Главная · Болезни уха · Микроскопия - это что такое? Виды световой микроскопии.

Микроскопия - это что такое? Виды световой микроскопии.

Мельчайшие размеры микроорганизмов обусловливают использование для изучения морфологии бактерий точных оптических приборов - микроскопов. Наиболее часто применяются светлопольная микроскопия, микроскопия в темном поле, фазово-контрастная и люминесцентная микроскопия. Для специальных микробиологических исследований используется электронная микроскопия.

Светлопольная микроскопия

Светлопольная микроскопия осуществляется с помощью обычного светового микроскопа, основной частью которого является объектив. На оправе объективов обозначается увеличение: 8, 10, 20, 40, 90.

При исследовании микробов применяется иммерсионная система (объектив). Иммерсионный объектив погружают в каплю кедрового масла, нанесенного на препарат. Кедровое масло имеет такой же коэффициент преломления, как и стекло, и этим достигается наименьшее рассеивание световых лучей (рис. 1.12).


Рис. 1.12. Ход лучей в иммерсионном объективе


Изображение, получаемое в объективе, увеличивает окуляр, состоящий из двух линз. В отечественных микроскопах применяются окуляры с увеличением 7, 10, 15 (рис. 1.13). Общее увеличение микроскопа определяется произведением увеличения объектива на увеличение окуляра. В микробиологии обычно используются увеличения в 900-1000 раз. Качество микроскопа зависит не от степени увеличения, а от его разрешающей способности.


Рис. 1.13. Схема сложного светового микроскопа для наблюдения в светлом поле, отрегулированного для освещения по Келеру


Под этим надо понимать наименьшее расстояние между двумя точками препарата, при котором они еще четко различимы под микроскопом. Разрешающая способность обычных световых микроскопов с иммерсионной системой равна 0,2 мкм.

Темнопольная микроскопия

Микроскопия в темном поле зрения основана на следующем принципе (рис. 1.14). Лучи освещают объект не снизу, а сбоку и не попадают в глаза наблюдателя: поле зрения остается темным, а объект на его фоне оказывается светящимся. Это достигается с помощью специального конденсора (параболоид) или обычного конденсора, прикрытого в центре кружком черной бумаги.



Рис. 1.14. Схема микроскопа для наблюдения в темном поле.


Препараты для темнопольной микроскопии готовят по типу «висячей» и «раздавленной» капли. При приготовлении препарата «раздавленная» капля исследуемый материал (бактериальную культуру в физиологическом растворе) наносят на предметное стекло, которое покрывают покровным стеклом. Капля материала заполняет все пространство между покровным и предметным стеклом, образуя ровный слой. Для приготовления «висячей» капли необходимо использовать специальные предметные стекла с углублением в центре и покровные стекла.

На середину покровного стекла наносят исследуемый материал. Края углубления на предметном стекле смазывают вазелином, и им накрывают покровное стекло так, чтобы капля находилась против центра углубления. Затем переворачивают препарат покровным стеклом вверх. Темнопольная микроскопия используется для изучения живых неокрашенных микроорганизмов.

Фазово-контрастная микроскопия

При прохождении пучка света через неокрашенный объект изменяется лишь фаза колебания световой волны, что не воспринимается человеческим глазом. Чтобы изображение стало контрастным, необходимо превратить фазовые изменения световой волны в видимые амплитудные. Это достигается с помощью фазово-контрастного конденсора и фазового объектива (рис. 1.15).


Рис. 1.15. Схема фазово-контрастного микроскопа.


Фазово-контрастный конденсор представляет собой обычный объектив с револьвером и набором кольцевых диафрагм для каждого объектива. Фазовый объектив снабжен фазовой пластинкой, которую получают нанесением солей редкоземельных элементов на объектив. Изображение кольцевой диафрагмы совпадает с кольцом фазовой пластинки соответствующего объектива.

Фазово-контрастная микроскопия значительно повышает контрастность объекта и используется для изучения нативных препаратов.

Люминесцентная микроскопия

Люминесцентная микроскопия основана на способности некоторых веществ под влиянием падающего на них света испускать лучи с другой (обычно большей) длиной волны (флюоресцировать). Такие вещества называют флюорохромами (акридиновый желтый, родамин и др.). Объект, обработанный флюорохромом, при освещении ультрафиолетовыми лучами приобретает яркий цвет в темном поле зрения.

Основной частью люминесцентного микроскопа является осветитель, имеющий лампу ультрафиолетового цвета и систему фильтров к нему (рис. 1.16). Очень важно использование нефлуоресцентного иммерсионного масла.
Люминесцентная микроскопия в практической микробиологии используется для индикации и идентификации возбудителей инфекционных заболеваний.



Рис. 1.16. Схематическое изображение флуоресцентного микроскопа: 1 - дуговая лампа; 2 - кварцевый коллектор; 3 - кювета, заполненная раствором сернокислой меди; 4 - передняя часть коллектора; 5 - ультрафиолетовый фильтр; 6 - призма; 7 - пластинка из уранового стекла; 8 - окулярный фильтр, поглощающий
ультрафиолетовые лучи.

Электронная микроскопия

Возможности оптических микроскопов ограничены слишком большой длиной волны видимого света (6000 А). Объекты, размеры которых меньше этой величины, находятся за пределами разрешающей способности светового микроскопа. В электронном микроскопе вместо световых волн используются электронные лучи, обладающие чрезвычайно малой длиной волны и высокой разрешающей способностью (рис. 1.17).


Рис. 1.17. Схема трансмиссионного электронного микроскопа.


В качестве источника электронных лучей применяют электронную пушку, основой которой служит вольфрамовая нить, нагретая электрическим током. Между вольфрамовой нитью и анодом на пути электронов находится электрическое поле высокого напряжения. Электронный поток вызывает свечение фосфоресцирующего экрана. Проходя через объект, части которого имеют различную толщину, электроны будут соответственно задерживаться, что проявится на экране участками затемнения. Объект приобретает контрастность.

Препараты для электронной микроскопии готовят на тончайших коллоидных пленках, исследуют объекты после их высушивания («нативные препараты»), напыления при помощи тяжелых металлов, ультратонких срезов метода реплик и др.

С помощью электронной микроскопии можно обнаружить самые мелкие структуры, получить увеличение до 200 000 и увидеть объекты размером 0,002 мкм.

Л.В. Тимощенко, М.В. Чубик

Темнопольный микроскоп – применяется для изучения прозрачных, слабо преломляющих свет объектов, не видимых при освещении обычным способом. Для создания темнопольного освещения используются специальные конденсоры темного поля. Принцип освещения заключается в том, что лучи направляются на объект, не допуская попадания прямых лучей в объектив. Исследователь наблюдает светящиеся части изображения на темном фоне. Пределом возможностей такого способа микроскопирования является определение частиц до 2 нм. Существенный недостаток – невозможность определить форму и внутреннее строение наблюдаемых частиц.

Фазово – котрастный микроскоп – применяется для изучения малоконтрастных прозрачных (в частности, живых или неокрашенных) объектов, которые почти не поглощают света, т.е. не изменяют амплитуду световой волны, но изменяют фазу проходящей волны. Однако глаз не может регистрировать фазовых изменений. С помощью специального конденсора и объектива они искусственно превращаются в амплитудные, восприни-маемые глазом. В результате этого создается контрастное, четкое изображение неокрашенных структур.

Разновидностями фазово-контрастного микроскопа являются интерференционный микроскоп, который предназначен для количест-венного определения массы ткани, и дифференциальный интерферен-ционный микроскоп (с оптикой Номарского), который специально используется для изучения рельефа поверхности клеток и других биологических объектов.

Фазово-контрастный и интерференционный микроскопы позволяют изучать живые клетки. В них используется эффект интерференции, возникающий при комбинации двух наборов волн, который создает изображение микроструктур. Преимуществом фазово-контрастной и интерференционной микроскопии является возможность наблюдать клетки в процессе движения и митоза. При этом регистрация движения клеток может производиться с помощью цейтраферной (покадровой) микрокиносъемки.

Поляризационный микроскоп – выявляет в гистологических объектах изо- и анизоструктуры (одинарное и двойное лучепреломление в биологических объектах). Для получения поляризованного луча используют, в частности, призму Николя, помещаемую между источником света и объектом. Другая призма – анализатор находится во вращающейся обойме между объективом и окуляром. При повороте призмы анализатора на 90 градусов в поле зрения остаются видимыми только анизотропные структуры. Методом исключения определяются изотропные структуры, которые видны при нулевом положении призмы. Изображение препарата рассматривается через окуляр.

Ультрафиолетовый микроскоп – дает возможность уменьшить разрешаемое расстояние до 0,1 мкм вследствие применения ультрафиолетовых лучей. В качестве источника используют ртутно-кварцевые лампы. Вся оптика микроскопа, а также покровные и предметные стекла готовятся из кварца. В основе ультрафиолетовой микроскопии лежит избирательное поглощение биологическими тканями и клетками коротковолнового излучения, вследствие чего микроскопирование ультрафиолетовых изображений позволяет увидеть их структуру. Полученное в ультрафиолетовых лучах, не видимое глазом изображение, преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специальных устройств (люминесцентный экран, электронно-оптический преобразователь).

Люминесцентный (флюоресцентный) микроскоп – используется для изучения распределения ряда химических компонентов в гистологических структурах. Основой для создания этого прибора послужило явление люминесценции, т.е. возбужденного свечения некоторых биологически важных соединений. Любая клетка живого организма обладает флюоресценцией, однако она обычно бывает чрезвычайно слабой. Наведенная (искусственная) люминесценция возникает при обработке препаратов специальными красителями – люминофорами (акридиновый оранжевый). Их концентрация настолько мала, что они не влияют на состав и структуру препарата, а также не нарушают жизнедеятельность биологических объектов. Это дает возможность проводить витальные наблюдения. Соответственно основ преимуществом метода флюоресцентной микроскопии является возможность наблюдений цитологических объеков, в том числе и проведения на живом не фиксированном материале некоторых цито- и гистохимических реакций, причем в этом применении метод обладает высокой чувствительностью и специфичностью.

Электронный микроскоп - даетвозможность получить изображение объектов, величина которых в среднем имеет около 0,1-0,7 нм. Столь высокая разрешающая способность объясняется применением электронных лучей. Источником электронов является электронная лампа без оболочки. Вольфрамовая нить катода под влиянием нагрева излучает поток электронов, который направляется в тубус. В условиях вакуума электронные лучи в магнитном поле ведут себя подобно лучам видимого света в стеклянной призме. Поэтому электромагниты электронного микроскопа называют линзами. Различают конденсорную, объективную и проекционную линзы. Между конденсором и объективом помещают объект. Электронный пучок сначала фокусируется конденсорной магнитной линзой. Большая часть электронов, проходя через объект, фокусируется второй магнитной линзой – объективной , которая дает увеличенное изображение объекта. Это изображение увеличивается третьей магнитной линзой – проекционной . Электроны, которые проходят через объект, вызывают свечение экрана, покрытого люминофором, производя на нем изображение объекта, т.е.

изображение получается на люминесцирующем экране. Его фотографируют и, таким образом, предметом изучения является электронная микрофото-графия. С помощью электронного микроскопа стало возможным изучение ультраструктуры клеток и их производных, макромолекул, вирусов и др. субмикроскопических образований.

В настоящее время существуют два типа электронных микроскопов:

Растровый электроныый микроскоп,

Просвечивающий электронный микроскоп.

Так называемые растровые (сканирующие) электронные микроскопы позволяют получить объемное изображение изучаемых объектов. Растровый электронный микроскоп работает по принципу сканирования электронным микрозондом исследуемого объекта, т.е. последовательно «ощупывать» сфокусированным электронным лучом отдельные точки поверхности.

Главным достоинством растровой электронной микроскопии является большая глубина резкости, широкий диапазон непрерывного изменения увеличения и высокая разрешающая способность.

Просвечивающий электронный микроскоп позволяет получить плоское изображение исследуемого объекта.

Микрометр - используется для измерения линейных размеров микроскопических объектов.


Контрольные вопросы

1. Механические части микроскопа: устройство, назначение.

2. Оптические части микроскопа: устройство, назначение.

3. Осветительный аппарат микроскопа: назначение зеркала и конденсора.

4. Основные свойства линз микроскопа. Виды аберраций.

5. Виды объективов и окуляров, их особенности.

Основным методом изучения биологических микрообъектов являются световая и электронная микроскопия, которые широко используются в экспериментальной и клинической практике.

Микроскопирование - главный метод изучения микрообъектов, используемый в биологии более 300 лет. Для изучения гистологических препаратов применяют разнообразные виды световых микроскопов и электронные микроскопы. С момента создания и применения первых микроскопов они постоянно совершенствовались. Современные микроскопы представляют собой сложные оптические системы, обладающие высокой разрешающей способностью. Размер самой маленькой структуры, которую можно видеть с помощью микроскопа, определяется наименьшим разрешаемым расстоянием (d), которое в основном зависит от длины волны света (λ) и длины волн электромагнитных колебаний потока электронов и др. Эта зависимость приближенно определяется формулой d = λ/2. Таким образом, чем меньше длина волны, тем меньше разрешаемое расстояние, и тем меньшие по размерам микроструктуры можно видеть в препарате.

Световая микроскопия. Для изучения гистологических микрообъектов применяют обычные световые микроскопы и их разновидности, в которых используются источники света с волнами различной длины. В обычных световых микроскопах источником освещения служит естественный или искусственный свет (рис. 2.1). Минимальная длина волны видимой части спектра примерно 0,4 мкм. Следовательно, для обычного светового микроскопа наименьшее разрешаемое расстояние приблизительно составляет 0,2 мкм, а общее увеличение (произведение увеличения объектива на увеличение окуляра) может быть 1500-2500.

Таким образом, с помощью светового микроскопа можно увидеть не только отдельные клетки размером от 4 до 150 мкм, но и их внутриклеточные структуры - органеллы, включения. Для усиления контрастности микрообъектов применяют их окрашивание.

Ультрафиолетовая микроскопия. Это разновидность световой микроскопии. В ультрафиолетовом микроскопе используют более короткие ультрафиолетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь в 2 раза меньше, чем в обычных световых микроскопах, и составляет приблизительно 0,1 мкм. Полученное в ультрафиолетовых лучах невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специальных устройств (люминесцентный экран, электронно-оптический преобразователь).

Флюоресцентная (люминесцентная) микроскопия. Явления флюоресценции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротко-

Рис. 2.1. Микроскопы для биологических исследований:

а - световой биологический микроскоп «Биолам-С»: 1 - основание; 2 - ту-бусодержатель; 3 - наклонный тубус; 4 - окуляр; 5 - револьвер; 6 - объективы; 7 - столик; 8 - конденсор с ирисовой диафрагмой; 9 - винт конденсора; 10 - зеркало; 11 - микрометрический винт; 12 - макрометрический винт; б - электронный микроскоп ЭМВ-100АК с автоматизированной системой обработки изображений: 1 - колонка микроскопа (с электронно-оптической системой и камерой для образцов); 2 - пульт управления; 3 - камера с люминесцентным экраном; 4 - блок анализа изображений; 5 - датчик видеосигнала; в - конфокальный микроскоп: 1 - световой микроскоп; 2 - регистратор изображения (фотоэлектронный умножитель);

3 - сканирующее устройство для перемещения светового луча по оси X, Y, Z;

4 - блок питания и стойка управления лазерами; 5 - компьютер для обработки изображений

волновые лучи, переходят в возбужденное состояние. Обратный переход из возбужденного состояния в нормальное происходит с испусканием света, но с большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксе-ноновые лампы сверхвысокого давления, обладающие высокой яркостью в области спектра 0,25-0,4 мкм (ближние ультрафиолетовые лучи) и 0,4-0,5 мкм (сине-фиолетовые лучи). Длина световой волны флюоресценции всегда больше длины волны возбуждающего света, поэтому их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первичную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой.

Первичной флюоресценцией обладают серотонин, катехоламины (адреналин, норадреналин), содержащиеся в нервных, тучных и других клетках, после фиксации тканей в парах формальдегида при 60-80 °С (метод Фалька).

Вторичная флюоресценция возникает при обработке препаратов специальными красителями - флюорохромами.

Существуют различные флюорохромы, которые специфически связываются с определенными макромолекулами (акридиновый оранжевый, родамин, флюоресцеин и др.). Например, при обработке препаратов акридиновым оранжевым ДНК и ее соединения в клетках имеют ярко-зеленое, а РНК и ее производные - ярко-красное свечение. Существует много красителей, с помощью которых можно выявить белки, липиды, внутриклеточные ионы кальция, магния, натрия и др. Таким образом, спектральный состав излучения несет информацию о внутреннем строении объекта и его химическом составе. Вариант метода флюоресцентной микроскопии, при котором и возбуждение, и излучение флюоресценции происходят в ультрафиолетовой области спектра, получил название метода ультрафиолетовой флюоресцентной микроскопии.

Для повышения контрастности флюорохромированных объектов применяется конфокальный вариант оптического микроскопа (см. рис. 2.1, в). В качестве освещения используется пучок монохроматического света малого диаметра, который создает лазерный источник. В каждый момент времени в фокусе микроскопа находится небольшой участок (объем) клетки. Пучок света перемещается по объекту (сканирует объект по осям X, Y, Z). При каждом перемещении пучка света по одной из линий сканирования получается информация об исследуемой структуре, находящейся в данной точке (объеме) по линии сканирования (оптическом срезе клетки), например о локализации белков в составе микротрубочек в клетке. Вся полученная информация от каждой точки сканирования клетки передается на компьютер, объединяется с помощью специальной программы и выдается на экран монитора в виде контрастного изображения. С помощью данного метода микроскопии получается информация о форме клеток, цитоскеле-те, структуре ядра, хромосом и др. С помощью программы компьютер на основе полученной информации по каждой линии сканирования создает объемное изображение клетки, что позволяет рассматривать клетку под разными углами зрения.

Фазово-контрастная микроскопия. Этот метод служит для получения контрастных изображений прозрачных и бесцветных живых объектов, невидимых при обычных методах микроскопирования. Метод основан на том, что свет, проходя структуры с различным коэффициентом преломления, изменяет свою скорость. Используемая конструкция оптики микроскопа дает возможность преобразовать не воспринимаемые глазом фазовые изменения прошедшего через неокрашенный препарат света в изменения его амплитуды, т. е. яркости получаемого изображения. Метод фазового контраста обеспечивает контрастность изучаемых неокрашенных структур за счет специальной кольцевой диафрагмы, помещаемой в конденсоре, и так называемой фазовой пластинки, находящейся в объективе. Разновидностью метода фазового контраста является метод фазово-темнопольного контраста, дающий негативное по сравнению с позитивным фазовым контрастом изображение.

Микроскопия в темном поле. В темнопольном микроскопе только свет, который дает дифракцию (огибание волнами) структур в препарате, достигает объектива. Происходит это благодаря наличию в микроскопе специального конденсора, который освещает препарат строго косым светом; лучи от осветителя направляются сбоку. Таким образом, поле выглядит темным, а мелкие частицы в препарате отражают свет, который далее попадает в объектив. В клинике этот метод применяют для изучения кристаллов в моче (мочевая кислота, оксалаты), для демонстрации спирохет, в частности Treponema pallidum, вызывающей сифилис, и др.

Интерференционная микроскопия. Разновидностями фазово-контрастного микроскопа являются интерференционный микроскоп, который предназначен для количественного определения массы ткани. Дифференциальный интерференционный микроскоп (с оптикой Номарского) используют для изучения рельефа поверхности клеток и других биологических объектов.

В интерференционном микроскопе пучок света от осветителя разделяется на два потока: один проходит через объект и изменяется по фазе колебания, второй идет, минуя объект. В призмах объектива оба пучка накладываются друг на друга. В результате строится изображение, в котором участки микрообъекта разной толщины и плотности различаются по степени контрастности. Проведя количественную оценку изменений, определяют концентрацию и массу сухого вещества.

Фазово-контрастный и интерференционный микроскопы позволяют изучать живые клетки. В них используется интерференция, возникающая при комбинации двух наборов волн и создающая изображение микроструктур. Преимуществом фазово-контрастной, интерференционной и темно-польной микроскопии является возможность наблюдать клетки в процессе движения и митоза. При этом регистрация движения клеток может производиться с помощью цейтраферной (покадровой) микровидеосъемки.

Поляризационная микроскопия. Поляризационный микроскоп является модификацией светового микроскопа, в котором установлены два поляризационных фильтра: первый (поляризатор) - между пучком света и объектом, а второй (анализатор) - между линзой объектива и глазом. Через первый фильтр свет проходит только в одном направлении, второй фильтр имеет главную ось,

которая располагается перпендикулярно первому фильтру, и он не пропускает свет. Получается эффект темного поля. Структуры, содержащие продольно ориентированные молекулы (коллаген, микротрубочки, микрофиламенты), и кристаллические структуры, обладают свойством вращать ось световых лучей, исходящих из поляризатора. При изменении оси вращения данные структуры проявляются как светящиеся на темном фоне. Способность кристаллов или паракристаллических образований к раздвоению световой волны на обыкновенную и перпендикулярную к ней называется двойным лучепреломлением. Такой способностью обладают фибриллы поперечнополосатых мышц.

Электронная микроскопия. Большим шагом вперед в развитии техники микроскопии было создание и применение электронного микроскопа (см. рис. 2.1). В электронном микроскопе используется поток электронов с волнами более короткими, чем в световом микроскопе. При напряжении 50 000 В длина волны электромагнитных колебаний, возникающих при движении потока электронов в вакууме, равна 0,0056 нм. Теоретически рассчитано, что разрешаемое расстояние в этих условиях может быть около 0,002 нм, или 0,000002 мкм, т. е. в 100 000 раз меньше, чем в световом микроскопе. Практически в современных электронных микроскопах разрешаемое расстояние составляет около 0,1-0,7 нм.

В гистологии используются трансмиссионные (просвечивающие) электронные микроскопы (ТЭМ), сканирующие (растровые) электронные микроскопы (СЭМ) и их модификации. С помощью ТЭМ можно получить лишь плоскостное изображение изучаемого микрообъекта. Для получения пространственного представления о структурах применяют СЭМ, способные создавать трехмерное изображение. Растровый электронный микроскоп работает по принципу сканирования электронным микрозондом исследуемого объекта, т. е. последовательно «ощупывает» остро сфокусированным электронным пучком отдельные точки поверхности. Такое исследование объекта называется сканированием (считыванием), а рисунок, по которому движется микрозонд, - растром. Полученное изображение выводится на телевизионный экран, электронный луч которого движется синхронно с микрозондом.

Главными достоинствами растровой электронной микроскопии являются большая глубина резкости, широкий диапазон непрерывного изменения увеличения (от десятков до десятков тысяч раз) и высокая разрешающая способность. Современными вариантами приборов для изучения поверхности объекта является атомно-силовой микроскоп и сканирующий туннельный микроскоп.

Электронная микроскопия с использованием метода замораживания - скалывания применяется для изучения деталей строения мембран и межклеточных соединений. Для изготовления сколов клетки замораживают при низкой температуре (-160 °С). При исследовании мембраны плоскость скола проходит через середину бислоя липидов. Далее на внутренние поверхности полученных половинок мембран напыляют металлы (платина, палладий, уран), изучают их с помощью ТЭМ и микрофотографии.

Метод криоэлектронной микроскопии. Быстро замороженный тонкий слой (около 100 нм) образца ткани помещают на микроскопическую решетку и исследуют в вакууме микроскопа при -160 °С.

Метод электронной микроскопии «замораживание - травление» применяют для изучения внешней поверхности мембран клеток. После быстрого замораживания клеток при очень низкой температуре блок раскалывают лезвием ножа. Образующиеся кристаллы льда удаляют путем возгонки воды в вакууме. Затем участки клеток оттеняют, напыляя тонкую пленку тяжелого металла (например, платины). Метод позволяет выявлять трехмерную организацию структур.

Таким образом, методы замораживания - скалывания и замораживания - травления позволяют изучать нефиксированные клетки без образования в них артефактов, вызываемых фиксацией.

Методы контрастирования солями тяжелых металлов позволяют исследовать в электронном микроскопе отдельные макромолекулы - ДНК, крупных белков (например, миозин). При негативном контрастировании изучают агрегаты макромолекул (рибосомы, вирусы) либо белковые филаменты (актиновые нити).

Электронная микроскопия ультратонких срезов, полученных методом криоультрамикро-томии. При этом методе кусочки тканей без фиксации и заливки в твердые среды быстро охлаждают в жидком азоте при температуре -196 °С. Это обеспечивает торможение метаболических процессов клеток и переход воды из жидкой фазы в твердую. Далее блоки режут на ультрамикротоме при низкой температуре. Такой метод приготовления срезов обычно используют для определения активности ферментов, а также для проведения иммунохимических реакций. Для выявления антигенов применяют антитела, связанные с частицами коллоидного золота, локализацию которого легко выявить на препаратах.

Методы сверхвысоковольтной микроскопии. Используют электронные микроскопы с ускоряющим напряжением до 3 000 000 В. Преимущество этих микроскопов в том, что они позволяют исследовать объекты большой толщины (1-10 мкм), так как при высокой энергии электронов они меньше поглощаются объектом. Стереоскопическая съемка позволяет получать информацию о трехмерной организации внутриклеточных структур с высоким разрешением (около 0,5 нм).

Микроскопия – совокупность методов исследования объектов с помощью микроскопов. Самое главное в микроскопии это четко увидеть очертание объектов, что позволяет правильно их идентифицировать. Различается несколько методов микрокопирования.

Остановимся на главных.

Метод светлого поля – наиболее распространен в микроскопии. Пучок света, проходя через непоглощающие зоны препарата, даёт равномерно освещённое поле. Объект в видимой части спектра поглощает свет тем самым получается контрастное изображение данного объекта. Часто в микроскопии используют различные красители для выделения тех или иных объектов.

Метод темного поля – в микроскопе тёмного поля неоднородности образца рассеивают свет, и этот рассеянный свет формирует изображение исследуемого образца. Используется при изучении в большей степени для изучения непрозрачных объектов. Объект светится за счет рассеивания света. Для микроскопии данным методом необходимо иметь конденсор темного поля.

Фазво-контрастая микроскопия Метод фазового контраста обеспечивает контрастность изучаемых неокрашенных структур за счет специальной кольцевой диафрагмы, помещаемой в конденсоре, и так называемой фазовой пластинки, находящейся в объективе. Такая конструкция оптики микроскопа дает возможность преобразовать не воспринимаемые глазом фазовые изменения прошедшего через неокрашенный препарат света в изменение его амплитуды, т.е. яркости получаемого изображения.

Интерференционная микроскопия Разновидностями фазово-контрастного микроскопа являются интерференционный микроскоп, который предназначен для количественного определения массы ткани, и дифференциальный интерференционный микроскоп (с оптикой Номарского), который специально используют для изучения рельефа поверхности клеток и других биологических объектов.

Поляризационная микроскопия. Поляризационный микроскоп является модификацией светового микроскопа, в котором установлены два поляризационных фильтра - первый (поляризатор) между пучком света, и объектом, а второй (анализатор) между линзой объектива и глазом. Через первый фильтр свет проходит только в одном направлении, второй фильтр имеет главную ось, которая располагается перпендикулярно первому фильтру, и он не пропускает свет. Получается эффект темного поля. Оба фильтра могут вращаться, изменяя направление пучка света.

Электронная микроскопия. Большим шагом вперед в развитии техники микроскопии были создание и применение электронного микроскопа (см. рис. 1, Б). В электронном микроскопе используется поток электронов с более короткими, чем в световом микроскопе, длинами волн. При напряжении 50000 В длина волны электромагнитных колебаний, возникающих при движении потока электронов в вакууме, равна 0,0056 нм. Теоретически рассчитано, что разрешаемое расстояние в этих условиях может быть около 0,002 нм, или 0,000002 мкм, т.е. в 100 000 раз меньше, чем в световом микроскопе. Практически в современных электронных микроскопах разрешаемое расстояние составляет около 0,1-0,7 нм.

Рентгеновская микроскопия - Для изучения структуры макромолекул на атомарном уровне применяют методы с использованием рентгеновских лучей, имеющих длину волны около 0,1 нм (диаметр атома водорода). Молекулы, образующие кристаллическую решетку, изучают с помощью дифракционных картин, которые регистрируют на фотопластинке в виде множества пятен различной интенсивности. Интенсивность пятен зависит от способности различных объектов в решетке рассеивать излучение. Положение пятен в дифракционной картине зависит от положения объекта в системе, а их интенсивность свидетельствует о его внутренней атомной структуре.

Микроскопические методы исследования – это способы изучения очень мелких, неразличимых невооруженным глазом объектов с помощью микроскопов. Широко применяются в бактериологических, гистологических, цитологических и других исследованиях.

Микроскопия - один из главных методов диагностики инфекционных и инвазионных заболеваний, позволяющий определить вид возбудителя по форме, размерам, строению оболочки, цитоплазмы, ядра, взаиморасположению и способности окрашиваться определенными красителями; обнаружить яйца и личинки гельминтов, их фрагментов, вегетативных и цистных форм патогенных простейших.

Микроскоп – это оптический прибор, имеющий как минимум двухступенчатое увеличение. И одно из них принадлежит окуляру, который играет роль лупы. Только в отличие от бытовой лупы, окуляр имеет постоянное увеличение, его положение в микроскопе определено и жестко закреплено стандартом (высота окуляра).

Любой оптический микроскоп имеет базовые узлы, функциональное назначение которых не меняется от типа, класса прибора или страны производителя. Разница только в конструкторском и технологическом решениях, предложенных специалистами фирм-разработчиков, а также уровне мирового научно-технического прогресса. И как бы микроскоп не назывался – световой, цифровой, видеомикроскоп, фотомикроскоп, лазерный сканирующий микроскоп, анализатор изображения – в его основе будет базовый световой микроскоп, принцип которого был разработан еще Левингуком, Ньютоном, Карл Цейсом, Эрнстом Аббе.

Микроскоп – это оптико-механо-электрический прибор, объединяющий в себе три функциональные части:
· функция воспроизводящей системы – воспроизвести (создать, сформировать) изображение объекта таким образом, чтобы оно как можно точнее передавало детали объекта с соответствующим разрешением, увеличением, контрастом и цветопередачей;
· функция визуализирующей системы – передать изображение объекта, созданное воспроизводящей системой микроскопа, таким образом, чтобы оно с небольшим дополнительным увеличением (или без него) было видно достаточно резко на сетчатке глаза, фотопленке или пластинке, на экране телевизора или монитора компьютера;
· функция осветительной системы – создать световой поток, позволяющий осветить объект таким образом, чтобы воспроизводящая система микроскопа предельно точно могла выполнить свою основную функцию. При этом совместная работа обоих систем должна обеспечивать визуализацию изображения с использованием физико-химических свойств объекта.

Важнейшей характеристикой каждого объектива микроскопа является его разрешающая способность. Разрешающей способностью называется расстояние между двумя точками, при котором они видны раздельно (т.е. не сливаются в одну).

Для полного использования разрешающей способности иммерсионного объектива необходимо выполнять следующие основные правила:
1) Конденсор осветительного аппарата должен быть поднят до отказа (до уровня предметного столика).
2) Диафрагма конденсора полностью открыта.

Во всех без исключения случаях работа ведется с применением встроенной подсветки или плоского зеркала, так как конденсор рассчитан на работу с параллельными пучками света.
Одной из важных характеристик объектива является его свободное рабочее расстояние, т.е. расстояние между верхней поверхностью препарата и нижней поверхностью фронтальной линзы объектива при наведенном на фокус объективе. Эти расстояния следующие:
для объектива с увеличением 10х – 0,25 мм;
для объектива с увеличением 40х – 0,65 мм;
для объектива с увеличением 100х – 1,25 мм.
Знание этих расстояний необходимо для того, чтобы быстро сфокусировать объектив на препарат.

Классификация микроскопов

Микроскопы по объекту исследования можно разделить на следующие основные виды:
- микроскопы плоского поля – это микроскопы, оптическая схема которых обеспечивает воспроизведение объекта в двумерном пространстве – двумерное изображение. Объекты исследования – тонкие, в среднем, толщиной от 10 мм до 0,1 мм, просматриваемый слой от 1 мм до 0,001 мм. В этих микроскопах возможно наблюдение объемного изображения в пределах 100-200 мкм по высоте за счет особых способов освещения.
- стереоскопические микроскопы - это микроскопы, оптическая схема которых обеспечивает воспроизведение объекта в трехмерном пространстве – объемное, трехмерное изображение. Объекты исследования – габаритные, в среднем, толщиной от 100 мм до 1 мм, просматриваемый слой по высоте/глубине – от 50 мм до 0,5 мм, и плоские.
Конструктивно микроскопы могут быть выполнены в двух вариантах:
- прямые микроскопы (классическое построение схемы) – наблюдательная часть микроскопа расположена сверху объекта. Это относится к микроскопам плоского поля и стереомикроскопам.
- инвертированные микроскопы (перевернутое построение схемы) – наблюдательная часть микроскопа расположена снизу объекта. Это относится только к микроскопам плоского поля.

По построению изображения микроскопы можно разделить следующим образом:
- микроскопы светлого поля – на светлом фоне более темное изображение объекта. Освещение: обычный прямо проходящий свет.
- микроскопы с методом косого освещения – на сером фоне контрастное изображение объекта с неровным по толщине контуром. Освещение: обычный прямо проходящий свет частично перекрывается до того, как попадает объект.
- микроскопы с методом темного поля – на темном фоне более светлое изображение объекта или ярко блестящий контур объекта. Освещение:
а) в микроскопах проходящего света – обычный прямо проходящий свет полностью перекрывается до того, как попадает на объект;
б) в микроскопах отраженного света - обычный свет, проходя через кольцевую диафрагму с непрозрачным диском, по размеру перекрывающим выходной зрачок объектива.
- микроскопы с методом фазового контраста – дают возможность с максимальной степенью визуализации и детальности наблюдать на сером фоне более темное «объемное» изображение объекта, окруженное по контуру светлой полосой; при негативном (темнопольном) фазовом контрасте картина обратная. Освещение: обычный прямо проходящий свет перекрывается, но в два этапа – часть света до объекта, а затем после объекта прошедшая часть света перекрывается с ослаблением. При этом свет в виде светового кольца определенной площади проходит через объект, а затем после объекта – через полупрозрачное кольцо в объективе.
Кроме того в парке микроскопов имеются специализированные микроскопы:
- люминесцентные микроскопы – обеспечивают возможность наблюдения на темном фоне свечения объектов. Освещение: обычный прямо падающий свет определенной длины волны попадает на объект, изображение объекта строится в другой длине волны; выделение соответствующих областей спектра происходит с помощью сложной системы блоков интерференционных светофильтров.
- поляризационные микроскопы – на сером или темном фоне разноцветное, четкое или контрастное изображение. Освещение: обычный прямо проходящий свет с помощью поляризатора в осветительной системе превращается в линейно-поляризованный свет, после объекта с помощью анализатора происходит выделение из структуры изображения тех элементов, которые связаны с анизотропией объекта.
- микроскопы дифференциально-интерференционного контраста или интерференционного контраста – на однотонном цветном фоне яркое цветное «объемное» изображение или изображение того же цвета, что и фон, с окантовкой из другого цвета. Освещение: обычный прямо проходящий свет с помощью поляризатора в осветительной системе превращается в линейно-поляризованный свет, после объекта с помощью специальной призмы и анализатора происходит создание объемного цветного контрастного изображения.
- ультрафиолетовые и инфракрасные микроскопы – освещение и наблюдение объекта с помощью электронно-оптических преобразователей вне видимого диапазона: до 400 нм и свыше 700 нм.

- лазерные микроскопы - освещение и наблюдение объекта с помощью лазерного излучения (смотрите пример ниже).

Порядок работы со световыми микроскопами
· Проверить состояние осветительного аппарата: поднять конденсор, открыть его диафрагму, включить питание и для установки интенсивности освещения медленно повернуть ручку настройки яркости, в случае отсутствия встроенной подсветки, поставить плоское зеркало.
· Поместить на столик микроскопа исследуемый препарат и установить в фокусе сухой объектив (10х) на расстояние несколько меньше свободного рабочего расстояния.
· Глядя в окуляр, произвести предварительную установку освещения с помощью ручки настройки яркости (или вращая зеркалом).
· Медленно поднимая тубус макровинтом, добиться резкого изображения препарата.
· Поставив сухой (40х) или иммерсионный (100х) объектив, опускать тубус микроскопа под контролем глаза, глядя сбоку. Опустить объектив на расстояние меньше свободного рабочего и, глядя в окуляр, макровинтом медленно поднимать тубус до тех пор, пока не появится мелькание препарата. Точная установка достигается с помощью микровинта. Не следует делать микровинтом более половины оборота в одну или другую сторону.

Микроскопия неокрашенных объектов
При работе с нативным материалом необходимо соблюдать два основных принципа: не загрязнить исследуемый объект микроорганизмами, не заразить себя и окружающую среду. При микроскопии необходимо помнить, что рассматривание неокрашенного препарата возможно только с ограниченным освещением, путем опускания конденсора или уменьшением отверстия ирис-диафрагмы. Для микроскопии неокрашенных объектов используется окуляр 10х и объектив 10х.
При освещении с помощью встроенной подсветки осветителя или плоского зеркала ирис-диафрагма частично закрыта, конденсор опущен. С помощью макровинта устанавливается поле зрения и проводится обзор препарата. С целью обнаружения объекта все нативные (неокрашенные) препараты просматривают под малым увеличением с помощью макровинта. Для лучшего рассмотрения объекта или его отдельных фрагментов используется сухой объектив с увеличением 40х и освещенность, с помощью поднятия конденсора и открытия ирис-диафрагмы под контролем глаза.

Микроскопия окрашенных объектов
При микроскопии окрашенного препарата необходимо помнить, что рассматривание возможно только при полном освещении. Для микроскопии окрашенных объектов используется окуляр 10х и объектив 10х.
Ирис-диафрагма открыта, конденсор поднят. С помощью макровинта устанавливается поле зрения и проводится обзор препарата. Достигается максимальное освещение препарата. При малом увеличении делается обзор препарата для обнаружения четко выраженных полей зрения. Изучение препарата проводится под большим увеличением с применением сухой системы объектив 40х. Для микроскопии окрашенных препаратов биологической жидкости, мокроты, биологического материала применяется иммерсионная система объектив 100х с нанесением на предметное стекло иммерсионного масла.

Метод люминесцентной микроскопии
Люминесценция, основа многих современных методов биологических исследований, позволяет наблюдать за взаимоотношениями молекул внутри клеток.
Фактором качественной работы для всех методов люминесцентных исследований является скорость.
Основной целью современной люминесцентной микроскопии является визуализация всех измерений объекта.
Метод с большим эффектом может быть использован для ускорения диагностики ряда заболеваний.
Люминесцентная микроскопия основана на способности некоторых веществ светиться под действием коротковолновых лучей света. При этом длина волны излучаемого при люминесценции света всегда будет больше, чем длина волны света, возбуждающего люминесценцию. Так, если освещать объект синим светом, он будет испускать лучи красного, оранжевого, желтого или зеленого цвета.
Препараты для люминесцентной микроскопии окрашивают специальными светящимися люминесцентными красителями – флуорохромами. Центральная часть клеток и присутствующие в препарате посторонние микробные клетки не светятся.
Ускоренная диагностика, идентификация возбудителя, обнаружение специфических антител в биологическом материале, биологической жидкости и во внешней среде осуществляется методами МФА, МИФ с применением люминесцирующих сывороток:
- иммуноглобулины диагностические туляремийные люминесцирующие – диагностика туляремии;
- иммуноглобулины диагностические бруцеллезные люминесцирующие – диагностика бруцеллеза;
-иммуноглобулины диагностические сибиреязвенные соматические люминесцирующие – диагностика сибирской язвы;
-иммуноглобулины диагностические сибиреязвенные антиспоровые адсорбированные флуоресцирующие – диагностика сибирской язвы;
-иммуноглобулины диагностические флуоресцирующие холерные адсорбированные лошадиные – диагностика холеры;
- антигенный препарат с хантавирусным антигеном - диагностика ГЛПС;
- иммуноглобулины диагностические флуоресцирующие для быстрой диагностики гриппа, ОРВИ.
Антигены, вирусы гриппа и другие возбудители ОРВИ в инфицированных клетках по их характерной локализации выявляются в результате взаимодействия антигенов с противовирусными антителами, маркированными флуоресцеинизотиоцианатом, методом МИФ. Метод иммунофлуоресцентного анализа (МИФ) является высоко чувствительным и специфичным качественным иммунодиагностическим тестом. К числу преимуществ метода относится его исключительная простота и возможность быстрого (за 1-2 часа) анализа клинических материалов с распознаванием широкого круга возбудителей, включая вирусы гриппа, парагриппа, респираторно-синцитиальный вирус, коронавирусы, аденовирусы, вирусы герпеса.

Общий метод: наблюдение. Частный метод: микроскопирование.

Christine E. Farrar, Zac H. Forsman, Ruth D. Gates, Jo-Ann C. Leong, and Robert J. Toonen, Hawai"i Institute of Marine Biology at the University of Hawai"i, Manoa

No dyes or digital software produced the brilliant color of these corals-the glory is all their own. Fluorescent molecules, innate to the corals and to the red algae that live inside and nourish them, shine like Christmas lights under different wavelengths of light emitted by a confocal microscope.

When she saw the corals under the lens for the first time, "my jaw just dropped," says Ruth Gates, a coral biologist at the University of Hawai"i, Manoa, and the narrator of the video. "Most people think corals are inanimate rocks," she says. "We showcase how beautiful and dynamic they are as animals." In the video, which compiles the images into three-dimensional, time-lapse animations, corals extend and retract their glowing tentacles. Tiny creatures crawl over the corals, all part of a complex and threatened ecosystem. In the future, Gates says, it might be possible to use confocal microscopy to classify different coral species or diagnose coral disease by their fluorescent patterns. Prior to applying this technique, she says, "that was not even a facet in our thinking about coral biology."