Главная · Насморк · Когенерация в цифрах: состояние и перспективы. Производство электрической и тепловой энергии

Когенерация в цифрах: состояние и перспективы. Производство электрической и тепловой энергии

Когенерационные электростанции обеспечивают одновременное производство тепловой и электрической энергии. В табл.1 представлены различные методы когенерации и характерное для них соотношение производимой электрической и тепловой энергии.

Таблица 1: Технологии когенерации и характерные для них величины соотношения электрической и тепловой энергии

Важной характеристикой процесса когенерации является отношение количества произведенной электроэнергии к количеству произведенной тепловой энергии. Эта величина меньше 1 в том случае, если установка производит меньше электрической энергии, чем тепловой. При анализе установок следует использовать значения соотношения электрической и тепловой энергии, основанные на фактических данных.

При выборе технологии когенерации и масштаба установки могут использоваться данные о динамике потребностей в энергии на протяжении года.

Когенерация на основе сжигания отходов

Как Справочный документ по сжиганию отходов (WI BREF), так и Директива WFD36 содержат коэффициенты пересчета и величины, которые могут использоваться для:

      • расчета коэффициента использования энергии и/или КПД установки;
      • пересчета и суммирования различных типов энергии, что может использоваться, например, при сравнительном анализе предприятий.

Это позволяет сопоставлять и суммировать данные о производстве энергии в различных формах, например, в форме тепла, пара и электроэнергии. В частности, с помощью этих показателей можно сравнивать эффективность производства энергии на данном мусоросжигательном предприятии с эффективностью внешних энергетических предприятий. В частности, средний европейский КПД при производстве электроэнергии на электростанциях составляет 38%, при производстве тепла – 91 %. При использовании энергии, например, топлива или пара, максимально возможный коэффициент использования составляет 100%. При сравнительном анализе следует принимать во внимание разницу между единицами измерения энергии (МВт ч, МВт чэ, МВт чт).

Системы с противодавлением

Простейшим методом когенерации является схема, использующая т.н. «турбины с противодавлением». При этом как электрическая, так и тепловая энергия производится в паровой турбине (см. рис.1). Электрическая мощность станций, использующих турбины с противодавлением, как правило, составляет несколько десятков мегаватт. Типичное соотношение производимой электрической и тепловой энергии составляет 0,3 – 0,5. Мощность газотурбинных когенерационных электростанций, как правило, несколько ниже, чем паровых, однако соотношение электрической и тепловой энергии во многих случаях достигает 0,5.

Мощность установок с противодавлением, используемых в промышленности, зависит от энергопотребления технологических процессов, а также свойств пара высокого давления, среднего давления и противодавления. Важной характеристикой систем с противодавлением является соотношение электрической и тепловой энергии.

В когенерационных установках, обслуживающих централизованные системы теплоснабжения (теплоэлектроцентралях или ТЭЦ), покидающий турбину пар конденсируется в теплообменниках и направляется потребителям в виде горячей воды. В когенерационных установках промышленных предприятий отработавший в турбине пар возвращается на предприятие для использования его тепловой энергии. На ТЭЦ противодавление пара ниже, чем на промышленных когенерационных установках с противодавлением. Поэтому соотношение производимой электрической и тепловой энергии в случае промышленных когенерационных установок ниже, чем в случае ТЭЦ.

Рисунок 1: Когенерационная установка с противодавлением

Конденсационные системы с отбором пара

В отличие от традиционной конденсационной электростанции, производящей только электроэнергию, в конденсационной системе с отбором пара часть пара отбирается из турбины для использования в качестве источника тепла (см. рис. 2).

Рисунок 2: Когенерационная установка с отбором пара

Газотурбинные системы с утилизацией тепла

В газотурбинных системах с утилизацией тепла тепловая энергия производится за счет энергии горячих дымовых газов турбины в котле-утилизаторе (см. рис. 3). В качестве топлива для таких установок, как правило, используются природный газ, нефть или сочетание этих видов топлива. Кроме того, в качестве топлива для газовых турбин могут использоваться продукты газификации твердого или жидкого топлива.

Рисунок 3: Газотурбинная когенерационная установка с утилизацией тепла

Парогазовые системы

Парогазовая установка (установка комбинированного цикла) состоит из одной или нескольких газовых турбин, соединенных с одной или несколькими паровыми турбинами (см. рис. 4). Во многих случаях такие установки используются для комбинированного производства тепловой и электрической энергии. Тепло выхлопных газов газовой турбины утилизируется и используется для производства пара, приводящего в действие паровые турбины. Как правило, тепло, полученное в результате утилизации, используется для производства дополнительной электроэнергии, а не для отопления или нагрева. Преимуществами подобных систем являются высокое отношение электрической к тепловой энергии, а также высокий КПД. Газификация твердого топлива – одно из перспективных направлений развития технологий сжигания – также используется в сочетании с парогазовыми системами и когенерацией. Газификация топлива позволяет значительно снизить выбросы оксидов серы и азота по сравнению с традиционным сжиганием твердого топлива благодаря очистке газа после газификации, но до сжигания в турбине.

Рисунок 4: Парогазовая когенерационная установка

Двигатели внутреннего сгорания

При использовании двигателей внутреннего сгорания (поршневых двигателей) возможна утилизация тепла смазочного масла, охлаждающей воды, а также выхлопных газов, как показано на рис.5.

В двигателях внутреннего сгорания (ДВС) энергия химических связей топлива преобразуется в тепловую энергию в результате сжигания. Образующиеся при сгорании газы расширяются в цилиндре, приводя в движение поршень. Механическая энергия движения поршня передается маховику посредством коленчатого вала, а затем преобразуется в электроэнергию при помощи генератора переменного тока. Благодаря непосредственному преобразованию энергии высокотемпературного теплового расширения в механическую, а затем электрическую энергию двигатели внутреннего сгорания характеризуются наибольшим тепловым КПД (производством электроэнергии на единицу использованного топлива) среди одноступенчатых (первичных) двигателей. Как следствие, они отличаются и наименьшими удельными выбросами CO2 на единицу произведенной энергии.

Мощность существующих установок на основе двухтактных двигателей с низкими оборотами (<300 об./мин.) может достигать 80 МВтэ. Мощность существующих четырехтактных систем со средними оборотами (300 <1500 об. мин.)="" достигает="" 20 МВтэ. Такие="" установки,="" как="" правило,="" используются="" в качестве="" базовых="" систем="" для="" постоянного="" производства="" энергии. Четырехтактные="" системы="" с высокими="" оборотами="" (="">1500 об./мин.) имеют мощность 3 МВтэ и обычно используются в качестве пиковых источников.

Наиболее распространенными типами двигателей внутреннего сгорания являются дизель, двигатель с искровым зажиганием и двухтопливный двигатель. Установки внутреннего сгорания могут использовать широкий диапазон видов газообразного и жидкого топлива, включая природный, попутный, и шахтный газы, газ, образующийся на полигонах ТБО, биогаз, продукты пиролиза, жидкое биотопливо, дизельное топливо, сырую нефть, тяжелый мазут, топливные эмульсии и отходы нефтепереработки.

Рисунок 5: Когенерационная установка на основе двигателя внутреннего сгорания

Как правило, стационарная ДВС-электростанция (т.е., станция, не являющаяся передвижным генератором) состоит из нескольких энергоблоков, работающих параллельно. Ряд независимо работающих установок в сочетании с высоким КПД в условиях неполной нагрузки обеспечивают надежность и гибкость энергоснабжения, позволяя наилучшим образом удовлетворять быстро меняющиеся потребности. Время запуска подобных систем из холодного состояния невелико по сравнению с аналогичной характеристикой парогазовых или паровых электростанций на угольном, нефтяном или газовом топливе. Запущенная система на основе ДВС способна оперативно реагировать на изменения нагрузки, при необходимости обеспечивая быструю стабилизацию параметров сети.

С двигателями внутреннего сгорания могут использоваться замкнутые системы водяного охлаждения, что делает водопотребление соответствующих электростанций крайне низким.

Компактная конструкция ДВС-систем делает их пригодными для организации распределенного производства тепла и электроэнергии в непосредственной близости от конечных потребителей в городских и промышленных районах. Это позволяет снизить связанные с распределением потери в трансформаторах, линиях электропередач и трубопроводах. Типичные потери в распределительных и передающих сетях при централизованном производстве электроэнергии составляют 5–8% произведенной энергии; потери тепла в муниципальных сетях централизованного теплоснабжения составляют менее 10%. Следует иметь в виду, что наибольшие потери имеют место в сетях низкого напряжения, а также в соединениях на уровне конечного потребителя. С другой стороны, производство электроэнергии на крупных централизованных электростанциях, как правило, является более эффективным.

Высокий КПД одноступенчатой генерации на основе ДВС в сочетании с относительно высокой температурой выхлопных газов и охлаждающей воды делает эту технологию идеальным решением для когенерации. Как правило, в выхлопных газах содержится около 30% энергии, выделяющейся при сжигании топлива, а в потоках охлаждающей воды – около 20%. Энергия выхлопных газов может быть утилизирована при помощи котла-утилизатора или теплобоменника, используемых для производства пара, горячей воды или горячего масла. Кроме того, горячие выхлопные газы могут быть непосредственно или косвенно (при помощи теплообменника) использованы в различных технологических процессах, например, для сушки.

Потоки охлаждающей воды могут быть разделены на высокотемпературный и низкотемпературный контуры. Потенциал утилизации энергии воды зависит от минимальной температуры, отвечающей потребностям потребителя тепла. Потенциал охлаждающей воды может быть использован практически полностью в централизованной системе теплоснабжения с низкими температурами возврата. Утилизация тепла, отводимого при охлаждении двигателя, в сочетании с котлом-утилизатором энергии выхлопных газов и экономайзером, способна обеспечить использование (в форме электроэнергии и тепла) до 85% энергии жидкого топлива и до 90% энергии газообразного топлива.

Тепловая энергия может поставляться конечному потребителю, в зависимости от его потребностей, в форме пара (вплоть до перегретого пара с давлением до 20 бар), горячей воды или горячего масла. Тепло может также использоваться в абсорбционном процессе охлаждения для производства охлажденной воды.

Возможно также использование абсорбционных тепловых насосов для повышения температуры охлаждающей воды низкотемпературного контура до более высокого уровня, позволяющего использовать эту воду в системах централизованного теплоснабжения с высокой температурой возврата.

Для компенсации краткосрочных рассогласований между графиком потребностей в электроэнергии и тепле/холоде могут использоваться аккумуляторы горячей и холодной воды.

Типичный КПД (по отношению к энергии топлива) при использовании двигателей внутреннего сгорания для производства электроэнергии находится в диапазоне 40–48%; в схемах когенерации с эффективной утилизацией тепла КПД может достигать 85 – 90%. В схемах тригенерации необходимая гибкость может быть достигнута за счет поддержания запасов горячей и охлажденной воды, а также резервных (пиковых) мощностей – компрессорных холодильных установок и работающих за счет непосредственного сжигания топлива резервных водогрейных котлов.

Экологические преимущества

Использование когенерации связано со значительными экономическими и экологическими преимуществами. Когенерационные установки комбинированного цикла обеспечивают максимально эффективное использование энергии топлива за счет одновременного производства электрической и тепловой энергии с минимальными потерями. Подобные установки обеспечивают эффективность использования энергии топлива (КПД) до 80–90 %, в то время как для традиционных конденсационных ТЭС аналогичная величина находится в диапазоне 35–45 %, а для электростанций комбинированного цикла (без когенерации) она не превышает 58 %.

Высокий КПД процессов когенерации обеспечивает значительные объемы энергосбережения и сокращения выбросов. На рис.6 показаны характерные значения для когенерационной электростанции в сравнении с отдельными электростанцией и котельной для производства тепла. Данные, выраженные в условных единицах энергии, приведены для угольного топлива, однако аналогичная ситуация имеет место и при использовании других видов топлива. В этом примере когенерационная установка производит то же количество полезной энергии (электричества и тепла), что и отдельные установки. Однако при отдельном производстве общие потери энергии достигают 98 единиц, тогда как в случае когенерации потери составляют всего 33 единицы. При раздельном производстве тепла и энергии КПД (эффективность использования топлива) составляет 55%, тогда как в случае когенерации величина КПД достигает 78%. Поэтому когенерация требует на 30% меньше топлива для производства тех же количеств полезной энергии. Это означает, что при использовании когенерации выбросы загрязняющих веществ сокращаются на ту же величину. Однако точная величина снижения выбросов зависит от местной структуры топливного баланса при производстве электроэнергии и/или тепла (пара).

Рисунок 6: Сравнение эффективности когенерации и раздельного производства электроэнергии и тепла

Как и в случае отдельного производства электроэнергии, для когенерации может использоваться широкий диапазон видов топлива, включая, например, отходы, возобновляемое топливо (биомассу), а также ископаемые виды топлива – уголь, нефть и природный газ.

Воздействие на различные компоненты окружающей среды

Объем производства электроэнергии может оказаться ниже, если система когенерации оптимизирована для утилизации тепла (например, в случае производства энергии на основе сжигания отходов, см. WI BREF). Можно показать (используя данные WI BREF и WFD), что установка по сжиганию отходов, утилизирующая, например, 18% энергии сжигаемых материалов в форме электроэнергии, эквивалентна установке, утилизирующей 42,5% энергии в форме централизованно распределяемого тепла или пара, пригодного для коммерческого использования (согласно WFD, коэффициент пересчета равен 0,468).

Применимость

Принципиальное решение об использовании когенерации и выбор конкретного метода определяются рядом факторов; даже предприятия с аналогичными потребностями в энергии не могут считаться абсолютно одинаковыми в этом отношении. Во многих случаях принципиальное решение о внедрении когенерации определяется следующими факторами:

      • принципиальным является наличие достаточных потребностей в тепле, отвечающих возможностям когенерации с точки зрения количества, температуры и т.п.;
      • наличие у предприятия базисной нагрузки, т.е. уровня, ниже которого потребление электроэнергии опускается редко;
      • сходный характер графиков потребностей в тепловой и электрической энергии;
      • соотношение цен на топливо и тарифов на электроэнергию, обеспечивающее экономическую эффективность когенерации;
      • высокий ожидаемый уровень загрузки (желательно более 4–5 тыс. час. работы при полной нагрузке в год).

В целом, применение когенерации оправдано на тех предприятиях, где имеются значительные потребности в тепле при температурах, соответствующих низкому или среднему давлению пара. При оценке потенциала производства с точки зрения когенерации важно убедиться в том, что нет оснований ожидать существенного сокращения потребностей в тепле. В противном случае эксплуатация системы, рассчитанной на производство избыточного тепла, окажется неэффективной.

По состоянию на 2007 г., даже относительно небольшая когенерационная система могла быть рентабельной. Ниже в этом разделе приводятся рекомендации относительно типов когенерационных систем, пригодных для тех или иных конкретных условий. Следует, однако, иметь в виду, что приводимые количественные критерии носят ориентировочный характер и могут зависеть от местных условий. Как правило, существует возможность продажи избыточной электроэнергии национальным сетям, поскольку собственное энергопотребление предприятия может существенно варьировать. Моделирование производства и потребления энергоресурсов способствует оптимизации систем генерации электроэнергии и утилизации тепла, а также решений о закупках недостающей и продажах избыточной энергии.

Выбор типа когенерационной системы

Паровые турбины могут быть адекватным вариантом при выполнении следующих условий:

    • существует применение для низкопотенциального пара, и требуемое соотношение электрической и тепловой энергии превышает 1:4;
    • доступность недорогого топлива с невысокой торговой наценкой;
    • доступность адекватной площади для размещения системы;
    • наличие высокопотенциального тепла, отходящего от технологических процессов (например, от печей или мусоросжигательных установок);
    • необходимость замены существующей котельной;
    • необходимо сведение к минимуму соотношения электрической и тепловой энергии к минимуму. В когенерационных системах максимизация соотношения электрической и тепловой энергии требует минимизации уровня противодавления и максимизации уровня высокого давления.

Использование газовых турбин может быть целесообразно при выполнении следующих условий:

      • предполагается довести до максимума отношение производимой электрической энергии к тепловой;
      • потребность в электроэнергии является постоянной и превышает 3 МВтэ (на момент подготовки данного документа газовые турбины меньшей мощности лишь начинают выходить на рынок);
      • доступность природного газа (однако его отсутствие не является лимитирующим фактором);
      • существует значительная потребность в паре среднего/высокого давления или в горячей воде, в частности, с температурой, превышающей 500°C;
      • наличие применения для горячих дымовых газов с температурой 450°C или выше – газы могут разбавляться холодным атмосферным воздухом или пропускаться через газо-воздушный теплообменник. (Кроме того, целесообразно рассмотреть возможность добавления паровой турбины и создания парогазовой системы комбинированного цикла).

Использование когенерационных систем на основе двигателей внутреннего сгорания может быть целесообразно на предприятиях, где выполняются следующие условия:

      • потребность в энергии носит циклический характер или не является постоянной;
      • существует потребность в паре низкого давления или горячей воде средней/низкой температуры;
      • требуется высокое значение соотношения электрической и тепловой энергии;
      • если доступен природный газ, предпочтительным является использование двигателей внутреннего сгорания на этом виде топлива;
      • если природный газ недоступен, могут использоваться дизельные двигатели на мазуте или сжиженном нефтяном газе;
      • при электрической нагрузке менее 1 МВтэ – искровое зажигание (доступны системы мощностью от 0,003 до 10 МВтэ);
      • при электрической нагрузке более 1 МВтэ – воспламенение от сжатия (доступны системы мощностью от 3 до 20 МВтэ).

Экономические аспекты

      • экономика когенерации существенно зависит от соотношения цен на топливо и электроэнергию, цен на тепло, коэффициента загрузки и КПД системы;
      • экономика когенерации существенно зависит от способности обеспечить стабильное производство тепла и электроэнергии в долгосрочной перспективе, а также наличия долгосрочной потребности в них;
      • важную роль играет политическая поддержка и рыночные механизмы, например, налоговые льготы и либерализация рынков энергии.

Мотивы внедрения

Политическая поддержка и рыночные механизмы (см. «Экономические аспекты» выше).

Примеры

      • когенерационная электростанция в г. Аанекоски, Финляндия;
      • когенерационная электростанция в г. Раухалахти, Финляндия
      • используется на предприятиях по производству кальцинированной соды, см. Справочный документ по производству твердых неорганических веществ;
      • предприятие Bindewald Kupfermuhle, Германия:
          • мукомольный завод: 100 тыс. т/год пшеницы и ржи;
          • солодовенный завод: 35000 т/год солода;
      • предприятие Dava KVV, когенерационная установка по сжиганию отходов, г. Умеа, Швеция;
      • предприятие Sysav, когенерационная установка по сжиганию отходов, г. Мальмё, Швеция.
Все статьи раздела Когенерация

м. Київ, вул. Богдана Хмельницького 16-22 ,
оф. № 805, 01030, Україна
Тел./факс +380 44 351 21 33
[email protected]

Когенераторные технологии: возможности и перспективы

В. М. БАРКОВ, гл. специалист отдела теплоэнергетики

ООО «Инкомстрой-Инжиниринг» (г. Одинцово)

С повышением экологической культуры и необходимостью сокращения потребления ископаемых видов топлива появляется необходимость в высокоэффективных способах преобразования и выработки энергии. Традиционное раздельное производство электроэнергии конденсационными электростанциями и тепла котлами - малоэффективная технология, ведущая к потере энергии с теплом отходящих газов. Автономные установки комбинированного производства тепловой и электрической энергии - когенераторы - оказались успешным технологическим решением проблемы.

Основы когенерации

Когенерация - это технология комбинированной выработки энергии, позволяющая резко увеличить экономическую эффективность использования топлива, так как при этом в одном процессе производятся два вида энергии - электрическая и тепловая. Наибольший экономический эффект когенерации может быть достигнут только при оптимальном использовании обоих видов энергии на месте их потребления. В этом случае бросовая энергия (тепло выхлопных газов и систем охлаждения агрегатов, приводящих в движение электрогенераторы, или излишнее давление в трубопроводах) может быть использована по прямому назначению. Утилизируемое тепло может быть также использовано в абсорбционных машинах для производства холода (тригенерация). Существуют три основных типа когенераторных установок (КУ): энергоблоки на базе двигателей внутреннего сгорания (ГПА), газотурбинные установки (ГТУ) и парогазовые установки (ПГУ). Система когенерации (или мини-ТЭС) состоит из четырех основных частей: пер- вичный двигатель, электрогенератор, система утилизации тепла, система контроля и управления. В зависимости от существующих требований в качестве первичного двигателя могут использоваться поршневой двигатель, газовая турбина, паровая турбина и комбинация паровой и газовой турбин. В будущем это также могут быть двигатель Стирлинга или топливные элементы.

Мини-ТЭС обладают рядом достоинств, но отметим основные:

Малые потери при транспортировке тепловой и электрической энергии по сравнению с системами централизованного тепло и электроснабжения;

Автономность функционирования и возможность реализации в энергосистему излишков вырабатываемой электроэнергии;

Улучшение экономических показателей существующих котельных за счет выработки в них кроме тепловой и электрической энергии;

Повышение надежности теплоснабжения за счет собственного источника электроэнергии;

Более низкая себестоимость тепловой и электрической энергии по сравнению с централизованными источниками энергии.

Двигатели внутреннего сгорания (ГПА)

ГПА - традиционные дизельные электростанции, использующиеся в качестве резервных источников электроэнергии. При оснащении теплообменником или котлом-утилизатором они становятся мини-ТЭС. Бросовое тепло выхлопных газов, систем охлаждения и смазки двигателя идет на отопление и горячее водоснабжение. В механическую работу преобразуется треть энергии топлива. Остальная ее часть превращается в тепловую энергию. Кроме дизельных двигателей используются также газовые и газодизельные двигатели внутреннего сгорания. Газовый двигатель может быть оборудован несколькими карбюраторами, что дает возможность работать на нескольких сортах газа. Газодизельные агрегаты одновременно с газом потребляют до 1,5% дизтоплива, а в аварийном режиме плавно переходят с газа на дизтопливо. Дизельные когенераторы более предпочтительны в негазифицированных районах из-за более высокой, по сравнению с газом, стоимости нефтяного топлива. В качестве горючего могут быть также использованы биогаз, газы мусорных свалок, продукты пиролиза, что значительно повышает эффективность их использования на фермах, мусороперерабатывающих заводах, очистных сооружениях. ГПА с воспламенением от искры имеют наилучшее соотношение «расход топлива/энергия» и наиболее эффективны при мощностях от 0,03 до 5–6 МВт. ГПА с воспламенением от сжатия (дизеля) работают в диапазоне мощностей от 0,2 до 20 МВт. ГПА работают в двух основных режимах:

Номинальный режим - режим максимальной нагрузки и скорости в течение 24 час. в сутки на протяжении года с остановкой на плановое обслуживание; работа с перегрузкой в 10% возможна в течении 2-х час. в сутки;

Резервный режим - круглосуточная работа без перегрузки в период простоя основного источника энергии.

Достоинства и особенности применения ГПА:

Наиболее низкий уровень выбросов окислов азота, который можно устранить полностью при работе ДВС на богатой смеси с последующим дожиганием продуктов сгорания в котле;

Более высокий, по сравнению с ГТУ, ресурс работы, достигающий 150–200 тыс.час;

Наиболее низкий уровень капитальных затрат и эксплуатационных расходов на производство энергии;

Простота перехода с одного вида топлива на другой. ГПА не рекомендуется применять при потребности в получении большого количества теплоносителя с температурой более 110 С, при большой потребляемой мощности, а также при ограниченном числе пусков.

(Рис. 1. Принципиальная тепловая схема ГПА мини-ТЭС)

Газотурбинные установки (ГТУ)

ГТУ могут быть разделены на две основные части - газогенератор и силовую турбину, размещенные в одном корпусе. Газогенератор включает в себя турбокомпрессор и камеру сгорания, в которых создается высокотемпературный поток газа, воздействующий на лопатки силовой турбины. Тепловая производительность обеспечивается утилизацией тепла выхлопных газов с помощью теплообменника, водогрейного или парового котла-утилизатора. ГТУ предусматривают работу на двух видах топлива - жидком и газообразном. Постоянная работа производится на газе, а в резервном (аварийном) режиме происходит автоматический переход на дизель- ное топливо. Оптимальный режим работы ГТУ - комбинированная выработка тепловой и электрической энергии. ГТУ производят гораздо большее количество тепловой энергии, чем газопоршневые агрегаты, и могут работать как в базовом режиме, так и для покрытия пиковых нагрузок.

Принцип работы ГТУ

Атмосферный воздух через входное устройство КВОУ (комбинированное воздухообрабатывающее устройство) (6) поступает в компрессор (1), где сжимается и направляется в регенеративный воздухоподогреватель (7), а затем через воздухораспределительный клапан (5) в камеру сгорания (2). В камере сгорания в потоке воздуха сжигается топливо, поступающее через форсунки. Горячие газы поступают на лопатки газовой турбины (3), где тепловая энергия потока превращается в механическую энергию вращения ротора турбины. Мощность, полученная на валу турбины, используется для привода компрессора (1) и электрогенератора (4), который вырабатывает электроэнергию. Горячие газы после регенератора (7) поступают в водогрейный котел - утилизатор (8), а потом уходят в дымовую трубу (13). Сетевая вода, подаваемая сетевыми насосами (12), нагревается в водогрейном котле-утилизаторе (8) и пиковом котле (10) и направляется в центральный тепловой пункт (ЦТП). Подключение потребителей к ЦТП осуществляется при организации независимого контура. В качестве топлива используется природный газ. При аварийном прекращении подачи газа оба котла и ГТУ (при частичной нагрузке) переводятся для работы на сжиженный пропан-бутан (СУГ - сниженные углеводородные газы).

В зависимости от особенностей потребителей возможны следующие решения по схемам использования ГТУ:

Выдача электрической мощности в систему на генераторном (6,3 или 10,5 кВ) или повышенном до 110 кВ напряжении;

Выдача тепловой мощности через центральный тепловой пункт (ЦТП) или через индивидуальные тепловые пункты (ИТП) с полной гидравлической развязкой сетей ТЭЦ и потребительских сетей;

Работа ГТУ на общие с другими энергоисточниками тепловые сети или использование ГТУ в качестве автономного источника тепла;

Использование ГТУ как в закрытых, так и в открытых системах теплоснабжения;

Возможны варианты тепло- и электроснабжения: это или режим отпуска электрической энергии, или режим совместного отпуска электрической и тепловой энергии.

Достоинства и особенности применения ГТУ

Газотурбинные ТЭС на базе ГТУ обладают следующими достоинствами: - высокая надежность: ресурс работы основных узлов составляет до 150 тыс. час., а ресурс работы до капитального ремонта - 50 тыс. час.;

Коэффициент использования топлива (КИТ) при полной утилизации тепла достигает 85%;

Экономичность установки: удельный расход условного топлива на отпуск 1 кВТ электроэнергии составляет 0,2 кг у. т., а на отпуск 1 Гкал тепла - 0,173 кг у.т.;

Короткий срок окупаемости и небольшие сроки строительства - до 10–12 месяцев (при наличии необходимых согласований и разрешений);

Низкая стоимость капитальных вложений - не более $600 за установленный киловатт в пределах площадки ГТУ ТЭС;

Возможность автоматического и дистанционного управления работой ГТУ, автоматическое диагностирование режимов работы станции;

Возможность ухода от строительства дорогостоящих протяженных ЛЭП, что особенно важно для России.

Как недостаток следует отметить необходимость дополнительных расходов на сооружение газокомпрессорной дожимающей станции. ГТУ требуется газ с давлением 2,5 МПа, а в городских сетях давление газа составляет 1,2 МПа.

(Рис. 2. Принципиальная тепловая схема ГТУ мини-ТЭС)

Парогазовые установки (ПГУ)

На базе небольших паровых турбин можно создавать мини-ТЭС на базе уже действующих паровых котлов, давление пара на выходе из которых значительно выше, чем необходимо для промышленных нужд. Давление понижается с помощью специальных дроссельных устройств, что ведет к непроизводительной потере энергии - до 50 кВт на каждую тонну пара. Установив параллельно дроссельному устройству турбогенератор, можно получать более дешевую электроэнергию. Реконструкция муниципальных и промышленных котельных поможет решить 4 основные задачи энергосбережения:

Котельные, дающие в сеть свыше 60% тепловой энергии, смогут дополнительно поставлять дешевую электроэнергию как в пиковом, так и в базовом режимах;

Снижается себестоимость тепловой энергии;

Уменьшаются потери в электросетях за счет появления на объектах, обслуживаемых котельной, местных источников электроэнергии;

Существенно снижаются удельные расходы топлива на производство электроэнергии и тепла;

Существенно снижаются выбросы в атмосферу NO, CO и CO2 за счет экономии топлива.

Абсорбционные холодильные установки (АХУ)

Системы совместного производства теплоты и электричества работают эффективно, если используется вся или максимально возможная часть вырабатываемых энергий. В реальных условиях нагрузка меняется, поэтому для эффективного использования топлива необходима балансировка соотношения производимой теплоты и электричества. Для покрытия избытка тепловой энергии в летнее время используется абсорбционная холодильная установка (АХУ). С помощью комбинации мини-ТЭС и АХУ излишки тепла в летнее время используются для выработки холода в системах кондиционирования. Горячая вода из замкнутого цикла охлаждения ГПА служит источником энергии для АХУ.

Такой способ использования первичного источника энергии называется тригенерацией. Принцип действия абсорбционной холодильной машины можно представить следующим образом.

В АХУ имеются два циркуляционных контура, соединенных между собой. В контуре, содержащем термостатический регулирующий вентиль и испаритель, происходит испарение жидкого хладоагента (аммиака) за счет разрежения, создаваемого пароструйным насосом. Вентиль ограничивает поступление новых порций жидкого аммиака, обеспечивая его полное испарение, проходящее с поглощением тепла. Образовавшиеся пары аммиака откачиваются пароструйным насосом: водяной пар, проходя через сопло, захватывает с собой пары аммиака. Второй контур содержит нагреватель для поглощения пара и абсорбер, где пары аммиака поглощаются водой. Обратный процесс (выпаривание аммиака из воды) происходит за счет утилизационного тепла от ГПА (ГПУ). После этого аммиак конденсируется в теплообменнике, охлаждаемым наружным воздухом. Приведенная выше технология реализована в установке «генератор-абсорбер-теплообменник (GAX)», которая прошла испытания и уже появилась на рынке.


(Рис. 3. Принципиальная схема АХУ)

Инженерное обоснование проектов когенерационных установок

При разработке технико-экономического обоснования проекта мини-ТЭС прежде всего необходимо оценить потребность объекта в тепловой и электрической энергии. При оценке экономической эффективности установки должны учитываться затраты на энергоносители и эксплуатационные материалы (газ, электричество, тепло, моторное масло), на проектирование, покупку оборудования, монтаж, наладку, инженерные коммуникации, эксплуатационные издержки. Основные критерии: это конечная себестоимость электрической и тепловой энергии, расчет годовой экономии и срок окупаемости проекта. Кроме того, оценивается общий ресурс оборудования и межремонтный ресурс (для ГПА наработка до капремонта составляет около 60 тыс. час., для ГТУ - 30 тыс. час.). Также определяется число и единичная мощность энергетических агрегатов. Здесь следует руководствоваться следующими положениями:

Единичная электрическая мощность должна быть в 2–2,5 раза больше минимальной потребности объекта;

Общая мощность агрегатов должна превышать максимальную потребность объекта на 5–10%;

Мощность единичных агрегатов должна быть примерно одинаковой;

Мини-ТЭС на базе ГПА должна покрывать, как минимум, до половины максимальной ежегодной потребности предприятия в тепловой энергии, остальная потребность обеспечивается пиковыми водогрейными котлами.

После оценки всех факторов принимается решение о варианте работы мини-ТЭС - автономной или параллельно с централизованной сетью (что весьма сомнительно при негативном отношении РАО ЕЭС к децентрализованным мини-ТЭС).

Объем статьи, к сожалению, не позволяет охватить все аспекты применения когенерационных установок, наиболее значимыми из которых являются экономические и технологические, а также сравнительные характеристики применяемого оборудования зарубежного и отечественного производства. Особо значимым видится вопрос эффективного использования тепла в летнее время и варианты его использования, например, для побочной выработки, строительных материалов, химической продукции. Но это - тема будущих публикаций.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http: //www. allbest. ru/

Проблемы когенерации

В.Г. Семенов, генеральный директор

Когенерация - совместная выработка тепловой и электрической энергии.

Несмотря на капиталистическое изобилие товаров и услуг в России дефицит все-таки есть, не хватает электроэнергии, не хватает газа. Дефицит электроэнергии уже ощутили в нескольких регионах, особенно С. Петербург, Москва, Урал и Тюмень. Трудности с подключением к централизованной системе газоснабжения есть практически повсеместно. Раз есть дефицит -значит есть очередь. Правил очереди не существует, но они все равно появляются, и это будут так называемые «серые», «темные» и т.п.

Половина углеводородного сырья (в большей степени - газа) в стране тратится на то, чтобы самих себя согревать. Такой сводной статистики нет, часть топлива учитывается в ЖКХ, часть в большой энергетике - суммарно по нашим оценкам 40% углеводородного сырья тратися на энергоснабжение. Если приплюсовать то, что сжигается в печках и электроэнергию (она тоже производится на углеводородном сырье), которая идет на электрообогрев зданий и на перекачку тепла в централизованных системах теплоснабжения, мы получим, что половина углеводородного топлива тратится внутри страны на нужды энергоснабжения, причем часто с чрезвычайно низкой эффективностью. Поэтому программу по комплексному подходу к снижению расхода топлива на нужды энергоснабжения можно поставить в противовес развитию месторождений. Но такой программы нет - на наш взгляд это государственная задача, которая, к сожалению, никак не решается.

Что касается электроэнергии, то не хватает мощностей для ее производства. Но не хватает в холода. Когда на улице тепло, дефицита не ощущается, а зимой при похолодании на улице на 1 градус мощность потребления увеличивается на 0,6%. В сумме по самым скромным расчетам в России на электрообогрев помещений (калориферы, электрокотлы, теплые полы, вентиляция и т.д.) расходуется до 20% мощности.

В основном структуру электрической генерации составляют конденсационные тепловые станции, топливо на которых расходуется только на производство электроэнергии, а тепло сбрасывается в окружающую среду. Получается, что выработанное ими электричество (с коэффициентом полезного действия, в лучшем случае, 35%) используется опять же на то, чтобы обогревать самих себя. А стройка новых мощностей нужна только для того, чтобы удовлетворить пиковый спрос в морозы на отопление жилища.

Есть много разных способов, чтобы исправить эту ситуацию. К сожалению, они сейчас применяются менее активно, чем в централизованной системе, которая была в Советском Союзе. Это разная стоимость электроэнергии на электрообогрев и для промышленного или бытового потребления. Это разуплотнение графика, т.е. сдвиг начала рабочего дня хотя бы в холодное время года и т.д. Сейчас этим никто не занимается. А основную проблему - нехватку мощностей - все активно бросились решать «в лоб», т.е. строить новые мощности. Но проблема - что строить.

Если говорить о электроэнергии, то в Европейском сообществе несколько директив уже принято по развитию когенерации. Считается, что для выполнения Киотского протокола, по дальним стратегическим задачам общества надо потреблять как можно меньше топлива при условии удовлетворения всех потребностей общества. И один из основных способов - это совместное производство тепла и электроэнергии, потому что тепло образуется в процессе выработки электроэнергии.

Во многих городах России значительную часть времени ТЭЦ сбрасывают тепло, которое образуется при выработке электроэнергии, в градирни, причем иногда ситуация может быть абсурдной. Есть примеры, когда в 150 м от ТЭЦ стоит большая котельная, которая сжижает газ для того, чтобы получать то же самое тепло и подавать его в город.

Основная проблема в европейских странах по развитию когенерации заключается в том, что отсутствуют тепловые сети, для их строительства нужно выделение земли, высокие затраты на их создание и, наверное, самое трудное - уговорить потребителя подключиться к централизованным сетям, отказавшись от индивидуального котла. В России эти централизованные сети теплоснабжения существуют в каждом городе. Мы много лет могли бы развивать систему энергетики за счет увеличения мощности ТЭЦ. Есть несколько преимуществ: близость потребителя, меньше затраты на развитие магистральных электросетей, и, самое главное, опять же - гораздо более полное использование топлива.

Если говорить о возможностях ТЭЦ, то они на самом деле просто колоссальные. Это и замещение мелких котельных с низким КПД (которые не имеют никакой перспективы по сравнению с локальными источниками), это и модернизация ТЭЦ, которая гораздо дешевле, чем строительство новых энергоблоков и многое другое. Но не хватает только одного - не хватает того, чтобы появилась конкуренция инвесторов.

На сегодняшний день нет, по-моему, ни одной энергосистемы, которая не запланировала бы построить какой-нибудь парогазовый блок на своей станции, но в основном на ГРЭС, где нет полезного использования теплоты. Новые бизнес-единицы РАО ЕЭС - ОГК и ТГК развивают, естественно, кондиционные станции (ГРЭС) и совершенно не задумываются обо всех остальных проблемах. Но такие электростанции должны строиться ближе к углю. ТЭЦ должны же развиваться в городах и, соответственно, обеспечивать теплоснабжение и электроснабжение близко расположенных потребителей. когенерация электрический тепловой энергия

Мы, к сожалению, идем по пути абсолютно неэнергоэффективному. Сегодня во всех регионах надо разбираться с тем, что есть. С 1 января этого года вступил в силу федеральный закон № 210, который диктует принципиально другие подходы по сравнению со сложившимися, дает принципиально другие возможности. В большинстве регионов на сегодняшний день нет целенаправленной работы по введению в действие этого закона в части разработки региональных схем энергоснабжения и разработки планов развития инженерной инфраструктуры. Эти программы должны разрабатываться для каждого муниципального образования. Но никакого движения в этом направлении нет. Понятно, что эту работу должно организовать государство. Вопрос в том - кто конкретно, в каком министерстве? На сегодняшний день этого не делает никто.

Я, в основном, занимаюсь вопросами теплоснабжения, и уже похоронил мечту о том, что появится какой-то орган в государстве, который обратит внимание на отрасль, в которой сжигается половина углеводородного сырья. На сегодняшний день нет ни одного отдела ни в одном министерстве, который бы занимался теплоснабжением и комбинированной выработкой теплоты совместно с электричеством. Все участие государства свелось к какому-то небольшому финансированию по линии Минобрнауки, где деньги уходят абсолютно непонятно на что - ни одна серьезная проблема не решается.

Поэтому я рассчитываю, что Общественная палата обратит внимание Правительства на то, что надо разработать нормальную, внятную программу, которую публично обсудить, покритиковать, и вернуться в самое начало, чтобы, наконец, определиться: куда будем двигаться. А иначе так и будем развивать и увеличивать, не понимая того, как потом это использовать.

Размещено на Аllbest.ru

Подобные документы

    Полезный отпуск теплоты с коллекторов станции ТЭЦ, эксплуатационные издержки. Выработка и отпуск электрической энергии с шин станции. Расход условного топлива при однотипном оборудовании. Структура затрат и себестоимости электрической и тепловой энергии.

    курсовая работа , добавлен 09.11.2011

    Информация о предприятии сахарного производства и описание ТЭЦ. Поверочный расчет и тепловой баланс котла. Технология выработки биогаза из жома. Определение процентного содержания природного газа, биогаза и смеси. Использование биогаза для когенерации.

    дипломная работа , добавлен 27.10.2011

    Расчет электрической и тепловой нагрузки потребителей района. Выбор водогрейных котлов низкого и высокого давления. Калькуляция себестоимости энергии. Капитальные вложения в ТЭЦ. Расчет расхода электроэнергии на собственные нужды по отпуску тепла.

    курсовая работа , добавлен 17.02.2013

    Расчет капитальных вложений в энергетические объекты, годовых эксплуатационных издержек и себестоимости электрической и тепловой энергии. Расчет платы за электрическую и тепловую энергию потребителями по совмещенной и раздельной схеме энергоснабжения.

    контрольная работа , добавлен 18.12.2010

    Энергетика как основа развития большинства отраслей промышленности и народного хозяйства. Проблемы, связанные с электроснабжением обособленных потребителей энергопроблемных регионов России. Методы решения проблем энергоснабжения обособленных потребителей.

    реферат , добавлен 18.01.2010

    Выбор тепловой схемы станции, теплоэнергетического и электрического оборудования, трансформаторов. Определение расхода топлива котлоагрегата. Разработка схем выдачи энергии, питания собственных нужд. Расчет тепловой схемы блока, токов короткого замыкания.

    дипломная работа , добавлен 12.03.2013

    Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.

    учебное пособие , добавлен 19.04.2012

    Сущность когенерационной технологии и основные условия для ее успешного применения. Сферы применения когенерационных установок. Преимущества использования когенерации. Классификация когенерационных систем по типам основного двигателя и генератора.

    реферат , добавлен 16.09.2010

    Сущность когенерации как комбинированного производства электроэнергии и тепла. Принципы работы паровых, поршневых и газовых турбин, используемых в энергосистемах. Преимущества и недостатки двигателей. Оценка тепловых потерь. Применение при теплофикации.

    курсовая работа , добавлен 14.12.2014

    Определение характеристики относительного прироста расхода топлива конденсационной тепловой электростанции. Расчет оптимального распределения нагрузки между агрегатами тепловой электростанции. Определение графика электрической нагрузки потребителей ЭЭС.

8.1 Проблемы когенерации

В российском энергетическом законодательстве применен довольно редкий инструмент прямого указания на приоритет конкретного технического решения - комбинированного производства тепловой и электрической энергии (когенерации). В то же время, законодательные нормы, обеспечивающие реализацию этого приоритета, практически отсутствуют и доля комбинированной выработки на тепловых электростанциях общего пользования за 25 лет снизилась на треть. Снижение поставок тепловой энергии промышленности не было компенсировано присоединением нагрузки строящихся зданий, подключаемых, в основном, к котельным. Соответственно, уменьшилась и выработка электроэнергии на тепловом потреблении.

Сегодня 528 тепловых электростанций, имеющих теплофикационное оборудование, вырабатывают 470 млн Гкал тепловой энергии в год, что составляет 36% от общего объема централизованного теплоснабжения (1285 млн Гкал/год). Остальное тепло поставляется от 58 тысяч коммунальных котельных средней мощностью 8 Гкал/ч и среднем КПД равным всего 75%.

Даже ввод современных ПГУ блоков не позволил российской энергетике достичь уровня 1994 года по величине коэффициента полезного использования (КИТ) энергии топлива на тепловых электростанциях страны (57% в 1994 году против 54% в 2014 г.). В то же время, именно ТЭЦ, имеющие КИТ на уровне от 58 до 67%, обеспечивают общую энергоэффективность тепловых электростанций. КИТ наиболее распространенного паротурбинного оборудования без теплофикации составляет от 24 до 40%, что минимум в два раза ниже, чем в чисто теплофикационном режиме работы самой худшей ТЭЦ.

Когенерация, признанная во всем мире как самая эффективная технология производства электроэнергии и тепла, оказалась сегодня самым «запущенным» сектором в объединенной энергосистеме России. Значительная часть ТЭЦ хронически убыточны и крупные энергокомпании стараются избавиться от них. Существенная часть генерирующего оборудования, выводимого с рынка по процедурам конкурентного отбора мощности (КОМ), также сосредоточена на ТЭЦ, а строящиеся по ДПМ энергоблоки, в основном, работают без отпуска тепловой энергии.

Одновременно, вне единой энергосистемы, потребители в возрастающих объемах строят для собственных нужд ТЭЦ с характеристиками существенно более низкими, чем у оборудования, выводимого по КОМ. Существует опасность, что с рынка постепенно уйдет большая часть крупных потребителей электроэнергии, что приведет к росту тарифной нагрузки для социального сектора.

Получилась парадоксальная ситуация: на рынке генераторов ОРЭМ, где потребителя заменяют регуляторы (Совет рынка, Системный оператор, ФАС, Минэнерго), ТЭЦ оказались невостребованы, а сами потребители на рынке доступных технологий выбирают когенерацию.

Снижение конкурентоспособности «большой» энергетики в российских условиях обусловлено именно отказом от использования преимуществ когенерации, технологии, по своей сути, предназначенной для стран с холодным климатом и локальной высокой плотностью населения. Проблема состоит не просто в несовершенстве правил функционирования рынка электроэнергетики, а в неправильной формулировке первичных целей и принципов, обеспечивших экономическую дискриминацию ТЭЦ.

Ликвидация существенной части ТЭЦ общего пользования окажется серьезным ударом для экономики страны из-за повышения стоимости тепловой и электрической энергии, существенных разовых затрат на строительство замещающих мощностей и увеличение мощности газотранспортной системы. Сегодня отсутствует системная оценка последствий вывода ТЭЦ из эксплуатации. Проблема, не имея решения на федеральном уровне, «сбрасывается» регионам в виде оплаты «вынужденной» генерации и строительства замещающих котельных.

В то же время, именно развитие когенерации может рассматриваться как антикризисная мера, обеспечивающая доступность энергоресурсов для потребителей. Надо понимать, что, несмотря на собственные проблемы, когенерация является сегодня единственным способом, позволяющим доступными рыночными способами обеспечить антикризисное сдерживание роста тарифов на тепло и электроэнергию.

Кардинальное изменение отношения к когенерации позволит:

  • снизить потребление топлива и сохранить объемы экспорта газа с меньшими затратами на освоение новых месторождений;
  • ослабить проблему дефицита природного газа при сильных похолоданиях, так как в этот период на ТЭЦ увеличивается выработка тепла и оборудование под большую электрическую нагрузку загружается в экономичном теплофикационном режиме, с максимальной экономией топлива;
  • обеспечить необходимый прирост электрической мощности непосредственно в сложившихся узлах потребления, без чрезмерных затрат на высоковольтные сети;
  • обеспечить энергоснабжение городов при аварийных отключениях систем электро- и газоснабжения (работа на выделенную электрическую нагрузку, включая объекты жизнеобеспечения, возможность использования резервного топлива, гарантированное теплоснабжение);
  • за счет снижения стоимости производства тепловой энергии высвободить средства на модернизацию тепловых сетей.

8.2 Необходимые изменения в модель рынка электроэнергии для эффективного функционирования ТЭЦ

Действующая модель рынка определяет принцип равенства генераторов независимо от расстояния передачи электроэнергии от электростанции до потребителя. ТЭЦ, находящиеся вблизи потребителя, фактически дотируют развитие и содержание межрегиональных электрических сетей, необходимых для передачи электроэнергии от ГРЭС, ГЭС и АЭС. В других странах, даже при гораздо меньшей территории, это обстоятельство учитывается дополнительными преференциями для ТЭЦ, тем более они необходимы и экономически оправданы в наших условиях.

В советский период задача снижения затрат на передачу электроэнергии была решена именно путем строительства ТЭЦ непосредственно в центрах нагрузок, в городах и на крупных промышленных предприятиях. Даже Московский регион обеспечивался внешним электроснабжением только на треть потребности. ТЭЦ обеспечивали нагрузки в городах расположения, надежность электроснабжения особо важных объектов, резервирование топливом, надежное теплоснабжение.

В результате реформы электроэнергетики ТЭЦ стали выполнять несвойственные им функции обеспечения электроэнергией и мощностью оптового рынка. В результате транспортная составляющая в конечных тарифах выросла, став сопоставимой со стоимостью производства электроэнергии. Если же не учитывать стоимость топлива, то стоимость передачи электроэнергии превысила стоимость генерации, определяя высокий уровень тарифов для конечных потребителей.

Экономия, получаемая от конкуренции электростанций на ОРЭМ, сегодня нивелируется затратами на развитие сетей для обеспечения этой конкуренции.

При запуске КОМ был принят принцип необходимости вывода неэффективной мощности, без учета того обстоятельства, что одно и то же оборудование ТЭЦ может быть неэффективным в конденсационном режиме, а в теплофикационном, при любом сроке службы оборудования, иметь экономичность недостижимую при применении любых других самых современных технологий.

Необходимо решить задачу рыночного стимулирования и технического обеспечения возможности применения наиболее экономичных режимов энергоисточников, работающих в комбинированном цикле, с решением задач модернизации части ТЭЦ, комплексного учета общесистемных эффектов, управления спросом и оптимизации соотношения базовых и пиковых мощностей.

Сегодняшний КОМ не учитывает, что ТЭЦ имеют объективно большие затраты на содержание мощности, при меньшей стоимости электроэнергии в теплофикационном цикле. Учет совокупных объективных затрат показал бы гораздо большую экономическую эффективность ТЭЦ. По результатам долгосрочного КОМ в 2019 г. ТЭЦ получит в виде оплаты мощности на 10% меньше средств чем в 2011 году. Это подвигает энергетические компании к попыткам добрать недостающие средства на рынке тепла, что, в свою очередь, может разрушить рынок централизованного теплоснабжения, снизив его конкурентоспособность по сравнению с локальными теплоисточниками.

Разделение ранее единой торговой площадки между АТС (электроэнергия) и «Системным оператором» (мощность) устранило саму возможность оптимизации суммарных цен в интересах потребителя. Более того «Системный оператор» получил право загружать электростанции в пределах отобранной мощности, не неся ответственности за экономичность режимов генерации.

Необходимо определить условия, при которых ТЭЦ может заключать прямые договоры с потребителями. Самый выгодный потребитель для ТЭЦ тот, кто потребляет одновременно и электрическую и тепловую энергию, то есть население и промышленные предприятия, использующие технологический пар. Вариативное тарифное меню на комплексную поставку подвинуло бы потребителей к отключению собственных котельных.

Подобные длительные комплексные договоры могли бы заключать с потребителями как владельцы ТЭЦ, так и теплоснабжающие организации, одновременно выполняющие функции энергосбытовых в части электроэнергии. Эти длительные договоры могли бы стать основным инструментом снижения рисков инвесторов, осуществляющих модернизацию ТЭЦ и снизить рисковую стоимость инвестиций.

Сегодня можно заключать прямые розничные договоры на поставку электрической энергии только от ТЭЦ мощностью менее 25 МВт, что ставит их в привилегированное положение с более крупными ТЭЦ общего пользования (потребителям электроэнергии не начисляется сетевой тариф за передачу по сетям высокого напряжения).

Необходимо унифицировать правила заключения прямых договоров для ТЭЦ, мощностью как более, так и менее 25 МВт, при сохранении подключения к единой энергосистеме. Сегодня малые ТЭЦ, даже имея худшие показатели экономичности и энергоэффективности, выигрывают за счет отсутствия сетевого тарифа. В стране массово строятся малые ТЭЦ с техническими характеристиками на уровне начала прошлого века, а оборудование более совершенных ТЭЦ выводится через процедуру КОМа, либо лишается тепловой нагрузки.

В восточноевропейских странах проблему экономичности когенерационных источников давно решили, создав особые правила рынка. ТЭЦ в этих странах, как правило, работают в теплофикационном режиме. Конденсационная выработка считается «вынужденной генерацией», и на нее необходимо получить специальное разрешение.

Владельцы ТЭЦ могут подавать электроэнергию по прямым розничным договорам, либо участвовать в рынке. На всю электроэнергию, произведенную в комбинированном цикле, выдается дотация с помощью «зеленых сертификатов», обеспечиваемых за счет повышенных экологических платежей за использование неэкономичных энергоустановок.

Принципиально важно, что таких успехов развития большинство стран ЕС достигло за 2 последних десятилетия. Новая директива ЕС об энергоэффективности определяет обязательность наличия национального плана развития когенерации. Необходимо изучить возможности применения этого опыта в российских условиях.

На первом этапе необходимо, как минимум, определить критерии отнесения ТЭЦ к когенерационным установкам и выделить квалифицированную когенерационную мощность. Для каждой ТЭЦ проработать возможность, необходимость и технические ограничения для работы по тепловому графику. Также необходимо оценить возможности и последствия более существенной загрузки станций по теплу с переводом крупных котельных в параллельную работу.

Представляется необходимым принять следующие комплексные решения, обеспечивающие реальный приоритет когенерации.

  • Осуществить разработку сценария развития энергетики страны на основе когенерации, расчет общесистемного потенциала экономии и последствий для потребителей.
  • Разработать поправки в законы «Об электроэнергетике» и «О теплоснабжении», направленные на согласование правил работы рынков электрической и тепловой энергии, генеральной схемы развития электроэнергетики, схем развития теплоснабжения и энергоснабжения регионов.
  • Внести изменения в регламенты ОРЭМ, позволяющие создать условия для возможности работы ТЭЦ по тепловому графику.
  • Обеспечить применение механизмов финансирования модернизации ТЭЦ при наличии межсистемной экономии, обеспечивающей сохранение сложившегося уровня тарифов для потребителей на электрическую и тепловую энергию.
  • Ввести обязательную процедуру рассмотрения проектов развития когенерации, как альтернативу крупным проектам строительства электрических сетей, котельных, конденсационных станций.
  • Учесть в разрабатываемых изменениях в правила проведения КОМ общесистемные эффекты функционирования ТЭЦ.
  • Разработать типовые решения и конкретные бизнес-проекты развития ТЭЦ, позволяющие достичь баланса интересов единой энергосистемы страны и конкретных муниципальных образований.

8.3 Организация совместной работы ТЭЦ и котельных

Количественное регулирование, принятое в западноевропейских странах, позволило использовать схему совместной работы ТЭЦ и котельных. При похолодании сначала увеличивается расход теплоносителя от ТЭЦ, а потом запускаются котельные, которые обеспечивают недостающее количество теплоносителя, закачивая его своими насосами в общую сеть.

В результате массового применения «температурной срезки», мы также имеем при низких температурах наружного воздуха не качественное, а количественное регулирование с увеличением расхода (диаметры трубопроводов тепловых сетей, рассчитанные на завышенные договорные нагрузки, это позволяют). Грамотно подобранный уровень температурной срезки позволит во многих городах без больших затрат реализовать схемы совместной работы ТЭЦ и котельных, работающих сегодня раздельно, без строительства дорогостоящих выделенных тепловых сетей.

Часто для обеспечения такой схемы, оказывается, достаточно задействовать резервные перемычки, уже имеющиеся в тепловых сетях, требуется только серьезная наладка гидравлических режимов. Массовое применение проекта сдерживается отсутствием специалистов, неосведомленностью руководителей энергокомпаний и отсутствием двухставочных тарифов.

Для широкого распространения проекта необходимо решить проблему суммирования транспортных тарифов нескольких теплоснабжающих (теплосетевых) организаций при межсистемной передаче тепла путем формирования общего тарифа на передаваемый объем тепловой энергии.

Введение

В настоящем издании приведены общие сведения о процессах производства, передачи и потребления электрической и тепловой энергии, взаимной связи и объективных закономерностях этих процессов, о различных типах электростанций, их характеристиках, условиях совместной работы и комплексного использования. В отдельной главе рассмотрены вопросы энергосбережения.

Производство электрической и тепловой энергии

Общие положения

Энергетика - это совокупность естественных, природных и искусственных, созданных человеком систем, предназначенных для получения, преобразования, распределения и использования энергетических ресурсов всех видов. Энергоресурсами являются все материальные объекты, в которых сосредоточена энергия для возможного использования ее человеком.

Среди различных видов энергии, используемых людьми, электроэнергия выделяется рядом существенных достоинств. Это относительная простота ее производства, возможность передачи на очень большие расстояния, простота преобразования в механическую, тепловую, световую и иную энергию, что делает электроэнергетику важнейшей отраслью жизнедеятельности человека.

Процессы, происходящие при производстве, распределении, потреблении электрической энергии, неразрывно взаимосвязаны. Также взаимосвязаны и объединены установки по выработке, передаче, распределению и преобразованию электроэнергии. Такие объединения называются электроэнергетическими системами (рис.1.1) и являются составной частью энергетической системы. В соответствии с энергетической системой называют совокупность электрических станций, котельных, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электроэнергии и теплоты при общем управлении этими режимами.

Составной частью электроэнергетической системы является система электроснабжения, представляющая собой совокупность электроустановок, предназначенных для обеспечения потребителей электрической энергией.

Аналогичное определение можно дать системе теплоснабжения.

Тепловые электрические станции

Получение энергии из топливно-энергетических ресурсов (ТЭР) посредством их сжигания в настоящее время является наиболее простым и доступным способом производства энергии. Поэтому до 75% всей электроэнергии в стране вырабатывается на тепловых электростанциях (ТЭС). При этом возможны как совместная выработка тепловой и электрической энергии, например, на тепловых электростанциях (ТЭЦ), так и их раздельное производство (рис. 1.2).

Структурная схема ТЭС приведена на рис. 1.3. Работа происходит следующим образом. Система топливоподачи 1 обеспечивает поступление твердого, жидкого или газообразного топлива к горелке 2 парового котла 3. Предварительно топливо соответствующим образом подготавливается, например, уголь дробится до пылевидного состояния в дробилке 4, подсушивается и насыщается воздухом, который дутьевым вентилятором 5 от воздухо-заборника 6 через подогреватель 7 также подается к горелке. Тепло, выделяемое в топке котла, используется для нагрева воды в теплообменниках 8 и образования пара. Вода подается насосом 9 после того, как проходит специальную систему водоподготовки 10. Пар из барабана 11 при высоком давлении и температуре поступает в паровую турбину 12, где энергия пара преобразуется в механическую энергию вращения вала турбины и электрического генератора 13. Синхронный генератор вырабатывает переменный трехфазный ток. Отработанный в турбине пар конденсируется в конденсаторе 14. Для ускорения этого процесса используется холодная вода естественного или искусственного водоема 15 или специальные охладители - градирни. Конденсат насосами вновь подается в парогенератор (котел). Такой цикл называется конденсационным. Электростанции, использующие этот цикл (КЭС), вырабатывают только электрическую энергию. На ТЭЦ часть пара из турбины забирается при определенном давлении до конденсатора и используется для нужд потребителей тепла.

Рис. 1.1.

G - генераторы электроэнергии; Т - трансформаторы; Р - электрические нагрузки;

W - линии электропередачи (ЛЭП); АТ - автотрансформаторы


Рис.1.2.

а - совмещенное производство; б - раздельное производство


Рис.1.3.

Топливо и его приготовление. На ТЭС используется твердое, жидкое или газообразное органическое топливо. Его общая классификация приведена в таблице 1.1 .

Таблица 1.1. Общая классификация топлива

Топливо в том виде, в каком оно сжигается, называется "рабочим топливом”. В состав рабочего топлива (твердого и жидкого) входят: углерод С, водород Н, кислород О, азот N, зола А и влага W. Выражая компоненты топлива в процентах, отнесенных к одному килограмму массы, получают уравнение состава рабочей массы топлива.

Сера называется летучей и составляет часть общего количества серы, находящейся в топливе, остальная негорючая часть серы входит в состав минеральных примесей.

Естественное газообразное топливо содержит: метан, этан, пропан, бутан, углеводороды, азот, углекислый газ. Последние два компонента - балласт. Искусственное газообразное топливо имеет в своём составе метан, окись углерода, водород, углекислый газ, водяные пары, азот, смолы.

Основной теплотехнической характеристикой топлива является теплота сгорания, которая показывает, какое количество теплоты в килоджоулях выделяется при сжигании одного килограмма твердого, жидкого или одного кубического метра газообразного топлива. Различают высшую и низшую теплоту сгорания.

Высшей теплотой сгорания топлива называют количество теплоты, выделяемой топливом при полном его сгорании c учётом теплоты, выделившейся при конденсации водяных паров, которые образуются при горении.

Низшая теплота сгорания отличается от высшей тем, что не учитывает теплоту, затрачиваемую на образование водяных паров, которые находятся в продуктах сгорания. При расчётах используют низшую теплоту сгорания, т.к. теплота водяных паров бесполезно теряется с уходящими в дымовую трубу продуктами сгорания.

Взаимосвязь высшей и низшей теплоты сгорания для рабочеймассы топлива определяется уравнением

Для сравнения различных видов топлива по величине теплоты сгорания введено понятие "условное топливо" (у. т.). Условным считают топливо, низшая теплота сгорания которого при рабочей массе равна 293 кДж/кг для твёрдого и жидкого топлива или 29300 кДж/м3 для газообразного топлива. В соответствии с этим каждое топливо имеет свой тепловой эквивалент Эт = QНР / 29300.

Перевод расхода рабочего натурального топлива в условное производится по уравнению

Вусл = Эт? Вт.

Краткая характеристика отдельных видов топлива приведена в табл.1.2.

Таблица 1.2. Характеристика топлива

Особо следует отметить низшую теплоту сгорания в кДж/кг мазута - 38000...39000, природного газа - 34000...36000, попутного газа - 50000...60000. Кроме того, это топливо практически не содержит влаги и минеральных примесей.

Перед подачей топлива в топку производят его подготовку. Особенно сложна система приготовления твердого топлива, которое последовательно проходит очистку от механических примесей и посторонних предметов, дробление, сушку, пылеприготовление, перемешивание с воздухом.

Система подготовки жидкого и особенно газообразного топлива значительно проще. Кроме тоготакое топливо экологически более чистое, практически не имеет зольности.

Простота транспортировки, легкость автоматизации управления процессами горения, высокая теплота сгорания обусловливают перспективность использования в энергетике природного газа. Однако запасы этого сырья ограничены.

Водоподготовка. Вода, являясь теплоносителем на ТЭС, непрерывно циркулирует по замкнутому контуру. При этом особое значение имеет очистка воды, подаваемой в котел. Конденсат от паровой турбины (рис.1.3) поступает в систему 10 очистки от химических примесей (химводоочистка - ХВО) и свободных газов (деаэрация). В технологическом цикле вода -пар-конденсат неизбежны потери. Поэтому от внешнего источника 15 (пруд, река) через водозабор 16 производится подпитка водяного тракта. Вода, поступающая в котел, предварительно подогревается в экономайзере (теплообменнике) 17 уходящими продуктами сгорания.

Паровой котел. Котел является парогенератором на ТЭС. Основные конструкции представлены на рис.1.4.

Котел барабанного типа имеет стальной барабан 1, в верхней части которого собирается пар. Питательная вода подогревается в экономайзере 2, находящемся в камере 3 уходящих газов, и поступает в барабан. Коллектор 4 замыкает паро-водяной цикл котла. В топочной камере 5 горение топлива при температуре 1500. ..20000С обеспечивает закипание воды. По стальным подъемным трубам 6, имеющим диаметр 30...90 мм и покрывающим поверхность топочной камеры, вода и пар поступают в барабан. Пар из барабана через трубчатый пароперегреватель 7 подается в турбину. Пароперегреватель может выполняться двух - трехступенчатым и предназначен для дополнительного нагрева и сушки пара. Система имеет опускные трубы 8, по которым вода из нижней части барабана опускается в коллектор.

В котле барабанного типа обеспечивается естественная циркуляция воды и пароводяной смеси за счет их разной плотности.

Такая система позволяет получить докритические параметры пара (критической называется точка состояния, в которой исчезает различие в свойствах жидкости и пара): давление до 22,5 МПа, а практически не более 20 МПа; температура до 374°С (без пароперегревателя). При большем давлении нарушается естественная циркуляция воды и пара. Принудительная циркуляция пока не нашла применения в мощных барабанных котлах из-за своей сложности. Поэтому котлы данного типа используются в энергоблоках мощностью до 500 МВт при паропроизводителъности до 1600 тонн в час.

В котле прямоточного типа специальные насосы осуществляют принудительную циркуляцию воды и пара. Питательная вода насосом 9 через экономайзер 2 подается в трубы-испарители 10,где превращается в пар. Через пароперегреватель 7 пар поступает в турбину. Отсутствие барабана и принудительна циркуляция воды и пара позволяют получить сверхкритические параметры пара: давление до 30 МПа и температуру до 590°С. Это соответствует энергоблокам мощностью до 1200 МВт и паропроизводителъности до 4000 т/ч.

Котлы, предназначенные только для теплоснабжения и устанавливаемые в местных или районных котельных, выполняются на тех же принципах, что рассмотрены выше. Однако параметры теплоносителя, определяемые требованиями потребителей тепла, существенно отличаются от рассмотренных ранее (некоторые технические характеристики таких котлов приведены в табл.1.3).

Таблица 1.3. Технические данные котлов отопительных систем

Например, котельные, пристроенные к зданиям, допускают применение котлов с давлением пара до 0,17 МПа и температурой воды до 1150С, а максимальная мощность встроенных котельных не должна превышать 3,5 МВт при работе на жидком и газообразном топливе или I,7 МВт при работе на твёрдом топливе. Котлы отопительных систем различаются по виду теплоносителя (вода, пар), по производительности и тепловой мощности, по конструкции (чугунные и стальные, малометражные и шатровые и др.).

Эффективность работы системы парогенерации или подготовки горячей воды во многом определяется коэффициентом полезного действий (КПД) котлоагрегата.

В общем случае КПД парового котла и расход топлива определяются выражениями:

Кг/с, (1.1)

где hk - КПД парового котла, %; q2, q3, q4, q5, q6 - потеря теплоты соответственно с уходящими газами, химическим недожогом, механическим недожогом, на наружное охлаждение, со шлаком, %; В - полный расход топлива, кг/с; QПК - теплота, воспринятая рабочей средой в паровом котле, кДж/м; - располагаемая теплота поступающего в топку топлива, кДж/кг.



Рис.1.4.

а - барабанного типа; б - прямоточного типа

1- барабан; 2 - экономайзер; 3 - камера уходящих газов; 4 - коллектор; 5 - топочная камера; 6 - подъёмные трубы; 7 - пароперегреватель; 8 - опускные трубы; 9 - насос; 10 - трубы-испарители

Если теплота уходящих газов не используется, то

а при разомкнутой системе сушки топлива уходящими газами

где Нух, Нотб, - энтальпия соответственно уходящих газов, газов в месте отбора на сушку и холодного воздуха, кДж/кг; r - доля отбора газов на сушку; ?yx - избыток воздуха в уходящих газах.

Энтальпия газа при температуре Т численно равна количеству теплоты, которое подведено к газу в процессе нагревания его от нуля градусов Кельвина до температуры Т при постоянном давлении.

При разомкнутой системе сушки все данные о топливе относят к подсушенному топливу.

В этом случае расход сырого топлива при изменении влажности от WР до Wсуш составляет

где Всуш - расход подсушенного топлива по (1.1), кг/с; Wсуш, WР - влажность подсушенного и неподсушенного топлива, %.

При изменении влажности меняется и низшая теплота сгораниятоплива от до:

КДж/кг (1.4)

Низшая теплота сгорания соответствует количеству теплоты, выделяемой топливом при полном его сгорании без учёта теплоты, затрачиваемой на образование водяных паров, которые находятся в продуктах сгорания.

Полная располагаемая теплота поступающего в топку топлива

КДж/кг, (1.5)

где - низшая теплота сгорания топлива, кДж/кг; - дополнительная теплота, вносимая в котел подогретым снаружи воздухом, паровым дутьем и т.д., кДж/кг.

Для ориентировочных расчетов.

Теплота, воспринимаемая рабочей средой в паровом котле

КДж/с, (1.6)

где Dп - паропроизводительность котла, кг/с; hпп, hпв - энтальпия перегретого пара и питающей воды, кДж/кг; ?Qпк - дополнительно воспринимаемая теплота при наличии в котле пароперегревателя, продувки водой и т.д., кДж/с.

Для ориентировочных расчетов?Qпк=0,2…0,3 Dп(hпп - hпв).

где?ун- доля уноса золы с продуктами сгорания; Ншл - энтальпия шлака, кДж/кг; АР - рабочая зольность топлива, %.

Значения q3, q4, q5, Wр, Aр, приводятся в специальной литературе, а также в учебных пособиях .

При твердом шлакоудалении можно принять?ух=1,2…1,25; ?ун=0,95; Ншл=560 кДж/кг.

Кроме того, при температуре воздуха перед котлом 300С =223 кДж/кг, а при температуре уходящих газов 1200С Нух=1256 кДж/кг.

Пример расчета. Определить КПД и расход топлива для парового котла при следующих условиях: Dп=186 кг/с; топливо - подсушенный Березовский угль с Wсуш=13%; разомкнутая система сушки, r=0,34; отбираемый на сушку газ имеет Нотб=4000кДж/кг; энтальпия перегретого пара и питательной воды соответственно hпп =3449 кДж/кг, hпв=1086,5 кДж/кг.

Решение. Предварительно по (1.4) определяется низшая теплота сгорания подсушенного топлива.

Здесь Wр=33% и =16200 кДж/кг приняты по .

Принимая по (1.5)

находим по (1.2)

По находим: q3=1%, q4=0,2%, q5=0,26% и с учётом (1.7)

Для расчета расхода топлива по (1.6) находим

Расход подсушенного топлива по (1.1)

Расход сырого топлива при Wр =33% по (1.3) составляет

Паровая турбина. Это тепловой двигатель, в котором энергия пара превращается в механическую энергию вращения ротора (вала) и закреплённых на нём рабочих лопаток. Упрощенная схема устройства паровой турбины приведена на рис.1.5. На валу 1 турбины крепятся диски 2 с рабочими лопатками 3. На эти лопатки из сопла 4 подаётся пар из котла, подводимый по паропроводу 5. Энергия пара приводит во вращение рабочее колесо турбины, а вращение вала передаётся через муфту 6 валу 7 синхронного генератора. Отработавший пар через камеру 8 направляется в конденсатор.

Паровые турбины по конструкции разделяются на активные и реактивные. В активной турбине (рис.1.5в) объем пара V2 при входе на рабочие лопатки равен объёму пара V3 при выходе с лопаток. Расширение объёма пара от V1 до V2 происходит только в соплах. Там же изменяется давление от р1 до p2 и скорость пара от с1 до с2. В этом случае остаётся неизменным давление пара на входе р2 и выходе р3 с лопаток, а скорость пара падает от с2 до с3 за счет передачи кинетической энергии пара лопаткам турбины:

Gп?(с2-с3)2 / 2 Gт?ст2 / 2,

где Gп, Gт - масса пара и рабочего колеса турбины; с2, с3, ст - скорость пара на входе и выходе с лопаток и скорость перемещения рабочего колеса.

Конструкция лопаток реактивной турбины такова (рис.1.5г), что пар расширяется не только в соплах от V1 до V2, но и между лопатками рабочего колеса от V2 до V3. При этом изменяется давление пара от р2 до р3 и скорость пара от с2 до с3. Поскольку V2p3 и в соответствии с первым законом термодинамики элементарная работа расширения единицы пара

где F - площадь лопатки, м2; (р2 - р3) - разность давления на входе и выходе с лопаток, Па; dS - перемещение лопатки, м.

При этом - работа, используемая для вращения рабочего колеса турбины. Таким образом, в реактивных турбинах помимо центробежных сил, возникающих при изменении скорости движения пара, на лопатки действуют реактивные силы, вызванные расширением пара.

Современные турбины выполняются как активными, так и реактивными. В мощных агрегатах параметры пара на входе приближается к значениям 30 МПа и 6000С. При этом истечение пара из сопла происходит со скоростью, превышающей скорость звука. Это ведёт к необходимости большой частоты вращения ротора. Возникают огромные центробежные силы, действующие на вращающиеся части турбины.

Практически частота вращения ротора, обусловленная конструктивными особенностями, как самой турбины, так и синхронного генератора, составляет 3000 1/мин. При этом линейная скорость на окружности колеса турбины диаметром один метр составляет 157 м/с. В этих условиях частицы стремятся оторваться с поверхности колеса с силой в 2500 раз превышающей их вес. Инерционные нагрузки уменьшают применением ступеней скорости и давления. Каждой ступени отдаётся не вся энергия пара, а только часть ее. Это обеспечивает и оптимальный теплоперепад на ступени, который составляет 40...80 кДж/кг при окружной скорости 140...210 м/с. Общий теплоперепад, срабатываемый в современных турбинах, составляет 1400...1600 кДж/кг.

По конструктивным соображениям 5...12 ступеней группируются в одном корпусе, который называют цилиндром. Современная мощная турбина может иметь цилиндр высокого давления (ЦВД) с давлением пара на входе 15...30 МПа, цилиндр среднего давления (ЦСД) с давлением 8...10 МПа и цилиндр низкого давления (ЦНД) с давлением 3...4 МПа. Турбины мощностью до 50 МВт обычно выполняются в одном цилиндре.

Отработавший в турбине пар поступает в конденсатор для охлаждения и конденсации. В трубчатый теплообменник конденсатора подаётся охлаждающая вода с температурой 10...15°С, что способствует интенсивной конденсации пара. С этой же целью давление в конденсаторе поддерживается в пределах 3...4 кПа. Охлаждённый конденсат вновь подаётся в котёл (рис.1.5), а охлаждающая вода, нагревшаяся до 20...25°С, удаляется из конденсатора. Если вода для охлаждения забирается из водоёма и затем безвозвратно сбрасывается, система называется разомкнутой прямоточной. В замкнутых системах охлаждения вода, нагревшаяся в конденсаторе, подается насосами на градирни - конусообразные башни. С верхней части градирен с высоты 40…80 м вода струится вниз, охлаждаясь при этом до необходимой температуры. Затем вода снова поступает в конденсатор.

Обе системы охлаждения имеют свои достоинства и недостатки и находят применение на электростанциях.



Рис.1.5. Устройство паровой турбины:

а - рабочее колесо турбины; б - схема трехступенчатой активной турбины; в - работа пара в активной ступени турбины; г - работа пара в реактивной ступени турбины.

1 - вал турбины; 2 - диски; 3 - рабочие лопатки; 4 - сопла; 5 - паропровод; 6 - муфта; 7 - вал синхронного генератора; 8 - камера отработавшего пара.

Турбины, у которых весь поданный в них пар после совершения работы поступает в конденсатор, называются конденсационными и используются для получения только механической энергии с последующим преобразованием её в электрическую. Такой цикл называется конденсационным, используется на ГРЭС и КЭС. Пример конденсационной турбины - К300-240 мощностью 300 МВт с начальными параметрами пара 23,5 МПа и 600°С.

В теплофикационных турбинах часть пара отбирается до конденсатора и используется для подогрева воды, которая затем направляется в систему теплоснабжения жилых, административных, производственных зданий. Цикл называется теплофикационным и используются на ТЭЦ и ГРЭС. Например, турбина Т100-130/565 мощностью 100 МВт на начальные параметры пара 13 МПа и 5650С имеет несколько регулируемых отборов пара.

Промышленно-теплофикационные турбины имеют конденсатор и несколько регулируемых отборов пара для теплофикационных и промышленных нужд. Они используется на ТЭЦ и ГРЭС. Например, турбина П150-130/7 мощностью 50 МВт на начальные параметры пара 13 МПа и 5650С обеспечивает промышленный отбор пара при давлении 0,7 МПа.

Турбины с противодавлением работают без конденсатора, а весь отработавший пар поступает теплофикационным и промышленным потребителям. Цикл называется противодавленческим, а турбины используются на ТЭЦ и ГРЭС. Например, турбина Р50-130/5 мощностью 50 МВт на начальное давление пара 13 МПа и конечное давление (противодавление) 0,5 МПа с несколькими отборами пара.

Использование теплофикационного цикла позволяет достичь на ТЭЦ КПД до 70% с учетом отпуска тепла потребителям. При конденсационном цикле КПД составляет 25...40% в зависимости от начальных параметров пара и мощности агрегатов. Поэтому КЭС размещаются в местах добычи топлива, что снижает затрата на транспортировку, а ТЭЦ приближаются к потребителям тепла.

Синхронные генераторы. Конструкция и характеристики этой машины, преобразующей механическую энергию в электрическую, подробно рассматриваются в специальных дисциплинах. Поэтому ограничимся общими сведениями.

Основные элементы конструкции синхронного генератора (рис.1.6): ротор 1, обмотка 2 ротора, статор 3, обмотка 4 статора, корпус 5, возбудитель 6 - источник постоянного тока.

Неявнополюсной ротор быстроходных машин - турбогенераторов (n = 3000 1/мин) выполняется из листовой электротехнической стали в форме цилиндра, находящегося на валу 7. Тихоходные машины - гидрогенераторы (n ? 1500 1/мин) имеют явнополюсный ротор (показан пунктиром). В пазах на поверхности ротора располагается медная изолированная обмотка, подключённая с помощью скользящих контактов 8 (щёток) к возбудителю. Статор представляет собой полный цилиндр из электротехнической стали, на внутренней поверхности которого в пазах располагаются три фазные обмотки - А, В, С. Обмотки выполняется медным изолированным проводом, идентичны друг другу и имеют осевую симметрию, занимая секторы по 120°. Начала фазных обмоток А, В, С через изоляторы выводятся наружу, а концы обмоток Х, У, Z соединяются в общую точку N - нейтраль.

Работа генератора происходит следующим образом. Ток возбуждения iB в обмотке ротора создает магнитный поток Ф, пересекающий обмотки статора. Вал генератора приводится во вращение турбиной. Тем самым обеспечивается равномерное вращение магнитного поля ротора с угловой частотой?=2?f, где f - частота переменного тока, 1/с - Гц. Для получения частоты переменного тока 50 Гц при числе пар магнитных полюсов р необходима частота вращения ротора n=60?f /p.

При р = 1, что соответствует наявнополюсному ротору, n= 3000 1/мин. Вращающееся магнитное поле пересекая обмотки статора наводит в них электродвижущую силу (ЭДС). В соответствии с законом электромагнитной индукции мгновенное значение ЭДС

где w - число витков.

ЭДС в обмотках статора наводятся синхронно с изменением магнитного поля по мере вращения ротора.



Рис.1.6.

а - конструкция генератора; б - схема соединения обмоток;

в - ЭДС на выводах обмоток генератора

1 - ротор; 2 - обмотка ротора; 3 - статор; 4 - обмотка статора; 5 - корпус; 6 - возбудитель; 7 - вал (ось) ротора; 8 - контактные кольца

При равномерном вращении ротора и осевой симметрии обмоток статора мгновенные значения фазных ЭДС равны:

где ЕМ - амплитудное значение ЭДС.

Если к выводам обмоток статора генератора подключена электрическая нагрузка Z во внешней цепи протекает электрически ток

где - напряжение на выводах обмоток при протекании в них тока i и сопротивлении обмотки статора Zвн.

На практике удобнее использовать не мгновенные, а действующие значения электрических величин. Необходимые соотношения известны из курса физики и теоретических основ электротехники.

Работа генератора во многом зависит от режима возбуждения и охлаждения машины. Различные системы возбуждения (независимое и самовозбуждение, электромашинное и тиристорное и т.д.) позволяют изменять величину iB и, следовательно, магнитного потока Ф и ЭДС в обмотках статора. Это даёт возможность регулировать напряжение на выводах генератора в определённых пределах (обычно ±5%).

Величина активной мощности, отдаваемой турбогенератором в электрическую сеть, определяется мощностью на валу турбины и регулируется подачей в турбину пара.

В процессе работы генератора происходит его нагрев, прежде всего из-за выделения тепла в обмотках, обтекаемых током. Поэтому существенное значение имеет эффективность системы охлаждения.

Генераторы малой мощности (1...30 МВт) имеют воздушное охлаждение внутренних поверхностей по проточной (разомкнутой) или регенеративной (замкнутой) схеме. На генераторах средней мощности (25...100 МВт) применяют поверхностное водородное охлаждение по замкнутой схеме, что более эффективно, но требует применения специальных мер безопасности. Мощные генераторы (более 100 МВт) имеют форсированное водородное, водяное или масляное охлаждение, при котором охладитель прокачивается под давлением внутри статора, ротора, обмоток по специальным полостям (каналам).

Основные технические характеристики генераторов: номинальное напряжение на выводах обмотки статора генератора, Uном: 6,3-10,5-21 кВ (бoльшие значения соответствуют более мощным генераторам); номинальная активная мощность, Рном, МВт; номинальный коэффициент мощности; номинальный КПД, составляющий 90...99%.

Эти параметры связаны между собой:

Собственные нужды электростанций. Не вся электрическая и тепловая энергия, произведённая на ТЭС, отдаётся потребителям. Часть остаётся на станции и используется для обеспечения её работы. Основными потребителями этой энергии являются: система транспортировки и подготовки топлива; насосы подачи воды, воздуха; система очистки воды, воздуха, уходящих газов и др.; отопление, освещение, вентиляция бытовых и производственных помещений, а также целый ряд других потребителей.

Многие элементы собственных нужд относятся к первой категории по надёжности электроснабжения . Поэтому они подключаются, по крайней мере, к двум независимым источникам энергии, например, к источникам на своей станции и к энергосистеме.

Распределительное устройство. Электроэнергия, выработанная генераторами, собирается на распределительном устройстве (РУ), а затем распределяется между потребителями. Для этого выводы обмоток статоров генераторов через специальные коммутационные аппараты (выключатели, разъединители и др.) жесткими или гибкими проводниками (шинами) присоединяются к сборным шинам РУ. Каждое присоединение в РУ осуществляется посредством специальной ячейки, содержащей необходимый комплект аппаратуры. Поскольку передача, распределение и генерация электроэнергии, а также ее потребление происходят при разном напряжении, на станции есть несколько РУ. На номинальное напряжение генераторов, например, 10,5 кВ, выполняется РУ генераторного напряжения. Обычно оно находится в здании станции и по конструкции является закрытым (ЗРУ). К этому РУ подключаются близко расположенные потребители. Для передачи электроэнергии по линиям электропередачи (ЛЭП) на большие расстояния и связи с другими станциями и системой необходимо использовать напряжение 35...330 кВ. Такая связь осуществляется с помощью отдельных РУ, обычно открытого исполнения (ОРУ), где устанавливаются повышающие трансформаторы. Для подключения потребителей собственных нужд служит - РУСН. С шин РУСН электроэнергия непосредственно и через понижающие трансформаторы передаётся потребителям на электростанции.

Схожие принципы используются и при распределении тепловой энергии, вырабатываемой на ТЭЦ. Специальные коллекторы, паропроводы, насосы обеспечивают подачу тепла промышленным и коммунальным потребителям, а также в систему собственных нужд.