Главная · Болезни уха · Производная неявной функции примеры решения. Производные высших порядков неявно заданной функции

Производная неявной функции примеры решения. Производные высших порядков неявно заданной функции

Пусть функция задана неявно в виде уравнения
. Продифференцировав это уравнение по х и разрешив полученное уравнение относительно производной , найдем производную первого порядка (первую производную). Продифференцировав по х первую производную получим вторую производную от неявной функции. Подставляя уже найденное значение в выражение второй производной, выразим через х и у. Аналогично поступаем для нахождения производной третьего порядка (и дальше).

Пример.Найти , если
.

Решение: дифференцируем уравнение по х :
. Отсюда находим
. Далее .

Производные высших порядков от функций заданных параметрически.

Пусть функция
задана параметрическими уравнениями
.

Как известно первая производная находится по формуле
. Найдем вторую производную
, т.е.
. Аналогично
.

Пример. Найти вторую производную
.

Решение: находим первую производную
. Находим вторую производную
.

Дифференциал функции.

Пусть функция
дифференцируема на
. Производная этой функции в некоторой точке
определяется равенством
. Отношение
при
, следовательно отличается от производной
на величину б.м., т.е. можно записать
(
). Умножим все на
, получим
. Приращение функции
состоит из двух слагаемых. первое слагаемое
- главная часть приращения, есть дифференциал функции.

Опр. Дифференциалом функции
называется произведение производной на приращение аргумента. Обозначается
.

Дифференциал независимого переменного совпадает с его приращением
.

(). Таким образом, формулу для дифференциала можно записать
. Дифференциал функции равен произведению производной на дифференциал независимой переменной. Из этого соотношения следует, что производную можно рассматривать как отношение дифференциалов
.

Дифференциал используют в приближенных вычислениях. Так как в выражении
второе слагаемое
бесконечно малая величина пользуются приближенным равенством
или в развернутом виде

Пример: вычислить приближенное значение
.

Функция
имеет производную
.

По формуле (*) : .

Пример: найти дифференциал функции

Геометрический смысл дифференциала.

К графику функции
в точке М(x ;y ) проведем касательную и рассмотрим ординату этой касательной для точки x +∆ x . На рисунке АМ=∆х АМ 1 =∆у из ∆МАВ
, отсюда
, но согласно геометрическому смыслу касательной
. Поэтому
. Сравнивая эту формулу с формулой дифференциала получаем, что
, т.е. дифференциал функции
в точке х равен приращению ординаты касательной к графику функции в этой точке, когда х получает приращение ∆х .

Правила вычисления дифференциала.

Поскольку дифференциал функции
отличается от производной множителем
, то все правила вычисления производной используются и для вычисления дифференциала (отсюда и термин «дифференцирование»).

Пусть даны две дифференцируемые функции
и
, тогда дифференциал находится по следующим правилам:

1)

2)
с – const

3)

4)
(
)

5) для сложной функции
, где

(т.к.
).

Дифференциал сложной функции равен произведению производной этой функции по промежуточному аргументу на дифференциал этого промежуточного аргумента.

Приложения производной.

Теоремы о среднем значении.

Теорема Ролля . Если функция
непрерывна на отрезке
и дифференцируема в открытом промежутке
и если принимает на концах отрезка равные значения
, то в интервале
найдется, хотя бы одна такая точка с , в которой производная обращается в ноль, т.е.
, a < c < b .

Геометрически теорема Ролля означает, что на графике функции
найдется точка, в которой касательная к графику параллельна оси Ох .

Теорема Лагранжа . Если функция
непрерывна на отрезке
и дифференцируема на интервале
, то найдется, хотя бы одна точка
такая, что выполняется равенство .

Формулу называют формулой Лагранжа или формулой о конечном приращении: приращение дифференцируемой функции на отрезке
равно приращению аргумента, умноженному на значение производной в некоторой внутренней точке этого отрезка.

Геометрический смысл теоремы Лагранжа: на графике функции
найдется точка С(с; f (c )) , в которой касательная к графику функции параллельна секущей АВ .

Теорема Коши . Если функции
и
непрерывны на отрезке
, дифференцируемы на интервале
, причем
для
, то найдется хотя бы одна точка
такая, что выполняется равенство
.

Теорема Коши служит основанием для нового правила вычисления пределов.

Правило Лопиталя.

Теорема: (Правило Лопиталя раскрытие неопределенностей вида ). Пусть функции
и
непрерывны и дифференцируемы в окрестности точки х 0 и обращаются в нуль в этой точки
. И пусть
в окрестности точки х 0 . если существует предел
, то
.

Доказательство: применим к функциям
и
теорему Коши для отрезка

Лежащего в окрестности точки х 0 . Тогда
, где x 0 < c < x . Так как
получаем
. Перейдем к пределу при

. Т.к.
, то
, поэтому
.

Итак предел отношения двух б.м. равен пределу отношения их производных, если последний существует
.

Теорема. (правило Лопиталя раскрытия неопределенностей вида
) Пусть функции
и
непрерывны и дифференцируемы в окрестности точки х 0 (кроме, может быть, точки х 0 ), в этой окрестности
,
. Если существует предел

, то
.

Неопределенности вида (
) сводятся к двум основным (),
путем тождественных преобразований.

Пример:

Очень часто при решении практических задач (например, в высшей геодезии или аналитической фотограмметрии) появляются сложные функции нескольких переменных, т. е. аргументы x, y, z одной функцииf (x,y,z) ) сами являются функциями от новых переменныхU, V, W ).

Так, например, бывает при переходе от неподвижной системы координат Oxyz в подвижную системуO 0 UVW и обратно. При этом важно знать все частные производные по "неподвижным" - "старым" и "подвижным" - "новым" переменным, так как эти частные производные обычно характеризуют положение объекта в этих системах координат, и, в частности, влияют на соответствие аэрофотоснимков реальному объекту. В таких случаях применяются следующие формулы:

То есть задана сложная функцияT трех "новых" переменныхU, V, W посредством трёх "старых" переменныхx, y, z, тогда:

Замечание. Возможны вариации в количестве переменных. Например: если

В частности, еслиz = f(xy), y = y(x) , то получаем так называемую формулу "полной производной":

Эта же формула "полной производной" в случае:

примет вид:

Возможны и иные вариации формул (1.27) - (1.32).

Замечание: формула "полной производной" используется в курсе физики, раздел "Гидродинамика" при выводе основополагающей системы уравнений движения жидкости.

Пример 1.10. Дано:

Согласно (1.31):

§7 Частные производные неявно заданной функции нескольких переменных

Как известно, неявно заданная функция одной переменной определяется так: функция у независимой переменной x называется неявной, если она задана уравнением, не разрешенным относительноy :

Пример 1.11.

Уравнение

неявно задаёт две функции:

А уравнение

не задаёт никакой функции.

Теорема 1.2 (существования неявной функции).

Пусть функция z =f(х,у) и ее частные производныеf" x иf" y определены и непрерывны в некоторой окрестностиU M0 точкиM 0 (x 0 y 0 ) . Кроме того,f(x 0 ,y 0 )=0 иf"(x 0 ,y 0 )≠0 , тогда уравнение (1.33) определяет в окрестностиU M0 неявную функциюy= y(x) , непрерывную и дифференцируемую в некотором интервалеD с центром в точке x 0 , причемy(x 0 )=y 0 .

Без доказательства.

Из теоремы 1.2 следует, что на этом интервале D :

то- есть имеет место тождество по

где "полная" производная находится согласно (1.31)

То есть (1.35) дает формулу нахождения производной неявно заданной функции одной переменной x .

Аналогично определяется и неявная функция двух и более переменных.

Например, если в некоторой области V пространстваOxyz выполняется уравнение:

то при некоторых условиях на функцию F оно неявно задаёт функцию

При этом по аналогии с (1.35) ее частные производные находятся так.


Несомненно, в нашем сознании образ функции ассоциируется с равенством и соответствующей ему линией – графиком функции. Например, - функциональная зависимость, графиком которой является квадратичная парабола с вершиной в начале координат и направленными вверх ветвями; - функция синуса, известная своими волнами.

В этих примерах в левой части равенства находится y , а в правой части – выражение, зависящее от аргумента x . Другими словами, имеем уравнение, разрешенное относительно y . Представление функциональной зависимости в виде такого выражения называется явным заданием функции (или функцией в явном виде ). И этот тип задания функции является для нас наиболее привычным. В большинстве примеров и задач нам предстают именно явные функции. Про дифференцирование функций одной переменной, заданных в явном виде, мы уже в деталях поговорили.

Однако, функция подразумевает соответствие между множеством значений величины x и множеством значений y , причем это соответствие НЕ обязательно устанавливается какой-либо формулой или аналитическим выражением. То есть, существует множество способов задания функции помимо привычного .

В данной статье мы рассмотрим неявные функции и способы нахождения их производных . В качестве примеров функций, заданных неявно, можно привести или .


Как Вы заметили, неявная функция определяется соотношением . Но не все такие соотношения между x и y задают функцию. Например, ни одна пара действительных чисел x и y не удовлетворяет равенству , следовательно, это соотношение неявную функцию не задает.

Может неявно определять закон соответствия между величинами x и y , причем каждому значению аргумента x может соответствовать как одно (в этом случае имеем однозначную функцию) так и несколько значений функции (в этом случае функцию называют многозначной). К примеру, значению x = 1 соответствует два действительных значения y = 2 и y = -2 неявно заданной функции .

Неявную функцию привести к явному виду далеко не всегда возможно, иначе не пришлось бы дифференцировать сами неявные функции. Например, - не преобразовывается к явному виду, а - преобразовывается.

Теперь к делу.

Чтобы найти производную неявно заданной функции, необходимо продифференцировать обе части равенства по аргументу x , считая y – функцией от x , и после этого выразить .

Дифференцирование выражений, содержащих x и y(x) , проводится с использованием правил дифференцирования и правила нахождения производной сложной функции . Давайте сразу подробно разберем несколько примеров, чтобы дальше не было вопросов.


Пример.

Продифференцировать выражения по x , считая y функцией от x .

Решение.

Так как y – это функция от x , то - это сложная функция. Ее можно условно представить как f(g(x)) , где f – функция возведения в куб, а g(x) = y . Тогда, по формуле производной сложной функции имеем: .

При дифференцировании второго выражения выносим константу за знак производной и действуем как в предыдущем случае (здесь f – функция синуса, g(x) = y ):

Для третьего выражения применяем формулу производной произведения:

Последовательно применяя правила, продифференцируем последнее выражение:

Вот теперь можно переходить к нахождению производной неявно заданной функции, для этого все знания есть.

Пример.

Найти производную неявной функции .

Решение.

Производная неявно заданной функции всегда представляется в виде выражения, содержащего x и y : . Чтобы прийти к такому результату, продифференцируем обе части равенства:

Разрешим полученное уравнение относительно производной:

Ответ:

.

ЗАМЕЧАНИЕ.

Для закрепления материала решим еще пример.

Будем учиться находить производные функций, заданных неявно, то есть заданных некоторыми уравнениями, связывающими между собой переменные x и y . Примеры функций, заданных неявно:

,

,

Производные функций, заданных неявно, или производные неявных функций, находятся довольно просто. Сейчас же разберём соответствующее правило и пример, а затем выясним, для чего вообще это нужно.

Для того, чтобы найти производную функции, заданной неявно, нужно продифференцировать обе части уравнения по иксу. Те слагаемые, в которых присутствует только икс, обратятся в обычную производную функции от икса. А слагаемые с игреком нужно дифференцировать, пользуясь правилом дифференцирования сложной функции, так как игрек - это функция от икса. Если совсем просто, то в полученной производной слагаемого с иксом должно получиться: производная функции от игрека, умноженная на производную от игрека. Например, производная слагаемого запишется как , производная слагаемого запишется как . Далее из всего этого нужно выразить этот "игрек штрих" и будет получена искомая производная функции, заданной неявно. Разберём это на примере.

Пример 1.

Решение. Дифференцируем обе части уравнения по иксу, считая, что игрек - функция от икса:

Отсюда получаем производную, которая требуется в задании:

Теперь кое-что о неоднозначном свойстве функций, заданных неявно, и почему нужны особенные правила их дифференцирования. В части случаев можно убедиться, что подстановка в заданное уравнение (см. примеры выше) вместо игрека его выражения через икс приводит к тому, что это уравнение обращается в тождество. Так. приведённое выше уравнение неявно определяет следующие функции:

После подстановки выражения игрека в квадрате через икс в первоначальное уравнение получаем тождество:

.

Выражения, которые мы подставляли, получились путём решения уравнения относительно игрека.

Если бы мы стали дифференцировать соответствующую явную функцию

то получили бы ответ как в примере 1 - от функции, заданной неявно:

Но не всякую функцию, заданную неявно, можно представить в виде y = f (x ) . Так, например, заданные неявно функции

не выражаются через элементарные функции, то есть эти уравнения нельзя разрешить относительно игрека. Поэтому и существует правило дифференцирования функции, заданной неявно, которое мы уже изучили и далее будем последовательно применять в других примерах.

Пример 2. Найти производную функции, заданной неявно:

.

Выражаем игрек штрих и - на выходе - производная функции, заданной неявно:

Пример 3. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Пример 4. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Выражаем и получаем производную:

.

Пример 5. Найти производную функции, заданной неявно:

Решение. Переносим слагаемые в правой части уравнение в левую часть и справа оставляем ноль. Дифференцируем обе части уравнения по иксу.

Сначала рассмотрим неявную функцию одного переменного. Она определяется уравнением (1), которое каждому х из некоторой области Х сопоставляет определённое у. Тогда на Х определяется этим уравнением функция у=f(х). Её называют неявной или неявно заданной . Если уравнение (1) удаётся разрешить относительно у, т.е. получить вид у=f(х), то задание неявной функции становится явным. Однако разрешить уравнение удается не всегда и в этом случае не всегда ясно – существует ли вообще неявная функция у=f(х), определяемая уравнением (1) в некоторой окрестности точки (x 0 , y 0).

Например, уравнение
неразрешимо относительноy и неясно - определяет ли оно неявную функцию в некоторой окрестности точки (1,0), например. Заметим, что существуют уравнения, не определяющие никакой функции (x 2 +y 2 +1=0).

Оказывается справедливой следующая теорема:

Теорема «Существования и дифференцируемости неявной функции» (без доказательства)

Пусть дано уравнение
(1) и функция
, удовлетворяет условиям:


Тогда:


. (2)

Геометрически теорема утверждает, что в окрестности точки
, где выполняемы условия теоремы, неявная функция, определяемая уравнением (1), может быть задана в явном виде у=f(х), т.к. каждому значению х соответствует единственное у. Если даже мы не можем найти выражение функции в явном виде, мы уверены, что в некоторой окрестности точки М 0 это уже возможно в принципе.

Рассмотрим тот же пример:
. Проверим условия:

1)
,
- и функция и её производные непрерывны в окрестности точки (1,0) (как сумма и произведение непрерывных).

2)
.

3)
. Значит, неявная функция у= f(х) существует в окрестности точки (1,0). Мы не можем её выписать в явном виде, но можем все-таки найти её производную, которая будет даже непрерывной:

Рассмотрим теперь неявную функцию от нескольких переменных . Пусть задано уравнение

. (2)

Если каждой паре значений (х,у) из некоторой области уравнение (2) сопоставляет одно определённое значение z, то говорят, что это уравнение неявно определяет однозначную функцию от двух переменных
.

Справедлива и соответствующая теорема существования и дифференцирования неявной функции нескольких переменных.

Теорема 2 : Пусть дано уравнение
(2) и функция
удовлетворяет условиям:



Пример :
. Это уравнение задаётz как двузначную неявную функцию от х и у
. Если проверить условия теоремы в окрестности точки, например, (0,0,1), то видим выполнение всех условий:


Значит, неявная однозначная функция существует в окрестности точки (0,0,1): Можно сказать сразу, что это
, задающая верхнюю полусферу.

Существуют непрерывные частные производные
Они, кстати, получаются такими же, если дифференцировать неявную функцию, выраженную в явном виде, непосредственно.

Определение и теорема существования и дифференцирования неявной функции большего числа аргументов аналогичны.