитационная энергия, выделяющаяся при аккреции на нейтронную звезду или чёрную дыру вещества, перетекающего от соседней нормальной звезды.

Очень интересными переменными звёздами являются похожие на пульсары источники рентгеновского излучения. Некоторые из них на самом деле являются пульсарами, другие - остатками вспышек сверхновых звезд. В этом случае причиной свечения является тепловое излучение газа, нагретого до температуры в несколько миллионов градусов.

Но основная часть галактических источников рентгеновского излучения принадлежит к особому классу объектов звездной природы, которые часто называют рентгеновскими звездами. Наиболее замечательным типичным их представителем является упоминавшийся источник Скорпион Х-1. Из постоянно излучающих он оказался самым ярким: в диапазоне 1-10 Aring; поток излучения от него в среднем составляет 3 10 -7 эрг/см 2 , т.е. столько же, сколько в оптической области дает звезда 7m. Рентгеновская светимость его достигает 10 37 эрг/с, что в тысячи раз больше болометрической светимости Солнца.

Важной особенностью рентгеновских звезд является переменность их излучения. У источника Скорпион Х-1, отождествленного с переменной звездой 12-13m, вариации потока рентгеновского и оптического излучений никак не связаны друг с другом. В течение нескольких дней оба могут испытывать флуктуации в пределах 20%, после чего наступает активная фаза - вспышки, длящиеся по нескольку часов, во время которых потоки меняются в 2-3 раза. При этом существенное изменение уровня излучения порой наблюдается за промежуток времени порядка 10 -3 сек, так что размеры источника не могут превосходить 0,001 световой секунды (определяемой по аналогии со световым годом), т.е. 300 км. Это говорит о том, что источниками рентгеновского излучения должны быть необычайно компактные объекты, возможно, типа нейтронных звезд, как в случае пульсаров, с которыми отождествляются некоторые рентгеновские звезды.

У ряда рентгеновских звезд, например, у Геркулеса Х-1 и Центавра Х-3, обнаружена строгая периодичность вариаций потока рентгеновского излучения, доказывающая, что источник является компонентом двойной системы. Свыше десятка источников отождествлены со звездами, переменность которых указывает на их принадлежность к тесным двойным системам. Следовательно, рентгеновские звезды, - скорее всего, тесные двойные системы, в которых один из компонентов - оптическая звезда, а другой - компактный объект, находящийся в завершающей стадии своей эволюции. Чаще всего предполагают, что это нейтронная звезда, хотя в некоторых случаях не исключена возможность белого карлика или даже черной дыры.

Причиной возникновения мощного рентгеновского излучения должно быть падение на компактный объект (например, нейтронную звезду) облаков и струй газов, перетекающих из оптического компонента тесной двойной системы. В случае чрезвычайной компактности нейтронной звезды скорость падения газов в этом процессе, называемом аккрецией, может достигать 100 000 км./с, т.е. трети скорости света! При падении на нейтронную звезду кинетическая энергия газов будет превращаться в рентгеновское излучение. Важную роль при этом играют сильные магнитные поля нейтронной звезды.

Помимо постоянно наблюдаемых источников рентгеновского излучения ежегодно обнаруживается до десятка вспыхивающих объектов, по характеру явления напоминающих новые звезды. Светимость таких новоподобных источников рентгеновского излучения быстро возрастает за несколько дней. В течение 1-2 месяцев они могут оказаться самыми яркими участками на "рентгеновском" небе, порой в несколько раз превосходящими по потоку излучения ярчайший постоянный источник Скорпион Х-1. Некоторые из них во время вспышек оказываются рентгеновскими пульсарами, отличающимися очень длинными периодами (до 7 минут). Природа этих объектов, а также возможная их связь с новыми звездами пока не известны.

Под эруптивными переменными звездами мы подразумеваем звезды, меняющие блеск вследствие активных процессов и вспышек, происходящих в их хромосферных и корональных областях. Изменения блеска обычно сопровождаются образованием или сбрасыванием протяженных оболочек, истечением вещества в виде звездного ветра переменной интенсивности и/или взаимодействием с окружающей межзвездной средой.

Сброс оболочки звезды. За счет резкого увеличения размеров отражающего свет пятна, видимая яркость звезды также резко возрастает. Но со временем, по мере рассеивания пылевого облака, яркость вновь упадет

Делятся на типы:

  • FU — орионовы переменные типа FU Ориона (FU Ori). Характеризуются продолжающимся несколько месяцев возрастанием блеска примерно на 5-6m, после чего наступает относительное постоянство блеска. В максимуме блеск сохраняется иногда на протяжении десятилетий, иногда наблюдается медленное ослабление его на 1-2m. Спектральные классы в максимуме блеска заключены в пределах Aea-Gpea.
    После вспышки наблюдается постепенное развитие эмиссий в спектре, который становится более поздним. Может быть, эти переменные характеризуют один из этапов эволюции орионовых переменных типа Т Тельца (INT), так как одна из таких переменных (V1057 Cyg) показала подобную вспышку, но ослабление ее блеска (на 2.5m за 11 лет) началось сразу же после достижения максимума. Все известные в настоящее время переменные типа FU Ori связаны с отражательными кометообразными туманностями.
  • GCAS — эруптивные неправильные переменные типа (гамма) Кассиопеи ((гамма) Cas). Быстро вращающиеся звезды спектрального класса Be III — V; характеризуются истечением вещества в их экваториальной зоне. Образование экваториальных колец или дисков сопровождается временным ослаблением блеска звезды. Амплитуды изменения блеска могут достигать l.5m V.
  • I — плохо изученные неправильные переменные, особенности изменения блеска и спектральные классы которых неизвестны. Очень разнородная группа объектов.
  • IА — плохо изученные неправильные переменные ранних (О-А) спектральных классов.
  • IВ — плохо изученные неправильные переменные промежуточных (F-G) и поздних (К-М) спектральных классов.
  • IN — орионовы переменные. Неправильные эруптивные переменные, связанные со светлыми и темными диффузными туманностями или наблюдаемые в районах таких туманностей. У некоторых из них может наблюдаться цикличность изменений блеска, связываемая с осевым вращением. На диаграмме спектр-светимость расположены в районе главной последовательности и в области субгигантов. По-видимому, молодые объекты, превращающиеся в ходе дальнейшей эволюции в звезды начальной главной последовательности постоянного блеска. Пределы изменения блеска могут достигать нескольких величин. Если у звезды наблюдаются быстрые изменения блеска (до 1m за l-10d), символ типа сопровождается символом S(INS). Делятся на следующие подтипы:
    • INA — орионовы переменные ранних спектральных классов В-А или Ае. Характеризуются наблюдаемыми время от времени резкими алголеподобными ослаблениями блеска (Т Or i).
    • INB- орионовы переменные промежуточных и поздних спектральных классов F-M или Fe-Me (ВН Сер, АН Ori). У звезд класса F могут наблюдаться алголеполобные ослабления блеска, как у звезд подтипа INA; у звезд классов К-М, наряду с неправильными изменениями блеска, могут наблюдаться вспышки.
    • INT- орионовы переменные типа Т Тельца (Т Таu). Относятся к этому типу на основании следующих (исключительно спектральных) признаков. Спектральные классы заключены в пределах Fe-Me. Спектр наиболее типичных звезд напоминает спектр солнечной хромосферы. Специфическим признаком типа является наличие флюоресцентных эмиссионных линий Fel (лямбда)(лямбда)4046, 4132 (аномально интенсивных у этих звезд), эмиссионных линий [ S II ] и [ OI ], а также линии поглощения Li I (лямбда) 6707. Эти переменные наблюдаются обычно только в диффузных туманностях. Если связь с туманностью незаметна, буква N в символе типа может быть опущена – IT (RW Aur).
    • IN(YY) — В спектрах некоторых орионовых переменных (YY Ori) наблюдаются темные компоненты с длинноволновой стороны эмиссионных линий, что свидетельствует о падении вещества на поверхность звезды. В этом случае символ типа может сопровождаться символом YY, заключенным в скобки.
  • IS — быстрые неправильные переменные, явным образом не связанные с диффузными туманностями и показывающие изменения блеска на 0.5-1.0m в течение нескольких часов или суток. Резкой границы между быстрыми неправильными и орионовыми переменными не существует.
    Если быстрая неправильная наблюдается в районе диффузной туманности, она относится к орионовым переменным и обозначается символом INS .Относить переменные к типу IS следует с большой осторожностью, лишь убедившись, что изменения их блеска действительно непериодичны. Очень многие из звезд, отнесенных к этому типу в третьем издании ОКПЗ, оказались затменно-двойными системами, переменными типа RR Lyr и даже внегалактическими объектами типа ВL Lac.
    • ISA — быстрые неправильные ранних спектральных классов В-А или Ае.
    • ISB — быстрые неправильные промежуточных и поздних спектральных классов F-M или Fe-Me.
  • RCB — переменные типа R Северной Короны (R СгВ). Бедные водородом, богатые углеродом и гелием звезды высокой светимости спектральных классов Bpe-R, одновременно являющиеся эруптивными и пульсирующими. Характеризуются медленными непериодическими ослаблениями блеска с амплитудами от 1 до 9m V, продолжающимися от нескольких десятков до сотен дней. На эти изменения накладываются циклические пульсации с амплитудой до нескольких десятых звездной величины и периодами от 30 до 100d.
  • RS — эруптивные переменные типа RS Гончих Псов. К этому типу мы относим тесные двойные системы с эмиссией Н и К Ca II в спектре, компоненты которых обладают повышенной хромосферной активностью, вызывающей квазипериодическую переменность их блеска с периодом, близким к орбитальному, и переменной амплитудой, обычно достигающей 0.2m V (UX Ari). Источники рентгеновского излучения. Одновременно являются вращающимися переменными, а сама RS CVn-также и затменной системой (см. ниже).
  • SDOR — переменные типа S Золотой Рыбы (S Dor). Эруптивные звезды высокой светимости спектральных классов Bpeq-Fpeq, показывающие неправильные (иногда циклические) изменения блеска с амплитудой от 1m до 7m V. Обычно самые яркие голубые звезды галактик, в которых они наблюдаются. Как правило, связаны с диффузными туманностями и окружены расширяющимися оболочками (Р Cyg, (эта) Car).
  • UV- эруптивные переменные типа UV Кита (UV Cet). Звезды спектральных классов KVe-MVe; иногда испытывают вспышки с амплитудой от нескольких десятых до 6m V, существенно большей в ультрафиолетовой области спектра. Максимум блеска достигается через секунды или десятки секунд после начала вспышки, к нормальному блеску звезда возвращается через несколько минут или десятков минут.
  • UVN — вспыхивающие орионовы переменные спектральных классов Ке-Ме. Феноменологически почти ничем не отличаются от переменных типа UV Кита, наблюдаемых в окрестностях Солнца. Помимо связи с туманностью характеризуются в среднем более ранними спектральными классами, большей светимостью и более медленным развитием вспышек (V389 Ori). Возможно, являются разновидностью орионовых переменных типа INB, на неправильные изменения блеска которых накладываются вспышки.
  • WR — эруптивные переменные типа Вольфа-Райе. Звезды с широкими эмиссионными линиями HeI , HeII, а также СII-CIV, ОII-OV или NIII-NV. Характеризуются неправильными изменениями блеска до 0.l m V, вызываемыми, по-видимому, физическими причинами, в частности, нестационарностью истечения вещества с поверхности этих звезд.

Пульсирующие переменные звезды

Пульсирующими переменными звездами принято называть звезды, показывающие периодическое расширение и сжатие поверхностных слоев. Пульсации могут быть радиальными и нерадиальными. При радиальных пульсациях форма звезды остается сферической. В случае нерадиальных пульсаций форма звезды периодически отклоняется от сферической, причем даже соседние участки ее поверхности могут находиться в противоположных фазах колебаний.
В зависимости от величины периода, массы звезды, эволюционной стадии и масштаба явления можно выделить следующие типы пульсирующих переменных.

  • ACYG — переменные типа (альфа) Лебедя ((альфа) Cyg). Hepадиально пульсирующие сверхгиганты спектральных классов Beq -Aeq Ia; изменения блеска с амплитудой порядка 0.1m нередко кажутся неправильными, ибо вызываются наложением многих колебаний с близкими периодами. Наблюдаются циклы от нескольких дней до нескольких десятков дней.
  • ВСЕР — переменные типа (бета) Цефея ((бета) Сер, (бета) СМа). Пульсирующие переменные спектральных классов O8-В6 I-V с периодами изменения блеска и лучевых скоростей, заключенными в пределах 0.1-0.6d, и амплитудами изменения блеска от 0.01 до 0.3m V. Кривые блеска подобны средним кривым лучевой скорости, но отстают от них по фазе на четверть периода, так что максимум блеска соответствует максимальному сжатию, т.е. минимальному радиусу звезды. По-видимому, в основном у этих звезд наблюдаются радиальные пульсации, но некоторые из них (V469 Per) характеризуются нерадиальными пульсациями; для многих характерна мультипериодичность.
  • BCEPS — короткопериодическая группа переменных типа (бета) Сер спектральных классов В2-ВЗ IV-V; периоды и амплитуды изменения блеска заключены в пределах 0.02-0.04d и 0.015-0.025m соответственно, т.е. на порядок меньше обычно наблюдаемых у звезд типа (бета) Сер.
  • СЕР — . Радиально пульсирующие переменные высокой светимости (классы светимости Ib-II) с периодами от l d до 135 d и амплитудами от нескольких сотых до 2m V (в системе В-большими, чем в V). Спектральные классы в максимуме блеска F, в минимуме G-K, причем тем более поздние, чем больше период изменения блеска. Кривая лучевых скоростей Vr практически является зеркальным отображением кривой блеска, причем максимум скорости расширения поверхностных слоев наблюдается почти одновременно с максимумом блеска звезды.
  • СЕР(В) — цефеиды (TU Cas , V367 Sct), характеризующиеся наличием двух или нескольких одновременно действующих мод пульсаций (обычно основного тона с периодом P0 и первого обертона с периодом Р1). Периоды P0 заключены в пределах от 2 d до 7d. Отношение P1/P0≈0.71.
  • CW — переменные типа W Девы (W Vir). Пульсирующие переменные сферической составляющей или старой составляющей диска Галактики с периодами примерно от 0.8 до 35d и амплитудами от 0.3 до 1.2m V. Характеризуются зависимостью период-светимость, отличающейся от аналогичной зависимости для переменных типа (дельта) Цефея — см. ниже (DCEP). При одинаковом периоде переменные типа W Девы на 0.7-2ь слабее переменных типа (дельта) Цефея. Кривые блеска переменных типа W Девы отличаются от кривых блеска переменных типа (дельта) Цефея соответствующих периодов либо амплитудой, либо наличием горбов на нисходящей ветви, перерастающих иногда в широкий плоский максимум. Встречаются в старых шаровых скоплениях и на высоких галактических широтах. Делятся на подтипы:
    • CWA — переменные типа W Девы с периодами больше 8d (W Vir).
    • CWB — переменные типа W Девы с периодами меньше 8d (BL Her).
  • DCEP — классические цефеиды, переменные типа (дельта) Цефея ((дельта) Сер). Сравнительно молодые объекты, располагающиеся после ухода с главной последовательности в полосе нестабильности на диаграмме Герцшпрунга-Рессела. Подчиняются известной зависимости период-светимость; относятся к плоской составляющей Галактики, встречаются в рассеянных скоплениях; характеризуются наличием определенного соответствия между формой кривой блеска и длиной периода.
  • DCEPS — переменные типа ((дельта) Цефея с амплитудами меньше 0.5m V(0.7m В) и почти симметричными кривыми блеска (M-m ≈ 0.4-0.5P); периоды, как правило, не превышают 7d; возможно, что эти звезды пульсируют в первом обертоне и/или впервые проходят полосу нестабильности после ухода с главной последовательности (SU Cas).
    По традиции переменные типов (дельта) Цефея и W Девы нередко называют цефеидами, так как часто (при периодах от 3d до 10d) по виду кривой блеска бывает невозможно отличить переменные этих типов друг от друга.
    Однако в действительности это совершенно разные объекты, находящиеся на разных этапах эволюции. Одно из существенных спектральных отличий звезд типа W Девы от цефеид состоит в том, что в спектрах первых в некотором диапазоне фаз наблюдаются эмиссии в водородных линиях, а в спектрах цефеид — в линиях Н и К Ca II.
  • DSCT — переменные типа (дельта) Щита ((дельта) Set). Пульсирующие переменные спектральных классов A0-F5III-Vc амплитудами изменения блеска от 0.003 до 0.9m V (в основном несколько сотых звездной величины) и периодами от 0.01 до 0.2d.Форма кривой блеска, период и амплитуда обычно сильно меняются. Наблюдаются как радиальные, так и нерадиальные пульсации. У некоторых звезд этого типа переменность блеска наступает спорадически и иногда полностью прекращается; не исключено, что это — следствие сильной амплитудной модуляции с нижним пределом амплитуды не более 0.001m. Кривая изменения блеска является почти зеркальным отображением кривой лучевых скоростей: максимум скорости расширения поверхностных слоев звезды запаздывает по отношению к максимуму блеска не более, чем на 0.1P.
    Звезды типа DSCT-представители плоской составляющей Галактики. Феноменологически к ним примыкают переменные типа SXPHE (см. ниже).
  • DSCTC — малоамплитудная группа переменных типа (дельта) Щита (амплитуда изменения блеска меньше 0.1 m V). Большинство представителей этого подтипа являются звездами V класса светимости; как правило, именно такие объекты встречаются в рассеянных звездных скоплениях.
  • L — медленные неправильные переменные. Переменные звезды, изменения блеска которых лишены каких-либо признаков периодичности или же периодичность выражена слабо, наступая лишь временами. Отнесение переменных к этому типу, как и к типу I , зачастую обусловлено лишь недостаточной изученностью этих объектов. Многие из них могут оказаться полуправильными переменными или переменными других типов.
  • LB — медленно меняющиеся неправильные переменные поздних спектральных классов К, М, С и S, как правило, гиганты (СО Cyg). К этому типу в каталоге отнесены медленные красные неправильные переменные и в тех случаях, когда их спектральные классы и светимости еще неизвестны.
  • LC — неправильные переменные сверхгиганты поздних спектральных классов с амплитудой порядка l.0m V (TZ Cas).
  • M — переменные типа Миры Кита ((омикрон) Cet). Долгопериодические переменные гиганты с характерными эмиссионными спектрами поздних классов Me, Ce, Se, c амплитудами изменения блеска от 2.5m до 11m V, с хорошо выраженной периодичностью и периодами, заключенными в пределах от 80d до 1000d. Инфракрасные амплитуды изменения блеска невелики и могут быть меньше 2.5m. Так, например, в системе К они обычно не превышают 0.9m. Если амплитуды превышают 1-1.5m, но нет уверенности в том, что истинная амплитуда изменений блеска превышает 2.5m, символ М сопровождается двоеточием или же звезда относится к типу полуправильных переменных, причем рядом с символом этого типа (SR) также ставится двоеточие.
  • PVTEL — переменные типа PV Телескопа (PV Tel). Гелиевые сверхгиганты спектрального класса Bp, характеризующиеся слабыми линиями водорода, усиленными линиями гелия и углерода, пульсирующие с периодами от 0.1 до l d или меняющие блеск с амплитудой около 0.1m V на протяжении интервалов времени порядка года.
  • RR — переменные типа RR Лиры. Радиально пульсирующие гиганты спектральных классов А — F с периодами, заключенными в пределах от 0.2 до l.2d, и амплитудами изменения блеска от 0.2 до 2m V. Известны случаи переменности как формы кривой блеска, так и периода. Если эти изменения периодичны, они называются эффектом Блажко.
    По традиции переменные типа RR Лиры иногда называют короткопериодическими цефеидами или переменными шаровых скоплений. Входят в большинстве случаев в сферическую составляющую Галактики, встречаются (иногда в большом количестве) в некоторых шаровых скоплениях (пульсирующие звезды горизонтальной ветви). Как у цефеид, максимум скорости расширения поверхностных слоев этих звезд практически совпадает с максимумом их блеска.
  • RR(B) — переменные типа RR Лиры, характеризующиеся наличием двух одновременно действующих мод пульсации — основного тона с периодом P0 первого обертона с периодом Р1 (AQ Leo). Отношение Р1/Р0 ≈ 0.745.
  • RRAB — переменные типа RR Лиры с асимметричной кривой блеска (крутой восходящей ветвью), периодами от 0.3 до l.2 d и амплитудами от 0.5 до 2m V (RR Lyr).
  • RRC — переменные типа RR Лиры с почти симметричными, иногда синусоидальными, кривыми блеска с периодами от 0.2 до 0.5 d и амплитудами, не превышающими 0.8 V (SX UMa).
  • RV — переменные типа RV Тельца (RV Таu). Радиально пульсирующие сверхгиганты спектральных классов F-G в максимуме и К-М в минимуме блеска. Кривые блеска характеризуются наличием двойных волн с чередующимися главными и вторичными минимумами, глубина которых может меняться так, что главные минимумы могут превращаться во вторичные и наоборот; полная амплитуда изменений блеска может достигать 3-4m V. Периоды между двумя соседними главными минимумами, называемые обычно формальными, заключены в пределах от 30 до 150d (именно они и приводятся в каталоге). Делятся на подтипы RVA и RVB.
  • RVA — переменные типа RV Тельца, средняя величина которых не меняется (AC Her).
  • RVB — переменные типа RV Тельца, средняя величина которых периодически меняется с периодом от 600 до 1500 d и амплитудой до 2m V (DF Cyg, RV Таu).
  • SR — полуправильные переменные. Гиганты или сверхгиганты промежуточных и поздних спектральных классов, обладающие заметной периодичностью изменений блеска, сопровождаемой или временами нарушаемой различными неправильностями. Периоды заключены в пределах от 20 до 2000 d и больше, формы кривых изменения блеска весьма разнообразны и переменны, амплитуды — от нескольких сотых до нескольких звездных величин (обычно 1 — 2m V).
  • SRA — полуправильные переменные гиганты поздних спектральных классов (M, C, S или Me, Ce, Se) с устойчивой периодичностью, обладающие, как правило, небольшими (меньше 2.5m V) амплитудами блеска (Z Aqr). Амплитуды и формы кривых изменения блеска обычно меняются. Периоды заключены в пределах от 35 до 1200 d. Многие из этих звезд отличаются от переменных типа Миры Кита только меньшей амплитудой изменения блеска.
  • SRB — полуправильные переменные гиганты поздних спектральных классов (M, C ,S или Me, Се, Se) с плохо выраженной периодичностью (средний цикл — от 20 до 2300 d) или со сменен периодических изменений — медленными неправильными колебаниями или интервалами постоянства блеска (RR СгВ, AF Cyg). Каждая из этих звезд обычно характеризуется некоторым средним значением периода (циклом), которое и приводится в каталоге. В ряде случаев у этих звезд наблюдается одновременное действие двух или большего числа периодов изменения блеска.
  • SRC — полуправильные переменные сверхгиганты поздних спектральных классов M, C, S или Me, Ce, Se ((ми) Сер). Амплитуды — порядка 1m, периоды изменения блеска — от 30 d до нескольких тысяч дней.
  • SRD — полуправильные переменные гиганты и сверхгиганты спектральных классов F, G, К, иногда с эмиссионными линиями в спектрах. Амплитуды изменения их блеска заключены в пределах от 0.l до 4m) периоды — от 30 до 1100 d (SX Her, SV UMa).
  • SXPHE — переменные типа SX Феникса (SX Phe). Сходные по внешним признакам с переменными типа DSCT, они являются пульсирующими субкарликами сферической составляющей или старой составляющей диска Галактики спектральных классов А2-F5; y этих объектов может одновременно наблюдаться несколько периодов колебаний, как правило, от 0.04 до 0.08 d с переменной амплитудой изменения блеска, которая может достигать 0.7m V. Встречаются в шаровых скоплениях.
  • ZZ — переменные типа ZZ Кита (ZZ Cet). Нерадиально пульсирующие белые карлики, меняющие блеск с периодами от 30 секунд до 25 минут и амплитудами от 0.001 до 0.l2 m V. Обычно у звезды наблюдается несколько близких периодов. Иногда наблюдаются вспышки на 1m, могущие, правда, объясняться наличием тесного спутника типа UV Cet. Делятся на подтипы:
    • ZZA — водородные переменные типа ZZ Cet спектрального класса DA (ZZ Cet), только с водородными линиями поглощения в спектре.
    • ZZB — гелиевые переменные типа ZZ Cet спектрального класса DB, в спектрах которых наблюдаются только линии поглощения Не.

Вращающиеся переменные звезды

Вращающимися переменными звездами мы называем звезды с неоднородной поверхностной яркостью или эллипсоидальные по форме, переменность блеска которых обусловлена их осевым вращением по отношению к наблюдателю. Неоднородность распределения поверхностной яркости может быть вызвана или наличием пятен или вообще температурной и химической неоднородностью звездной атмосферы под действием магнитного поля, ось которого не совпадает с осью вращения звезды. Делятся на типы:

  • ACV — переменные типа (альфа)2 Гончих Псов ((альфа)2 CVn). Звезды главной последовательности спектральных классов В8р — А7р с сильными магнитными полями. В их спектрах аномально усилены линии кремния, стронция, хрома и редкоземельных элементов, меняющие интенсивность с периодом вращения звезды, равным периоду изменения магнитного поля и блеска (0.5 — 160 d и больше). Амплитуды изменения блеска обычно заключены в пределах 0.01 – 0.1m V.
  • ACVO — быстро осциллирующие переменные типа (альфа)2 CVn. По-видимому, нерадиально пульсирующие вращающиеся магнитные переменные спектрального класса Ар (DO Eri). Периоды пульсаций 0.01d и менее, амплитуды изменений блеска, обусловленных пульсациями, — порядка 0.01m V. Эти изменения накладываются на изменения блеска, обусловленные вращением.
  • BY — переменные типа BY Дракона (BY Dra). Эмиссионные звезды — карлики спектральных классов dKe — dMe, показывающие квазипериодические изменения блеска с периодами от долей дня до 120d и амплитудами от нескольких сотых до 0.5m V. Переменность блеска вызывается осевым вращением звезд с изменяющейся с течением времени степенью неоднородности поверхностной яркости (пятнами) и хромосферной активностью. У некоторых из них наблюдаются вспышки, подобные вспышкам звезд типа UV Cet; в таких случаях они относятся также к типу UV, считаясь одновременно и эруптивными.
  • ЕLL — эллипсоидальные переменные (b Per, (альфа) Vir). Тесные двойные системы с эллипсоидальными компонентами, видимый суммарный блеск которых меняется с периодом, равным периоду орбитального движения, вследствие изменения площади излучающей поверхности, обращенной к наблюдателю, но без затмений. Амплитуды изменения блеска не превышают 0.1m V.
  • FKCOM — переменные типа FK Волос Вероники (FK Com). Быстро вращающиеся гиганты с неоднородной поверхностной яркостью спектральных классов G-К с широкими эмиссионными линиями Н и К Ca II, а также иногда с эмиссией H(альфа). Могут быть и спектрально-двойными системами. Периоды изменения блеска (достигающие нескольких дней) равны периодам вращения, а амплитуды составляют несколько десятых звездной величины. Не исключено, что эти объекты являются результатом дальнейшей эволюции тесных двойных систем типа EW (W UMa , см. ниже).
  • PSR — оптически переменные пульсары (СМ Таu). Быстро вращающиеся нейтронные звезды с сильным магнитным полем, излучающие в радио, оптическом и рентгеновском диапазонах длин волн. Излучение пульсара имеет узкую диаграмму направленности. Периоды изменения блеска совпадают с периодами вращения (от 0.001 до 4 секунд), амплитуда световых импульсов достигает 0.8m.
  • SXARI — переменные типа SX Овна (SX Ari). Звезды главной последовательности спектральных классов В0р-В9р с переменной интенсивностью линий HeI, Si III и магнитными полями, иногда называемые гелиевыми переменными. Периоды изменения блеска и магнитного поля (порядка 1d) совпадают с периодами вращения, амплитуды-порядка 0.lm V. Эти звезды являются высокотемпературными аналогами переменных типа (альфа)2 CVn.

Взрывные и новоподобные переменные

Взрывными звездами называются звезды, показывающие вспышки, обусловленные термоядерными взрывами, происходящими в их поверхностных слоях () или в глубоких недрах (). К новоподобным мы будем относить переменные, показывающие новоподобные вспышки, связанные с быстрым выделением энергии в окружающих их объемах пространства (звезды типа UG-см. ниже), а также объекты, не показывающие вспышек, но по спектральным и другим особенностям сходные с взрывными переменными в минимуме блеска.
Большинство взрывных и новоподобных переменных являются тесными двойными системами, компоненты которых оказывают сильнейшее взаимное влияние на эволюцию друг друга. Вокруг карликового горячего компонента системы часто наблюдается аккреционный диск, образованный веществом, теряемым другим более холодным и обширным компонентом. Делятся на типы:

  • N — Новые звезды. Тесные двойные системы с периодами орбитального движения от 0.05 до 230d; одним из компонентов этих систем является карликовая горячая звезда, которая неожиданно, за время от одного дня до нескольких десятков или сотен дней, увеличивает свой блеск на 7 — 19mV. За время от нескольких месяцев до нескольких десятков лет блеск системы возвращается к первоначальному состоянию.
    В минимуме могут показывать небольшие изменения блеска. Холодные компоненты являются гигантами, субгигантами или карликами спектральных классов К-М. Спектры Новых близ максимума блеска сначала похожи на спектры поглощения А-F звезд высокой светимости. Затем в спектрах появляются широкие эмиссионные линии (полосы) водорода, гелия и других элементов с абсорбционными компонентами, свидетельствующими о наличии быстро расширяющейся оболочки. По мере ослабления блеска в сложном спектре появляются запрещенные эмиссионные линии, характерные для спектров газовых туманностей, возбуждаемых горячей звездой. В минимуме блеска спектры Новых, как правило, непрерывны или сходны со спектрами звезд типа Вольфа-Райе.
    Признаки холодных компонентов обнаруживаются лишь в спектрах наиболее массивных систем. У некоторых Новых после вспышки обнаруживаются пульсации горячих компонентов с периодами порядка 100 секунд и амплитудами около 0.05m V. Некоторые Новые, естественно, оказываются также затменными системами. По характеру изменения блеска Новые делятся на быстрые (NA), медленные (NB), очень медленные (NC) и повторные (NR).
  • NA — быстрые Новые, характеризующиеся быстрым подъемом блеска и уменьшающие блеск после достижения максимума на 3m за 100 или меньше дней (GKPer).
  • NB — медленные Новые, уменьшающие блеск после достижения максимума на 3m за 150 и более дней (RR Pic). При этом не принимается во внимание наличие известного «провала» на кривой блеска таких Новых, как Т Aur и DQ Her: скорость уменьшения блеска оценивается по виду плавной кривой, части которой до «провала» и после него являются непосредственным продолжением одна другой.
  • NC — Новые с очень медленным развитием, свыше десяти лет остающиеся в максимуме блеска и ослабевающие очень медленно. До вспышки эти объекты могут показывать долгопериодические изменения блеска с амплитудой 1-2m V (RR Tel); холодные компоненты этих систем, по-видимому, являются гигантами или сверхгигантами, иногда полуправильными переменными и даже переменными типа Миры Кита. Амплитуда вспышки может достигать 10m. Эмиссионный спектр высокого возбуждения сходен со спектрами планетарных туманностей, звезд типа Вольфа-Райе и симбиотических переменных. Не исключено, что эти объекты являются возникающими планетарными туманностями.
  • NL — новоподобные переменные звезды.. Недостаточно изученные объекты, сходные с Новыми по характеру изменений блеска или по спектральным особенностям. К ним относятся не только переменные, показывающие новоподобные вспышки, но и объекты, у которых вспышки никогда не наблюдались; спектры новоподобных переменных похожи на спектры бывших Новых, а небольшие изменения блеска напоминают, те, которые свойственны бывшим Новым в минимуме блеска. Нередко, однако, после надлежащего исследования, отдельных представителей этой весьма разнородной группы объектов удается отнести к другому типу переменных звезд.
  • NR — повторные Новые. Отличаются от типичных Новых тем, что у них зарегистрирована не одна, а две или несколько вспышек, разделенных интервалами от 10 до 80 лет (Т СгВ).
  • SN — сверхновые звезды (В Cas, CM Таu). Звезды, в результате взрыва быстро увеличивающие свой блеск на 20 и более величин, а затем медленно ослабевающие. Спектр во время вспышки характеризуется наличием очень широких эмиссионных полос, ширина которых в несколько раз превышает ширину ярких полос, наблюдаемых в спектрах Новых звезд; скорость расширения оболочки — несколько тысяч км/с. После взрыва структура звезды полностью меняется. На месте сверхновой остается расширяющаяся эмиссионная туманность и (не всегда наблюдаемый) пульсар. По форме кривых блеска и спектральным особенностям делятся на типы I и II.
  • SNI — сверхновые I типа. В спектрах присутствуют линии поглощения Са II, Si и др., кроме водородных. Расширяющаяся оболочка почти лишена водорода. В течение 20 – 30d после максимума блеск уменьшается со скоростью около 0.lm в сутки, затем скорость ослабления блеска замедляется и в дальнейшем становится постоянной – 0.014m в сутки.
  • SNII — сверхновые II типа. В спектрах видны линии водорода и других элементов. Расширяющаяся оболочка состоит в основном из водорода и гелия. Кривые блеска более разнообразны, чем кривые блеска сверхновых I типа. По истечении 40 – 100d после максимума скорость падения блеска обычно составляет 0.1m в сутки.
  • UG — переменные типа U Близнецов (U Gem), нередко называемые карликовыми Новыми. Тесные двойные системы, состоящие из звезды-карлика или субгиганта спектрального класса К-М, заполняющего объем своей внутренней критической поверхности Роша, и белого карлика, окруженного аккреционным диском. Орбитальные периоды заключены в пределах от 0.05 до 0.5d. Обычно наблюдаются лишь небольшие, в том числе быстрые, флуктуации блеска системы, но время от времени блеск быстро возрастает на несколько звездных величин и по истечении нескольких дней или десятков дней возвращается к первоначальному состоянию. Промежутки между двумя последовательными вспышками у данной звезды могут меняться в широких пределах, но каждая звезда характеризуется некоторым средним значением этих промежутков — средним циклом, соответствующим средней амплитуде изменения ее блеска. Чем больше цикл, тем больше
    амплитуда. Источники рентгеновского излучения. Спектр системы в минимуме блеска непрерывный с широкими эмиссионными линиями водорода и гелия. В максимуме блеска эти линии почти исчезают или превращаются в неглубокие линии поглощения. Некоторые из этих систем являются затменными, причем можно полагать, что главный минимум обусловлен затмением горячего пятна, образованного в аккреционном диске падающим на него газовым потоком, исходящим от звезды класса К-М.
    По характеру изменения блеска переменные типа U Gem можно разделить на три подтипа: SS Cyg, SU UMa и Z Cam.
  • UGSS — переменные типа SS Лебедя (SS Cyg, U Gem). Увеличивают свой блеск за 1 — 2d нa 2-6m V и через несколько дней возвращаются к первоначальному блеску. Значения циклов заключены в пределах от 10d дo нескольких тысяч дней.
  • UGSU — переменные типа SU Большой Медведицы (SU UMa). Характеризуются наличием двух видов вспышек — нормальных и сверхмаксимумов. Нормальные, короткие, вспышки похожи на вспышки звезд типа UGSS . Сверхмаксимумы ярче нормальных на 2m, более чем в пять раз продолжительнее (шире) и наступают более чем в три раза реже нормальных. Во время сверхмаксимумов на кривой блеска наблюдаются накладывающиеся на нее периодические колебания (superhumps) с периодом, близким к орбитальному, и амплитудами около 0.2 – 0.3m V. Орбитальные периоды меньше 0.1d, спектральный класс спутников — dM.
  • UGZ — переменные типа Z Жирафа (Z Cam). Также показывают циклические вспышки, но в отличие от переменных типа UGSS иногда после вспышки не возвращаются к первоначальному блеску, а в течение нескольких циклов сохраняют звездную величину, промежуточную между максимальной и минимальной. Значения циклов заключены в пределах от 10 до 40d, амплитуды изменения блеска — от 2 до 5m V.
  • ZAND — симбиотические переменные типа Z Андромеды (Z And). Тесные двойные, состоящие из горячей звезды, звезды позднего спектрального класса и протяженной оболочки, возбуждаемой излучением горячей звезды. Суммарный блеск системы испытывает неправильные изменения с амплитудой до 4m V. Очень разнородная группа объектов.

Тесные двойные затменные системы

Мы принимаем трехмерную систему классификации затменно-двойных звездных систем по форме кривой изменения их суммарного блеска, а также по физическим и эволюционным характеристикам их компонентов. Классификация по кривым блеска проста, привычна и удобна для наблюдателей; второй и третий способы классификации основаны на положении компонентов двойных систем на диаграмме Mv, В — V и степени заполнения ими своих внутренних критических эквипотенциальных поверхностей Роша. Для суждения об этом, как правило, использовались простые критерии, предложенные М.А.Свечниковым и Л.Ф.Истоминым (АЦ№ 1083, 1979). Ниже приводятся используемые в каталоге символы типов затменно-двойных систем.

а) Классификация по форме кривой блеска.

  • Е — затменно-двойные системы. Двойные системы, плоскость орбиты которых настолько близка к лучу зрения наблюдателя (наклонение i плоскости орбиты к плоскости, перпендикулярной к лучу зрения, близко к 90°), что оба компонента (или один из них) периодически затмевают друг друга. Наблюдатель отмечает, вследствие этого, изменение видимого суммарного блеска системы, период которого совпадает с периодом обращения компонентов по орбите.
  • ЕА — затменные переменные типа Алголя ((бета) Per). Затменно-двойные со сферическими или слегка эллипсоидальными компонентами; кривые блеска позволяют фиксировать моменты начала и конца затмений. В промежутках между затмениями блеск остается почти постоянным или меняется незначительно, вследствие эффектов отражения, небольшой эллипсоидальности компонентов или физических изменений. Вторичный минимум может не наблюдаться. Периоды заключены в очень широких пределах — от 0.2 до 10000d и более; амплитуды изменения блеска весьма разнообразны и могут достигать нескольких величин.
  • ЕВ — затменные переменные типа (бета) Лиры ((бета) Lyr). Затменно-двойные с эллипсоидальными компонентами, обладающие кривыми блеска, которые не позволяют фиксировать моменты начала или конца затмений (вследствие непрерывного изменения видимого суммарного блеска системы в промежутках между затмениями); обязательно наблюдается вторичный минимум, глубина которого, как правило, существенно меньше глубины главного минимума; периоды преимущественно больше 1d (при периодах меньше 1d минимумы разной глубины, при периодах больше 1d глубина минимумов может быть почти одинаковой); компоненты обычно ранних спектральных классов В-А. Амплитуды изменения блеска обычно меньше 2m V.
  • EW — затменные переменные типа W Большой Медведицы (W UMa). Затменно-двойные с периодами меньше 1d, состоящие из почти соприкасающихся эллипсоидальных компонентов и обладающие кривыми блеска, не позволяющими фиксировать моменты начала и конца затмений; глубины главного и вторичного минимумов почти одинаковы или различаются очень незначительно. Амплитуды изменения блеска обычно меньше 0.8m V. Спектральные классы компонентов обычно F-G и более поздние.

б) Классификация по физическим характеристикам компонентов.

  • GS — системы, у которых один или оба компонента являются гигантами или сверхгигантами; один из компонентов может быть членом главной последовательности.
  • PN — системы, компонентами которых являются ядра планетарных туманностей (UU Sge).
  • RS — системы типа RS Гончих Псов (RS CVn). Существенной особенностью этих систем является наличие в спектре сильных эмиссионных линий Н и К Са II переменной интенсивности, свидетельствующее о повышенной хромосферной активности солнечного типа. Для этих систем характерно наличие радиоизлучения и рентгеновского излучения. У некоторых из них на кривой блеска вне затмений наблюдается квазисинусоидальная волна, амплитуда и положение которой медленно меняются с течением времени. Появление этой волны (часто называемой дисторсионной)
    объясняется дифференциальным вращением покрытой группами пятен поверхности звезды; период вращения групп пятен обычно близок к периоду орбитального движения (периоду затмений), но все же отличается от него, что и вызывает медленное изменение (миграцию) фаз минимума и максимума дисторсионной волны на средней кривой блеска. Переменность амплитуды волны (доходящей до 0.2m V) объясняется существованием долгопериодического цикла звездной активности (подобного солнечному одиннадцатилетнему циклу), в течение которого меняется количество и общая площадь пятен на поверхности звезды.
  • WD — системы, компонентами которых являются белые карлики.
  • WR — системы, среди компонентов которых содержатся звезды типа Вольфа-Райе (V 444Cyg).

в) Классификация по степени заполнения внутренних критических поверхностей Роша.

  • AR — разделенные системы типа AR Ящерицы (AR Lac), оба компонента которых — субгиганты, не достигающие своих внутренних критических эквипотенциальных поверхностей.
  • D — разделенные системы, компоненты которых не достигают своих внутренних критических эквипотенциальных поверхностей Роша.
  • DM — разделенные системы главной последовательности, оба компонента которых являются членами главной последовательности и не достигают своих внутренних критических поверхностей Роша.
  • DS — разделенные системы с субгигантом, в которых субгигант также еще не достигает своей внутренней критической поверхности.
  • DW — системы, сходные по своим физическим характеристикам с контактными системами типа W UMa (см. ниже), но не являющиеся контактными.
  • К — контактные системы, оба компонента которых заполняют свои внутренние критические поверхности.
  • КЕ — контактные системы ранних спектральных классов (О-А), оба компонента которых близки по размерам к своим внутренним критическим поверхностям.
  • КW — контактные системы типа WUMa с эллипсоидальными компонентами спектральных классов F0-К, главные из которых являются членами главной последовательности, а спутники располагаются левее и ниже ее на диаграмме Mv, В — V.
  • SD — полуразделенные системы, в которых поверхность менее массивного компонента-субгиганта близка к его внутренней критической поверхности.Сочетание всех трех способов классификации затменно-двойных систем предусматривает использование для одного объекта нескольких групп символов типа, разделенных наклонными черточками, например: E/DM, EA/DS/RS , EB/WR, EW/KW и т. п.

Тесные двойные оптически переменные источники сильного переменного рентгеновского излучения (Х-источники)

  • X — тесные двойные системы, являющиеся источниками сильного переменного рентгеновского излучения, не относящиеся или не отнесенные пока к рассмотренным выше типам переменных звезд. Одним из компонентов системы является горячий компактный объект (белый карлик, нейтронная звезда, а, быть может, и черная дыра). Рентгеновское излучение возникает при падении вещества, текущего от другого компонента, на компактный объект или окружающий этот объект аккреционный диск. В свою очередь, это рентгеновское излучение, попадая в атмосферу более холодного спутника компактного объекта, переизлучается в виде оптического высокотемпературного излучения (эффект отражения), делая более ранним и спектральный класс соответствующего участка поверхности спутника. Это приводит к весьма в своеобразной картине оптической переменности тесных двойных, являющихся источниками сильного рентгеновского излучения. Делятся на перечисленные ниже типы.
  • ХВ — рентгеновские вспыхивающие (bursters). Тесные двойные системы, показывающие рентгеновские и оптические вспышки продолжительностью от нескольких секунд до десяти минут с амплитудой порядка 0.1m V (V801 Аra, V926 Sco).
  • XF — рентгеновские флуктуирующие системы, показывающие быстрые флуктуации рентгеновского (Cyg X-1 = V1357 Cyg) и оптического (V821 Аra) излучения с циклом порядка десятков миллисекунд.
  • XI — рентгеновские неправильные. Тесные двойные системы, состоящие из горячего компактного объекта, окруженного аккреционным диском, и карлика спектрального класса dA-dM; характеризуются неправильными изменениями блеска с характерным временем порядка минут часов и амплитудой порядка 1m V; возможно наложение периодической составляющей, обусловленной орбитального движением (V818 Sco).
  • XJ — рентгеновские двойные, характеризующиеся наличием релятивистских струй, проявляющихся в рентгеновском и радиодиапазоне, а также в видимой области спектра в виде эмиссионных компонент, имеющих периодические смещения с релятивистскими скоростями (V1343 Aql).
  • XND — рентгеновские новоподобные, содержащие наряду с горячим компактным объектом карлик или субгигант спектрального класса G-M. Системы, иногда быстро увеличивающие свой блеск на 4-9m V одновременно в оптическом и рентгеновском диапазонах длин волн без выброса оболочки. Продолжительность вспышки — до нескольких месяцев (V616 Моn).
  • XNG — рентгеновские новоподобные, главный компонент которых является сверхгигантом или гигантом раннего спектрального класса, а спутник — горячим компактным объектом. При вспышке главного компонента выброшенная им масса падает на компактный объект, вызывая со значительным запозданием появление рентгеновского излучения. Амплитуды-порядка l-2m V (V725 Тau).
  • ХР — рентгеновские системы с пульсаром; главный компонент — обычно эллипсоидальный сверхгигант раннего спектрального класса. Эффект отражения очень мал, и переменность блеска в основном обусловлена вращением эллипсоидального главного компонента. Периоды изменения блеска заключены в пределах от 1 до 10 d, период пульсара в системе — от 1 секунды до 100 минут. Амплитуда изменений блеска обычно не превышает нескольких десятых звездной величины (Vel Х-1 = GP Vel).
  • XPR — рентгеновские системы с пульсаром, характеризующиеся наличием эффекта отражения. Состоят из главного компонента спектрального класса dB-dF и рентгеновского пульсара, который может быть и оптическим. Когда главный компонент подвергается рентгеновскому облучению, средний блеск системы максимален, в периоды малой активности рентгеновского источника —
    минимален. Полная амплитуда изменений блеска может достигать 2-3m V (HZ Her).
  • XPRM — рентгеновские системы, состоящие из карлика позднего спектрального класса dK-dM и пульсара с сильным магнитным полем. Аккреция вещества на магнитные полюса компактного объекта сопровождается появлением переменной линейной и круговой поляризации излучения; поэтому эти системы иногда называются полярами. Обычно амплитуда изменений блеска порядка 1m V, но при облучении главного компонента рентгеновским излучением средний блеск системы может возрасти на 3m V. Полная амплитуда изменений блеска может достигать 4-5m V(AM Her, AN UMa).
    Если направленное рентгеновское излучение, возникающее в магнитных полюсах вращающегося горячего компактного объекта, не пересекает положения наблюдателя и система не воспринимается как пульсар, буква Р в приведенных выше символических обозначениях типов рентгеновских систем отсутствует. В случае, если рентгеновские системы являются затменными или эллипсоидальными, обозначению их типа предшествуют символы Е или ELL, объединенные с этим обозначением знаком + (например, Е+Х или ELL + X).

Другие типы звезд и космических объектов принятых за переменные звезды

  • BLLАС — внегалактические объекты типа BL Ящерицы (BL Lac). Компактные квазизвездные объекты, характеризующиеся почти непрерывным спектром с очень слабыми линиями эмиссии и поглощения и сравнительно быстрыми неправильными изменениями блеска с амплитудой до 3m V и больше. Источники сильного рентгеновского и радиоизлучения, показывающие сильную и переменную линейную поляризацию излучения в оптической и инфракрасной областях спектра. Небольшое число таких объектов, ошибочно принимаемых за переменные звезды и получающих соответствующие обозначения, по-видимому, и в дальнейшем будет иногда попадать в основную таблицу каталога.
  • CST — постоянные звезды. В свое время они были заподозрены в переменности блеска, и была проявлена торопливость в присвоении им окончательного обозначения. Дальнейшие наблюдения не подтвердили их переменности.
  • GAL — оптически переменные квазизвездные внегалактические объекты (активные ядра галактик), ошибочно принятые за переменные звезды.
    L: — неисследованные переменные звезды с медленными изменениями блеска.
  • QSO — оптически переменные квазизвездные внегалактические объекты (квазары), ошибочно принятые за переменные звезды.
    S: — неисследованные переменные звезды с быстрыми изменениями блеска.
    * — уникальные переменные звезды, не укладывающиеся в рамки описанной выше классификации. Это, видимо, кратковременные переходные стадии от одних типов переменности к другим, или начальные и конечные стадии эволюции этих типов, или недостаточно изученные представители будущих новых типов переменности блеска.
    Если переменная звезда относится одновременно к нескольким типам переменности блеска, эти типы объединяются в столбце «Тип» знаком + (например, E+UG, UV+BY).
    Несмотря на значительные успехи в понимании процессов звездной переменности, принятая в каталоге классификация далеко не совершенна. Особенно это относится к взрывным, симбиотическим и новоподобным переменным, рентгеновским источникам и пекулярным объектам. Мы будем продолжать работу по уточнению классификации переменных звезд, надеясь на критические замечания и полезные советы специалистов.

Любую звезду можно назвать переменной - с течением времени ее блеск и даже цвет меняются. Но эти изменения происходят настолько медленно, что никакой человеческой жизни не хватит для того, чтобы их обнаружить. Недаром с глубокой древности звездное небо считалось символом неизменности и вечности.

Но и в кажущемся постоянным звездном мире немало исключений. Это большая группа звезд, чей блеск изменяется через сравнительно короткие промежутки времени и эти изменения могут быть зарегистрированы с помощью астрономических инструментов.

Переменными называют «мигающие» звезды , которые хотя бы однажды изменяли свою яркость. Но большинство переменных меняет свой блеск периодически, и это свидетельствует, что в окрестностях такой звезды или в ее недрах происходят необычные физические процессы.

Изменения блеска звезд не следует путать с их мерцанием, которое происходит из-за движения масс воздуха, имеющих различную температуру, в земной атмосфере. При наблюдении из космоса, звезды не мерцают, и если уж зарегистрированы колебания их яркости - перед нами переменная.

Звезда-чудовище

В созвездии Персея есть хорошо известная астрономам яркая звезда второй величины Алголь. Это имя переводится с арабского как «чудовище», а в средневековых изображениях Персея эта звезда играла роль «глаза» отрубленной головы Медузы Горгоны. И недаром - давным-давно было замечено, что Алголь с периодичностью около трех земных суток внезапно резко уменьшает яркость почти на полторы звездных величины - то есть в три с половиной раза!

Лишь в наши дни удалось точно выяснить причину такого «подмигивания». Алголь оказался необыкновенно тесной системой из двух звезд - Алголя A и Алголя B, расстояние между которыми в 16 раз меньше расстояния от Земли до Солнца. Менее массивный Алголь B имеет большие размеры, чем Алголь A, но блеск этого субгиганта гораздо слабее, чем у его партнера Алголя А - тот является звездой главной последовательности. Когда для земного наблюдателя происходит «затмение» более яркой звезды менее яркой, общее количество света, приходящего от системы, становится значительно меньше.

Такие переменные - а их оказалось довольно много среди двойных звезд - называют оптическими, или затменными переменными.

Тайна Дельты Цефея

Другое дело звезды, не являющиеся двойными, однако периодически сильно меняющие свой блеск. Очевидно, что дело тут не в характере движения звезды, а в сложных процессах, происходящих в их недрах. Первой из таких звезд, исследованных астрономами, была Дельта Цефея - она изменяет свой блеск за 5 дней и 9 часов на целую звездную величину. Исследования спектра этой звезды показали, что его линии периодически смещаются то в красную, то в фиолетовую область. В случае с одиночной звездой это означает, что ее поверхность то стремительно удаляется от наблюдателя, то стремительно приближается к нему - звезда пульсирует, увеличиваясь и опадая, а заодно меняя цвет и температуру поверхности. Причем, если в минимуме ее диаметр равен сорока диаметрам нашего Солнца, то в максимуме она увеличивается сразу на четыре солнечных диаметра.

Что же происходит в недрах Дельты Цефея и подобных ей звезд?

Астрофизикам удалось построить теоретическую модель звезд такого типа. В недрах Дельты Цефея существует слой вещества с особыми свойствами, который как бы накапливает энергию, выделяющуюся в ядре звезды. Когда количество энергии в нем достигает максимума, слой мгновенно отдает всю накопленную энергию «наверх». От такого «энергетического удара» внешние слои звезды то разогреваются, то охлаждаются, соответственно сжимаясь или расширяясь. При этом в минимуме блеска Дельта Цефея относится к тому же спектральному классу, что и наше , а в максимуме превращается в белую звезду с температурой поверхности выше 10 тыс. градусов.

Маяки вселеннной

В начале 20 столетия американский астроном Генриетта Ливитт (1868-1921), обнаружившая около 2400 переменных звезд, открыла зависимость между периодом изменения блеска переменных звезд и их светимостью: чем больше период, тем выше светимость. Измерив период, отныне можно было определить светимость, а зная ее - измерить расстояние до звезды.

Так звезды, подобные Дельте Цефея - их назвали цефеидами, - стали для астрономов своего рода маяками, по которым исследователи могут определить расстояния до тех звездных систем, в которых находятся переменные. А поскольку большинство цефеид относятся к классу желтых сверхгигантов и выделяют много энергии, их можно заметить на огромных расстояниях и даже в других галактиках.

Существуют также переменные звезды, изменяющие свой блеск без всяких видимых закономерностей - неправильные переменные, а цефеидами оказываются даже те звезды, которые мы по привычке считаем самыми обычными и устойчивыми. Такой, например, является Полярная звезда, - просто изменения в ее блеске выражаются не так очевидно, как у других цефеид.

В 1922 г. выдающийся американский астроном Эдвин Пауэлл Хаббл обнаружил несколько цефеид в и, используя переменные звезды как эталон светимости, вычислил расстояние до них. Так впервые в истории астрономии было доказано существование космических объектов за пределами нашей звездной системы - Туманность Андромеды оказалась гигантской спиральной галактикой, удаленной от Млечного пути на 2,5 млн световых лет.