Главная · Насморк · Математические модели простейших систем массового обслуживания. Аналитические модели систем массового обслуживания

Математические модели простейших систем массового обслуживания. Аналитические модели систем массового обслуживания

ВВЕДЕНИЕ

ГЛАВА I. ПОСТАНОВКА ЗАДАЧ МАССОВОГО ОБСЛУЖИВАНИЯ

1.1 Общие понятие теории массового обслуживания

1.2 Моделирование систем массового обслуживания

1.3 Графы состояний СМО

1.4 Случайные процессы

Глава II. УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

2.1 Уравнения Колмогорова

2.2 Процессы «рождения – гибели»

2.3 Экономико-математическая постановка задач массового обслуживания

Глава III. МОДЕЛИ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ

3.1 Одноканальная СМО с отказами в обслуживании

3.2 Многоканальная СМО с отказами в обслуживании

3.3 Модель многофазной системы обслуживания туристов

3.4 Одноканальная СМО с ограниченной длиной очереди

3.5 Одноканальная СМО с неограниченной очередью

3.6 Многоканальная СМО с ограниченной длиной очереди

3.7 Многоканальная СМО с неограниченной очередью

3.8 Анализ системы массового обслуживания супермаркета

ЗАКЛЮЧЕНИЕ


Введение

В настоящее время появилось большое количество литературы, посвященной непосредственно теории массового обслуживания, развитию ее математических аспектов, а также различных сфер ее приложения - военной, медицинской, транспортной, торговле, авиации и др.

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского ученого А.К. Эрланга(1878-1929),с его трудами в области проектирования и эксплуатации телефонных станций.

Теория массового обслуживания - область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др. Большой вклад в развитие этой теории внесли российские математики А.Я. Хинчин, Б.В. Гнеденко, А.Н. Колмогоров, Е.С. Вентцель и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого, варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и от простоев каналов обслуживания.

В коммерческой деятельности применение теории массового обслуживания пока не нашло желаемого распространения.

В основном это связано с трудностью постановки задач, необходимостью глубокого понимания содержания коммерческой деятельности, а также надежного и точного инструментария, позволяющего просчитывать в коммерческой деятельности различные варианты последствий управленческих решений.


Глава I . Постановка задач массового обслуживание

1.1 Общие понятие теории массового обслуживания

Природа массового обслуживания, в различных сферах, весьма тонка и сложна. Коммерческая деятельность связана с выполнением множества операций на этапах движения, например товарной массы из сферы производства в сферу потребления. Такими операциями являются погрузка товаров, перевозка, разгрузка, хранение, обработка, фасовка, реализация. Кроме таких основных операций процесс движения товаров сопровождается большим количеством предварительных, подготовительных, сопутствующих, параллельных и последующих операций с платежными документами, тарой, деньгами, автомашинами, клиентами и т.п.

Для перечисленных фрагментов коммерческой деятельности характерны массовость поступления товаров, денег, посетителей в случайные моменты времени, затем их последовательное обслуживание (удовлетворение требований, запросов, заявок) путем выполнения соответствующих операций, время выполнения которых носит также случайный характер. Все это создает неравномерность в работе, порождает недогрузки, простой и перегрузки в коммерческих операциях. Много неприятностей доставляют очереди, например, посетителей в кафе, столовых, ресторанах, или водителей автомобилей на товарных базах, ожидающих разгрузки, погрузки или оформления документов. В связи с этим возникают задачи анализа существующих вариантов выполнения всей совокупности операций, например, торгового зала супермаркета, ресторана или в цехах производства собственной продукции для целей оценки их работы, выявления слабых звеньев и резервов для разработки в конечном итоге рекомендаций, направленных на увеличение эффективности коммерческой деятельности.

Кроме того, возникают другие задачи, связанные с созданием, организацией и планированием нового экономичного, рационального варианта выполнения множества операций в пределах торгового зала, кондитерского цеха, всех звеньев обслуживания ресторана, кафе, столовой, планового отдела, бухгалтерии, отдела кадров и др.

Задачи организации массового обслуживания возникают практически во всех сферах человеческой деятельности, например обслуживание продавцами покупателей в магазинах, обслуживание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслуживания, обеспечение телефонных разговоров на телефонной станции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении запросов большого числа потребителей.

Перечисленные задачи можно успешно решать с помощью методов и моделей специально созданной для этих целей теории массового обслуживания (ТМО). В этой теории поясняется, что обслуживать необходимо кого-либо или что-либо, что определяется понятием «заявка (требование) на обслуживание», а операции обслуживания выполняются кем-либо или чем-либо, называемыми каналами (узлами) обслуживания. Роль заявок в коммерческой деятельности выполняют товары, посетители, деньги, ревизоры, документы, а роль каналов обслуживания - продавцы, администраторы, повара, кондитеры, официанты, кассиры, товароведы, грузчики, торговое оборудование и др. Важно заметить, что в одном варианте, например, повар в процессе приготовления блюд является каналом обслуживания, а в другом - выступает в роли заявки на обслуживание, например к заведующему производством за получением товара.

Заявки в силу массовости поступления на обслуживание образуют потоки, которые до выполнения операций обслуживания называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки обслуживания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока заявок, очереди, каналов обслуживания и выходящего потока заявок образует простейшую одноканальную систему массового обслуживания - СМО.

Под системой понимается совокупность взаимосвязанных и. целенаправленно взаимодействующих частей (элементов). Примерами таких простейших СМО в коммерческой деятельности являются места приема и обработки товаров, узлы расчета с покупателями в магазинах, кафе, столовых, рабочие места экономист та, бухгалтера, коммерсанта, повара на раздаче и т.д.

Процедура обслуживания считается завершенной, когда заявка на обслуживание покидает систему. Продолжительность интервала времени, требуемого для реализации процедуры обслуживания, зависит в основном от характера запроса заявки на обслуживание, состояния самой обслуживающей системы и канала обслуживания.

Действительно, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой - от формы организации обслуживания и обслуживающего персонала, что может значительно повлиять на время пребывания покупателя в супермаркете и интенсивность обслуживания. Например, овладение кассирами-контролерами работы «слепым» методом на кассовом аппарате позволило увеличить пропускную способность узлов расчета в 1,3 раза и сэкономить время, затрачиваемое на расчеты с покупателями по каждой кассе более чем на 1,5 ч в день. Внедрение единого узла расчета в супермаркете дает ощутимые преимущества покупателю. Так, если при традиционной форме расчетов время обслуживания одного покупателя составляло в среднем 1,5 мин, то при введении единого узла расчета - 67 с. Из них 44 с уходят на оформление покупки в секции и 23 с непосредственно на расчеты за покупки. Если покупатель делает несколько покупок в разных секциях, то потери времени сокращаются при приобретении двух покупок в 1,4 раза, трех - в 1,9, пяти - в 2,9 раза.

Под обслуживанием заявок будем понимать процесс удовлетворения потребности. Обслуживание имеет различный характер по своей природе. Однако, во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства. В некоторых случаях обслуживание производится одним человеком (обслуживание покупателя одним продавцом, в некоторых - группой людей (обслуживание больного врачебной комиссией в поликлинике), а в некоторых случаях - техническими устройствами (продажа газированной воды, бутербродов автоматами). Совокупность средств, которые осуществляют обслуживание заявок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одинаковые заявки, то каналы обслуживания называются однородными. Совокупность однородных каналов обслуживания называется обслуживающей системой.

В систему массового обслуживания поступает большое количество заявок в случайные моменты времени, длительность обслуживания которых также является случайной величиной. Последовательное поступление заявок в систему обслуживания называется входящим потоком заявок, а последовательность заявок, покидающих систему обслуживания,- выходящим потоком.

Курсовая работа

«Имитационное моделирование системы массового обслуживания»

по курсу «Исследование операций»

Введение

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы – систем массового обслуживания (СМО). Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые называются каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.

Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок. В качестве показателей эффективности СМО используются:

– Абсолютная пропускная способность системы (А

Q

– вероятность отказа обслуживания заявки ();

k );

– среднее число заявок в очереди ();

СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования.

1. Основные характеристики CМОи показатели их эффективности

1.1 Понятие марковского случайного процесса

Пусть имеется некоторая система, которая с течением времени изменяет свое состояние случайным образом. В этом случае говорят, что в системе протекает случайный процесс.

Процесс называется процессом с дискретными состояниями, если его состояния можно заранее перечислить и переход системы из одного состояния в другое происходит скачком. Процесс называется процессом с непрерывным временем, если переходы системы из состояния в состояние происходят мгновенно.

Процесс работы СМО – это случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называют марковским или случайным процессом без последействия, если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

При анализе процессов работы СМО удобно пользоваться геометрической схемой – графом состояний . Обычно состояния системы изображаются прямоугольниками, а возможные переходы из состояния в состояние – стрелками. Пример графа состояний приведен на рис. 1.


Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток характеризуется интенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: .

Поток событий называется ординарным, если вероятность попадания на малый участок времени двух и более событий мала по сравнению с вероятностью попадания одного события, т.е., если события появляются в нем поодиночке, а не группами.

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени и число событий, попадающих на одно из них, не зависит от числа событий, попадающих на другие.

Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия.

1.2 Уравнения Колмогорова

Все переходы в системе из состояния в состояние происходят под некоторым потоком событий. Пусть система находится в некотором состоянии , из которого возможен переход в состояние , тогда можно считать, что на систему воздействует простейший поток с интенсивностью , переводящий ее из состояния в . Как только появляется первое событие потока, происходит ее переход . Для наглядности на графе состояний у каждой стрелки, соответствующей переходу, указывается интенсивность . Такой размеченный граф состояний позволяет построить математическую модель процесса, т.е. найти вероятности всех состояний как функции времени. Для них составляются дифференциальные уравнения, называемые уравнениями Колмогорова.

Правило составлений уравнений Колмогорова: В левой части каждого из уравнений стоит производная по времени от вероятности данного состояния. В правой части стоит сумма произведений всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков событий минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного состояния.

Например, для графа состояний, приведенного на рис. 1, уравнения Колмогорова имеют вид:


Т.к. в правой части системы каждое слагаемое входит 1 раз со знаком и 1 раз со знаком , то, складывая все уравнений, получим, что

,

,

Следовательно, одно из уравнений системы можно отбросить и заменить уравнением (1.2.1).

Чтобы получить конкретное решение надо знать начальные условия, т.е. значения вероятностей в начальный момент времени.

1.3 Финальные вероятности и граф состояний СМО

При достаточно большом времени протекания процессов в системе (при ) могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов м. перейти в любое другое состояние, то финальные вероятности существуют, т.е.


Смысл финальных вероятностей состоит в том, что они равны среднему относительному времени нахождения системы в данном состоянии.

Т.к. в стационарном состоянии производные по времени равны нулю, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания нулю их правых частей.

Графы состояний, используемые в моделях систем массового обслуживания, называются схемой гибели и размножения. Такое название обусловлено тем, что эта схема используется в биологических задачах, связанных с изучением численности популяции. Его особенность состоит в том, что все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим (рис 2).

Рис. 2. Граф состояний в моделях СМО

Предположим, что все потоки, переводящие систему из одного состояния в другое, простейшие. По графу, представленному на рис. 2, составим уравнения для финальных вероятностей системы. Они имеют вид:

Получается система из ( n +1) уравнения, которая решается методом исключения. Этот метод заключается в том, что последовательно все вероятности системы выражаются через вероятность .

,

.

Подставляя эти выражения в последнее уравнение системы, находим , затем находим остальные вероятности состояний СМО.

1.4 Показатели эффективности СМО

Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются:

– абсолютная пропускная способность системы (А ), т.е. среднее число заявок, обслуживаемых в единицу времени;

– относительная пропускная способность (Q ), т.е. средняя доля поступивших заявок, обслуживаемых системой;

– вероятность отказа (), т.е. вероятность того, что заявка покинет СМО не обслуженной;

– среднее число занятых каналов (k );

– среднее число заявок в СМО ();

– среднее время пребывания заявки в системе ();

– среднее число заявок в очереди () – длина очереди;

– среднее число заявок в системе ();

– среднее время пребывания заявки в очереди ();

– среднее время пребывания заявки в системе ()

– степень загрузки канала (), т.е. вероятность того, что канал занят;

– среднее число заявок, обслуживаемых в единицу времени;

– среднее время ожидания обслуживания;

– вероятность того, что число заявок в очереди превысит определенное значение и т.п.

Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания, среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (очереди), деленному на интенсивность потока заявок, т.е.

(1.4.1)

Формулы (1.4.1) и (1.4.2) называются формулами Литтла. Они вытекают из того, что в предельном стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее, т.е. оба потока заявок имеют одну и ту же интенсивность .

Формулы для вычисления показателей эффективности приведены в таб. 1.


Таблица 1.

Показатели

Одноканальная СМО с

ограниченной очередью

Многоканальная СМО с

ограниченной очередью

Финальные

вероятности

Вероятность

Абсолютная пропускная

способность

Относительная пропускная

способность

Среднее число заявок в

Среднее число заявок под

обслуживанием

Среднее число заявок в системе

1.5 Основные понятия имитационного моделирования

Основная цель имитационного моделирования заключается в воспроизведении поведения изучаемой системы на основе анализа наиболее существенных взаимосвязей ее элементов.

Компьютерное имитационное моделирование следует рассматривать как статический эксперимент.

Из теории функций случайных величин известно, что для моделирования случайной величины с любой непрерывной и монотонно возрастающей функцией распределения достаточно уметь моделировать случайную величину , равномерно распределенную на отрезке . Получив реализацию случайной величины , можно найти соответствующую ей реализацию случайной величины , так как они связаны равенством

Предположим, что в некоторой системе массового обслуживания время обслуживания одной заявки распределено по экспоненциальному закону с параметром , где – интенсивность потока обслуживания. Тогда функция распределения времени обслуживания имеет вид

Пусть - реализация случайной величины , равномерно распределенной на отрезке , а – соответствующая ей реализация случайного времени обслуживания одной заявки. Тогда, согласно (1.5.1)

1.6 Построение имитационных моделей

Первый этап создания любой имитационной модели – этап описания реально существующей системы в терминах характеристик основных событий. Эти события, как правило, связаны с переходами изучаемой системы из одного возможного состояния в другое и обозначаются как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий.

Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля времени простоя системы.

Характеристики самого процесса массового обслуживания могут изменять свои значения либо в момент поступления новой заявки на обслуживание, либо при завершении обслуживания очередной заявки. К обслуживанию очередной заявки СМО может приступить немедленно (канал обслуживания свободен), но не исключена необходимость ожидания, когда заявке придется занять место в очереди (СМО с очередью, канал обслуживания занят). После завершения обслуживания очередной заявки СМО может сразу приступить к обслуживанию следующей заявки, если она есть, но может и простаивать, если таковая отсутствует. Необходимую информацию можно получить, наблюдая различные ситуации, возникающие при реализациях основных событий. Так, при поступлении заявки в СМО с очередью при занятом канале обслуживания длина очереди увеличивается на 1. Аналогично длина очереди уменьшается на 1, если завершено обслуживание очередной заявки и множество заявок в очереди не пусто.

Для эксплуатации любой имитационной модели необходимо выбрать единицу времени. В зависимости от природы моделируемой системы такой единицей может быть микросекунда, час, год и т.д.

Так как по своей сути компьютерное имитационное моделирование представляет собой вычислительный эксперимент, то его наблюдаемые результаты в совокупности должны обладать свойствами реализации случайной выборки. Лишь в этом случае будет обеспечена корректная статистическая интерпретация моделируемой системы.

При компьютерном имитационном моделировании основной интерес представляют наблюдения, полученные после достижения изучаемой системой стационарного режима функционирования, так как в этом случае резко уменьшается выборочная дисперсия.

Время, необходимое для достижения системой стационарного режима функционирования, определяется значениями ее параметров и начальным состоянием.

Поскольку основной целью является получение данных наблюдений с возможно меньшей ошибкой, то для достижения этой цели можно:

1) увеличить длительность времени имитационного моделирования процесса функционирования изучаемой системы. В этом случае не только увеличивается вероятность достижения системой стационарного режима функционирования, но и возрастает число используемых псевдослучайных чисел, что также положительно влияет на качество получаемых результатов.

2) при фиксированной длительности времени Т имитационного моделирования провести N вычислительных экспериментов, называемых еще прогонами модели, с различными наборами псевдослучайных чисел, каждый из которых дает одно наблюдение. Все прогоны начинаются при одном и том же начальном состоянии моделируемой системы, но с использованием различных наборов псевдослучайных чисел. Преимуществом этого метода является независимость получаемых наблюдений , показателей эффективности системы. Если число N модели достаточно велико, то границы симметричного доверительного интервала для параметра определяются следующим образом:


, , т.е. , где

Исправленная дисперсия, ,

N – число прогонов программы, – надежность, .

2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

Рассмотрим двухканальную систему массового обслуживания (n = 2) с ограниченной очередью равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Данная система имеет 7 состояний, обозначим их:

S 0 – система свободная, нет заявок;

S 1 – 1 заявка на обслуживании, очередь пуста;

S 2 – 2 заявки на обслуживании, очередь пуста;

S 3 – 2 заявки на обслуживании, 1 заявка в очереди;

S 4 – 2 заявки на обслуживании, 2 заявки в очереди;

S 5 – 2 заявки на обслуживании, 3 заявки в очереди;

S 6 – 2 заявки на обслуживании, 4 заявки в очереди;

Вероятности прихода системы в состояния S 0 , S 1 , S 2 , …, S 6 соответственно равны Р 0 , Р 1 , Р 2 , …, Р 6 .

Граф состояний системы массового обслуживания представляет собой схему гибели и размножения. Все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим.

Рис. 3. Граф состояний двухканальной СМО


Для построенного графа запишем уравнения Колмогорова:

Чтобы решить данную систему зададим начальные условия:

Систему уравнений Колмогорова (систему дифференциальных уравнений) решим численным методом Эйлера с помощью программного пакета Maple 11 (см. Приложение 1).

Метод Эйлера


где- в нашем случае, это правые части уравнений Колмогорова, n=6.

Выберем шаг по времени . Предположим , где Т – это время, за которое система выходит на стационарный режим. Отсюда получаем число шагов . Последовательно N раз вычисляя по формуле (1) получим зависимости вероятностей состояний системы от времени, приведенной на рис. 4.

Значения вероятностей СМО при равны:


Рис. 4. Зависимости вероятностей состояний системы от времени

P 0
P 5
P 4
P 3
P 2
P 1
2.2 Финальные вероятности системы

При достаточно большом времени протекания процессов в системе () могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов можно перейти в любое другое состояние, то финальные вероятности существуют, т.е.

Т.к. в стационарном состоянии производные по времени равны 0, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания правых частей 0. Запишем уравнения для финальных вероятностей для нашей СМО.


Решим данную систему линейных уравнений с помощью программного пакета Maple 11 (см. Приложение 1).

Получим финальные вероятности системы:

Сравнение вероятностей, полученных из системы уравнений Колмогорова при , с финальными вероятностями показывает, что ошибки равны:

Т.е. достаточно малы. Это подтверждает правильность полученных результатов.

2.3 Расчет показатели эффективности системы по финальным вероятностям

Найдем показатели эффективности системы массового обслуживания.

Сначала вычислим приведенную интенсивность потока заявок:

1) Вероятность отказав обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди), это соответствует состоянию системы S 6 . Т.к. вероятность прихода системы в состояние S 6 равна Р 6 , то

4) Средняя длина очереди, т.е. среднее число заявок в очереди, равна сумме произведений числа заявок в очереди на вероятность соответствующего состояния.

5) Среднее время пребывания заявки в очередиопределяется формулой Литтла:

3. Имитационное моделирование СМО

3.1 Алгоритм метода имитационного моделирования СМО (пошаговый подход)

Рассмотрим двухканальную систему массового обслуживания (n = 2) с максимальной длиной очереди равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Для имитации СМО воспользуемся одним из методов статистического моделирования – имитационным моделированием. Будем использовать пошаговый подход. Суть этого подхода в том, что состояния системы рассматриваются в последующие моменты времени, шаг между которыми является достаточно малым, чтобы за его время произошло не более одного события.

Выберем шаг по времени (). Он должен быть много меньше среднего времени поступления заявки () и среднего времени ее обслуживания (), т.е.

Где (3.1.1)

Исходя из условия (3.1.1) определим шаг по времени .

Время поступления заявки в СМО и время ее обслуживания являются случайными величинами. Поэтому, при имитационном моделировании СМО их вычисление производится с помощью случайных чисел.

Рассмотрим поступление заявки в СМО. Вероятность того, что на интервале в СМО поступит заявка, равна: . Сгенерируем случайное число , и, если , то будем считать, что заявка на данном шаге в систему поступила, если , то не поступила.

В программе это осуществляет isRequested () . Интервал времени примем постоянным и равным 0,0001, тогда отношение будет равно 10000. Если заявка поступила, то она принимает значение «истина», в противном случае значение «ложь».

bool isRequested()

double r = R. NextDouble();

if (r < (timeStep * lambda))

Рассмотрим теперь обслуживание заявки в СМО. Время обслуживания заявки в системе определяется выражением , где – случайное число. В программе время обслуживания определяется с помощью функции GetServiceTime () .

double GetServiceTime()

double r = R. NextDouble();

return (-1/mu*Math. Log (1-r, Math.E));

Алгоритм метода имитационного моделирования можно сформулировать следующим образом. Время работы СМО (Т ) разбивается на шаги по времени dt , на каждом из них выполняется ряд действий. Вначале определяются состояния системы (занятость каналов, длина очереди), затем, с помощью функции isRequested () , определяется, поступила ли на данном шаге заявка или нет.

Если поступила, и, при этом имеются свободные каналы, то с помощью функции GetServiceTime () генерируем время обработки заявки и ставим ее на обслуживание. Если все каналы заняты, а длина очереди меньше 4, то помещаем заявку в очередь, если же длина очереди равна 4, то заявке будет отказано в обслуживании.

В случае, когда на данном шаге заявка не поступала, а канал обслуживания освободился, проверяем, есть ли очередь. Если есть, то из очереди заявку ставим на обслуживание в свободный канал. После проделанных операций время обслуживания для занятых каналов уменьшаем на величину шага dt .

По истечении времени Т , т.е., после моделирования работы СМО, вычисляются показатели эффективности работы системы и результаты выводятся на экран.

3.2 Блок-схема программы

Блок-схема программы, реализующей описанный алгоритм, приведена на рис. 5.

Рис. 5. Блок-схема программы

Распишем некоторые блоки более подробно.

Блок 1. Задание начальных значений параметров.

Random R; // Генератор случайных чисел

public uint maxQueueLength; // Максимальная длина очереди

public uint channelCount; // Число каналов в системе

public double lambda; // Интенсивность потока поступления заявок

public double mu; // Интенсивность потока обслуживания заявок

public double timeStep; // Шагповремени

public double timeOfFinishProcessingReq; // Время окончания обслуживания заявки во всех каналах

public double timeInQueue; // Время пребывания СМО в состояниях с очередью

public double processingTime; // Времяработысистемы

public double totalProcessingTime; // Суммарноевремяобслуживаниязаявок

public uint requestEntryCount; // Числопоступившихзаявок

public uint declinedRequestCount; // Числоотказанныхзаявок

public uint acceptedRequestCount; // Числообслуженныхзаявок

uint queueLength; // Длина очереди //

Тип, описывающий состояния СМО

enum SysCondition {S0, S1, S2, S3, S4, S5, S6};

SysCondition currentSystemCondition; // Текущее состояние системы

Задание состояний системы. Выделим у данной 2-х канальной системы 7 различных состояний: S 0 , S 1 . S 6 . СМО находится в состоянии S 0 , когда система свободна; S 1 – хотя бы один канал свободен; в состоянии S 2 , когда все каналы заняты, и есть место в очереди; в состоянии S 6 – все каналы заняты, и очередь достигла максимальной длины (queueLength = 4).

Определяем текущее состояние системы с помощью функции GetCondition()

SysCondition GetCondition()

SysCondition p_currentCondit = SysCondition.S0;

int busyChannelCount = 0;

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq[i] > 0)

busyChannelCount++;

p_currentCondit += k * (i + 1);

if (busyChannelCount > 1)

{p_currentCondit ++;}

return p_currentCondit + (int) QueueLength;

Изменение времени пребывания СМО в состояниях с длиной очереди 1, 2,3,4. Это реализуется следующим программным кодом:

if (queueLength > 0)

timeInQueue += timeStep;

if (queueLength > 1)

{timeInQueue += timeStep;}

Присутствует такая операция, как помещение заявки на обслуживание в свободный канал. Просматриваются, начиная с первого, все каналы, когда выполняется условие timeOfFinishProcessingReq [ i ] <= 0 (канал свободен), в него подается заявка, т.е. генерируется время окончания обслуживания заявки.

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] <= 0)

timeOfFinishProcessingReq [i] = GetServiceTime();

totalProcessingTime+= timeOfFinishProcessingReq [i];

Обслуживаниезаявоквканалахмоделируетсякодом:

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] > 0)

timeOfFinishProcessingReq [i] -= timeStep;

Алгоритм метода имитационного моделирования реализован на языке программирования C#.

3.3 Расчет показателей эффективности СМО на основе результатов ее имитационного моделирования

Наиболее важными являются такие показатели, как:

1) Вероятность отказа в обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди). Для нахождения вероятности отказа разделим время пребывания СМО в состоянии с очередью 4 на общее время работы системы.

2) Относительная пропускная способность – это средняя доля поступивших заявок, обслуживаемых системой.

3) Абсолютная пропускная способность– это среднее число заявок, обслуживаемых в единицу времени.


4) Длина очереди, т.е. среднее число заявок в очереди. Длина очереди равна сумме произведений числа человек в очереди на вероятность соответствующего состояния. Вероятности состояний найдем как отношение времени нахождения СМО в этом состоянии к общему времени работы системы.

5) Среднее время пребывания заявки в очереди определяется формулой Литтла

6) Среднее число занятых каналовопределяется следующим образом:

7) Процент заявок, которым было отказано в обслуживании, находится по формуле

8) Процент обслуженных заявок находится по формуле


3.4 Статистическая обработка результатов и их сравнение с результатами аналитического моделирования

Т.к. показатели эффективности получаются в результате моделирования СМО в течение конечного времени, они содержат случайную компоненту. Поэтому, для получения более надежных результатов нужно провести их статистическую обработку. С этой целью оценим доверительный интервал для них по результатам 20 прогонов программы.

Величина попадает в доверительный интервал, если выполняется неравенство

, где

математическое ожидание (среднее значение), находится по формуле

Исправленная дисперсия,

,

N =20 – число прогонов,

– надежность. При и N =20 .

Результат работы программы представлен на рис. 6.


Рис. 6. Вид программы

Для удобства сравнения результатов, полученных различными методами моделирования, представим их в виде таблицы.

Таблица 2.

Показатели

эффективности СМО

Результаты

аналитического

моделирования

Результаты

имитационного моделирования (послед. шаг)

Результаты имитационного моделирования

Нижняя граница

доверительного

интервала

Верхняя граница

доверительного

интервала

Вероятность отказа 0,174698253017626

0,158495148639101

0,246483801571923
Относительная пропускная способность 0,825301746982374 0,753516198428077 0,841504851360899
Абсолютная пропускная способность 3,96144838551539 3,61687775245477 4,03922328653232
Средняя длина очереди 1,68655313447018 1,62655862750852 2,10148609204869
Среднее время пребывания заявки в очереди 0,4242558575 0,351365236347954 0,338866380730942 0,437809602510145
Среднее число занятых каналов 1,9807241927577 1,80843887622738 2,01961164326616

Из табл. 2 видно, что результаты, полученные при аналитическом моделировании СМО, попадают в доверительный интервал, полученный по результатам имитационного моделирования. Т.е., результаты, полученные разными методами, согласуются.

Заключение

В данной работе рассмотрены основные методы моделирования СМО и расчета показателей их эффективности.

Проведено моделирование двухканальной СМО с максимальной длиной очереди равной 4 с помощью уравнений Колмогорова, а также, найдены финальные вероятности состояний системы. Рассчитаны показатели ее эффективности.

Проведено имитационное моделирование работы такой СМО. На языке программирования C# составлена программа, имитирующая ее работу. Проведена серия расчетов, по результатам которых найдены значения показателей эффективности системы и выполнена их статистическая обработка.

Полученные при имитационном моделировании результаты согласуются с результатами аналитического моделирования.

Литература

1. Вентцель Е.С. Исследование операций. – М.: Дрофа, 2004. – 208 с.

2. Волков И.К., Загоруйко Е.А. Исследование операций. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2002. – 435 с.

3. Волков И.К., Зуев С.М., Цветкова Г.М. Случайные процессы. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2000. – 447 с.

4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. – М.: Высшая школа, 1979. – 400 с.

5. Ивницкий В.Л. Теория сетей массового обслуживания. – М.: Физматлит, 2004. – 772 с.

6. Исследование операций в экономике/ под ред. Н.Ш. Кремера. – М.: Юнити, 2004. – 407 с.

7. Таха Х.А. Введение в исследование операций. – М.: ИД «Вильямс», 2005. – 902 с.

8. Харин Ю.С., Малюгин В.И., Кирлица В.П. и др. Основы имитационного и статистического моделирования. – Минск: Дизайн ПРО, 1997. – 288 с.

Большой класс систем, которые сложно изучить аналитическими способами, но которые хорошо изучаются методами статистического моделирования, сводится к системам массового обслуживания (СМО).

В СМО подразумевается, что есть типовые пути (каналы обслуживания), через которые в процессе обработки проходятзаявки . Принято говорить, что заявкиобслуживаются каналами. Каналы могут быть разными по назначению, характеристикам, они могут сочетаться в разных комбинациях; заявки могут находиться в очередях и ожидать обслуживания. Часть заявок может быть обслужена каналами, а части могут отказать в этом. Важно, что заявки, с точки зрения системы, абстрактны: это то, что желает обслужиться, то есть пройти определенный путь в системе. Каналы являются также абстракцией: это то, что обслуживает заявки.

Заявки могут приходить неравномерно, каналы могут обслуживать разные заявки за разное время и так далее, количество заявок всегда весьма велико. Все это делает такие системы сложными для изучения и управления, и проследить все причинно-следственные связи в них не представляется возможным. Поэтому принято представление о том, что обслуживание в сложных системах носит случайный характер.

Примерами СМО (см. табл. 30.1) могут служить: автобусный маршрут и перевозка пассажиров; производственный конвейер по обработке деталей; влетающая на чужую территорию эскадрилья самолетов, которая «обслуживается» зенитками ПВО; ствол и рожок автомата, которые «обслуживают» патроны; электрические заряды, перемещающиеся в некотором устройстве и т. д.

Таблица 30.1. Примеры систем массового обслуживания

Заявки

Каналы

Автобусный маршрут и перевозка пассажиров

Пассажиры

Автобусы

Производственный конвейер по обработке деталей

Детали, узлы

Станки, склады

Влетающая на чужую территорию эскадрилья самолетов, которая «обслуживается» зенитками ПВО

Самолеты

Зенитные орудия, радары, стрелки, снаряды

Ствол и рожок автомата, которые «обслуживают» патроны

Ствол, рожок

Электрические заряды, перемещающиеся в некотором устройстве

Каскады технического устройства

Но все эти системы объединены в один класс СМО, поскольку подход к их изучению един. Он состоит в том, что, во-первых, с помощью генератора случайных чисел разыгрываются случайные числа, которые имитируют СЛУЧАЙНЫЕ моменты появления заявок и время их обслуживания в каналах. Но в совокупности эти случайные числа, конечно, подчинены статистическим закономерностям.

К примеру, пусть сказано: «заявки в среднем приходят в количестве 5 штук в час». Это означает, что времена между приходом двух соседних заявок случайны, например: 0.1; 0.3; 0.1; 0.4; 0.2, как это показано на рис. 30.1, но в сумме они дают в среднем 1 (обратите внимание, что в примере это не точно 1, а 1.1 - но зато в другой час эта сумма, например, может быть равной 0.9); и только за достаточно большое время среднее этих чисел станет близким к одному часу.

Результат (например, пропускная способность системы), конечно, тоже будет случайной величиной на отдельных промежутках времени. Но измеренная на большом промежутке времени, эта величина будет уже, в среднем, соответствовать точному решению. То есть для характеристики СМО интересуются ответами в статистическом смысле.

Итак, систему испытывают случайными входными сигналами, подчиненными заданному статистическому закону, а в качестве результата принимают статистические показатели, усредненные по времени рассмотрения или по количеству опытов. Ранее, в лекции 21 (см.рис. 21.1 ), мы уже разработали схему для такого статистического эксперимента (см. рис. 30.2).

Во-вторых, все модели СМО собираются типовым образом из небольшого набора элементов (канал, источник заявок, очередь, заявка, дисциплина обслуживания, стек, кольцо и так далее), что позволяет имитировать эти задачи типовым образом. Для этого модель системы собирают из конструктора таких элементов. Неважно, какая конкретно система изучается, важно, что схема системы собирается из одних и тех же элементов. Разумеется, структура схемы будет всегда различной.

Перечислим некоторые основные понятия СМО.

Каналы - то, что обслуживает; бывают горячие (начинают обслуживать заявку в момент ее поступления в канал) и холодные (каналу для начала обслуживания требуется время на подготовку). Источники заявок - порождают заявки в случайные моменты времени, согласно заданному пользователем статистическому закону. Заявки, они же клиенты, входят в систему (порождаются источниками заявок), проходят через ее элементы (обслуживаются), покидают ее обслуженными или неудовлетворенными. Бывают нетерпеливые заявки - такие, которым надоело ожидать или находиться в системе и которые покидают по собственной воле СМО. Заявки образуют потоки - поток заявок на входе системы, поток обслуженных заявок, поток отказанных заявок. Поток характеризуется количеством заявок определенного сорта, наблюдаемым в некотором месте СМО за единицу времени (час, сутки, месяц), то есть поток есть величина статистическая.

Очереди характеризуются правилами стояния в очереди (дисциплиной обслуживания), количеством мест в очереди (сколько клиентов максимум может находиться в очереди), структурой очереди (связь между местами в очереди). Бывают ограниченные и неограниченные очереди. Перечислим важнейшие дисциплины обслуживания. FIFO (First In, First Out - первым пришел, первым ушел): если заявка первой пришла в очередь, то она первой уйдет на обслуживание. LIFO (Last In, First Out - последним пришел, первым ушел): если заявка последней пришла в очередь, то она первой уйдет на обслуживание (пример - патроны в рожке автомата). SF (Short Forward - короткие вперед): в первую очередь обслуживаются те заявки из очереди, которые имеют меньшее время обслуживания.

Дадим яркий пример, показывающий, как правильный выбор той или иной дисциплины обслуживания позволяет получить ощутимую экономию по времени.

Пусть имеется два магазина. В магазине № 1 обслуживание осуществляется в порядке очереди, то есть здесь реализована дисциплина обслуживания FIFO (см. рис. 30.3).

Время обслуживания t обслуж. на рис. 30.3 показывает, сколько времени продавец затратит на обслуживание одного покупателя. Понятно, что при покупке штучного товара продавец затратит меньше времени на обслуживание, чем при покупке, скажем, сыпучих продуктов, требующих дополнительных манипуляций (набрать, взвесить, высчитать цену и т. п). Время ожидания t ожид. показывает, через какое время очередной покупатель будет обслужен продавцом.

В магазине № 2 реализована дисциплина SF (см. рис. 30.4), означающая, что штучный товар можно купить вне очереди, так как время обслуживания t обслуж. такой покупки невелико.

Как видно из обоих рисунков, последний (пятый) покупатель собирается приобрести штучный товар, поэтому время его обслуживания невелико - 0.5 минут. Если этот покупатель придет в магазин № 1, он будет вынужден выстоять в очереди целых 8 минут, в то время как в магазине № 2 его обслужат сразу же, вне очереди. Таким образом, среднее время обслуживания каждого из покупателей в магазине с дисциплиной обслуживания FIFO составит 4 минуты, а в магазине с дисциплиной обслуживания КВ - лишь 2.8 минуты. А общественная польза, экономия времени составит: (1 – 2.8/4) · 100% = 30 процентов! Итак, 30% сэкономленного для общества времени - и это лишь за счет правильного выбора дисциплины обслуживания.

Специалист по системам должен хорошо понимать ресурсы производительности и эффективности проектируемых им систем, скрытые в оптимизации параметров, структур и дисциплинах обслуживания. Моделирование помогает выявить эти скрытые резервы .

При анализе результатов моделирования важно также указать интересы и степень их выполнения. Различают интересы клиента и интересы владельца системы. Заметим, что эти интересы совпадают не всегда.

Судить о результатах работы СМО можно по показателям. Наиболее популярные из них:

    вероятность обслуживания клиента системой;

    пропускная способность системы;

    вероятность отказа клиенту в обслуживании;

    вероятность занятости каждого из канала и всех вместе;

    среднее время занятости каждого канала;

    вероятность занятости всех каналов;

    среднее количество занятых каналов;

    вероятность простоя каждого канала;

    вероятность простоя всей системы;

    среднее количество заявок, стоящих в очереди;

    среднее время ожидания заявки в очереди;

    среднее время обслуживания заявки;

    среднее время нахождения заявки в системе.

Судить о качестве полученной системы нужно по совокупности значений показателей. При анализе результатов моделирования (показателей) важно также обращать внимание на интересы клиента и интересы владельца системы, то есть минимизировать или максимизировать надо тот или иной показатель, а также на степень их выполнения. Заметим, что чаще всего интересы клиента и владельца между собой не совпадают или совпадают не всегда. Показатели будем обозначать далее H = { h 1 , h 2 , …} .

Параметрами СМО могут быть: интенсивность потока заявок, интенсивность потока обслуживания, среднее время, в течение которого заявка готова ожидать обслуживания в очереди, количество каналов обслуживания, дисциплина обслуживания и так далее. Параметры - это то, что влияет на показатели системы. Параметры будем обозначать далее как R = { r 1 , r 2 , …} .

Пример. Автозаправочная станция (АЗС).

1. Постановка задачи . На рис. 30.5 приведен план АЗС. Рассмотрим метод моделирования СМО на ее примере и план ее исследования. Водители, проезжая по дороге мимо АЗС по дороге, могут захотеть заправить свой автомобиль. Хотят обслужиться (заправить машину бензином) не все автомобилисты подряд; допустим, что из всего потока машин на заправку в среднем заезжает 5 машин в час.

На АЗС две одинаковые колонки, статистическая производительность каждой из которых известна. Первая колонка в среднем обслуживает 1 машину в час, вторая в среднем - 3 машины в час. Владелец АЗС заасфальтировал для машин место, где они могут ожидать обслуживания. Если колонки заняты, то на этом месте могут ожидать обслуживания другие машины, но не более двух одновременно. Очередь будем считать общей. Как только одна из колонок освободится, то первая машина из очереди может занять ее место на колонке (при этом вторая машина продвигается на первое место в очереди). Если появляется третья машина, а все места (их два) в очереди заняты, то ей отказывают в обслуживании, так как стоять на дороге запрещено (см. дорожные знаки около АЗС). Такая машина уезжает прочь из системы навсегда и как потенциальный клиент является потерянной для владельца АЗС. Можно усложнить задачу, рассмотрев кассу (еще один канал обслуживания, куда надо попасть после обслуживания в одной из колонок) и очередь к ней и так далее. Но в простейшем варианте очевидно, что пути движения потоков заявок по СМО можно изобразить в виде эквивалентной схемы, а добавив значения и обозначения характеристик каждого элемента СМО, получаем окончательно схему, изображенную на рис. 30.6.

2. Метод исследования СМО . Применим в нашем примере принцип последовательной проводки заявок (подробно о принципах моделирования см.лекцию 32 ). Его идея заключается в том, что заявку проводят через всю систему от входа до выхода, и только после этого берутся за моделирование следующей заявки.

Для наглядности построим временную диаграмму работы СМО, отражая на каждой линейке (ось времени t ) состояние отдельного элемента системы. Временных линеек проводится столько, сколько имеется различных мест в СМО, потоков. В нашем примере их 7 (поток заявок, поток ожидания на первом месте в очереди, поток ожидания на втором месте в очереди, поток обслуживания в канале 1, поток обслуживания в канале 2, поток обслуженных системой заявок, поток отказанных заявок).

Для генерации времени прихода заявок используем формулу вычисления интервала между моментами прихода двух случайных событий (см. лекцию 28 ):

В этой формуле величина потока λ должна быть задана (до этого она должна быть определена экспериментально на объекте как статистическое среднее), r - случайное равномерно распределенное число от 0 до 1 из ГСЧ илитаблицы , в которой случайные числа нужно брать подряд (не выбирая специально).

Задача. Сгенерируйте поток из 10 случайных событий с интенсивностью появления событий 5 шт/час.

Решение задачи. Возьмем случайные числа, равномерно распределенные в интервале от 0 до 1 (см. таблицу ), и вычислим их натуральные логарифмы (см. табл. 30.2).

Таблица 30.2. Фрагмент таблицы случайных чисел и их логарифмов

r рр

ln(r рр )

Формула пуассоновского потока определяет расстояние между двумя случайными событиями следующим образом: t = –Ln(r рр)/ λ . Тогда, учитывая, что λ = 5 , имеем расстояния между двумя случайными соседними событиями: 0.68, 0.21, 0.31, 0.12 часа. То есть события наступают: первое - в момент времени t = 0 , второе - в момент времени t = 0.68 , третье - в момент времени t = 0.89 , четвертое - в момент времени t = 1.20 , пятое - в момент времени t = 1.32 и так далее. События - приход заявок отразим на первой линейке (см. рис. 30.7).

Рис. 30.7. Временная диаграмма работы СМО

Берется первая заявка и, так как в этот момент каналы свободны, устанавливается на обслуживание в первый канал. Заявка 1 переносится на линейку «1 канал».

Время обслуживания в канале тоже случайное и вычисляется по аналогичной формуле:

где роль интенсивности играет величина потока обслуживания μ 1 или μ 2 , в зависимости от того, какой канал обслуживает заявку. Находим на диаграмме момент окончания обслуживания, откладывая сгенерированное время обслуживания от момента начала обслуживания, и опускаем заявку на линейку «Обслуженные».

Заявка прошла в СМО весь путь. Теперь можно, согласно принципу последовательной проводки заявок, также проимитировать путь второй заявки.

Если в некоторый момент окажется, что оба канала заняты, то следует установить заявку в очередь. На рис. 30.7 это заявка с номером 3. Заметим, что по условиям задачи в очереди в отличие от каналов заявки находятся не случайное время, а ожидают, когда освободится какой-то из каналов. После освобождения канала заявка поднимается на линейку соответствующего канала и там организуется ее обслуживание.

Если все места в очереди в момент, когда придет очередная заявка, будут заняты, то заявку следует отправить на линейку «Отказанные». На рис. 30.7 это заявка с номером 6.

Процедуру имитации обслуживания заявок продолжают некоторое время наблюдения T н. Чем больше это время, тем точнее в дальнейшем будут результаты моделирования. Реально для простых систем выбирают T н, равное 50-100 и более часов, хотя иногда лучше мерить эту величину количеством рассмотренных заявок.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

ВВЕДЕНИЕ

ГЛАВА 1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Системы массового обслуживания c отказами

1.2 Моделирование систем массового обслуживания

1.3 Простейшая СМО с отказами

1.4 Одноканальная СМО с отказами

1.5 Многоканальная СМО с отказами

1.6 Одноканальная СМО с ограниченной длиной очереди

1.7 Одноканальная СМО с неограниченной очередью

1.8 Многоканальная СМО с ограниченной длиной очереди

1.9 Многоканальная СМО с неограниченной очередью

1.10 Алгоритм моделирования СМО

ГЛАВА 2. ПРАКТИЧЕСКАЯ ЧАСТЬ

ГЛАВА 3. ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

За последнее время в самых разных областях практики возникла необходимость в решении различных вероятностных задач, связанных с работой так называемых систем массового обслуживания (СМО).

Примерами таких систем могут служить: телефонные станции, ремонтные мастерские, билетные кассы, стоянки такси, парикмахерские и т.п.

Темой данного курсового проекта как раз и является решение подобной задачи.

Однако, в предложенной задаче будет исследована СМО, в которой рассматриваются 2 потока заявок, один из которых обладает приоритетом.

Также рассматриваемые процессы являются немарковскими, т.к. важен фактор времени.

Поэтому решение данной задачи построено не на аналитическом описании системы, а на статистическом моделировании.

Целью курсовой работы является моделирование производственного процесса на основе представления основного оборудования как системы массового обслуживания.

Для достижения цели были поставлены следующие задачи: - Проанализировать особенности управления производственным процессом; - Рассмотреть организацию производственного процесса во времени; - Привести основные варианты сокращения длительности производственного цикла;

Провести анализ методов управления производственным процессом на предприятии;

Рассмотреть особенности моделирования производственного процесса с использованием теории СМО;

Разработать модель производственного процесса и оценить основные характеристики СМО, привести перспективы ее дальнейшей программной реализации.

Закрепления теоретических знаний и получения навыков их практического применения;

Отчет содержит введение, три главы, заключение, список использованной литературы, приложения.

Во второй главе рассматриваются теоретические материалы системы массового обслуживания. А в третьей вычисляем задачу систем массового обслуживания.

ГЛАВА 1 . ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Системы массового обслуживания c отказами

Системой массового обслуживания (СМО) называется любая система, предназначенная для обслуживания каких-либо заявок (требований), поступающих на нее в случайные моменты времени. Любое устройство, непосредственно занимающееся обслуживанием заявок, называется каналом обслуживания (или “прибором”). СМО бывают как одно-, так и многоканальными.

Различают СМО с отказами и СМО с очередью. В СМО с отказами заявка, пришедшая в момент, когда все каналы заняты, получает отказ, покидает СМО, а в дальнейшем в процессе ее работы не участвует. В СМО с очередью заявка, пришедшая в момент занятости всех каналов, не покидает СМО, а становится в очередь и ждет, пока не освободится какой-либо канал. Число мест в очереди т может быть как ограниченным, так и неограниченным. При т=0 СМО с очередью превращается в СМО с отказами. Очередь может иметь ограничения не только по количеству стоящих в ней заявок (длине очереди), но и по времени ожидания (такие СМО называются “системами с нетерпеливыми клиентами”).

Аналитическое исследование СМО является наиболее простым, если все потоки событий, переводящие ее из состояния в состояние, - простейшие (стационарные пуассоновские). Это значит, что интервалы времени между событиями в потоках имеют показательное распределение с параметром, равным интенсивности соответствующего потока. Для СМО это допущение означает, что как поток заявок, так и поток обслуживания - простейшие. Под потоком обслуживания понимается поток заявок, обслуживаемых одна за другой одним непрерывно занятым каналом. Этот поток оказывается простейшим, только если время обслуживания заявки tобсл представляет собой случайную величину, имеющую показательное распределение. Параметр этого распределения м есть величина, обратная среднему времени обслуживания:

Вместо фразы “поток обслуживания - простейший” часто говорят “время обслуживания - показательное”. Всякая СМО, в которой все потоки простейшие, называется простейшей СМО.

Если все потоки событий простейшие, то процесс, протекающий в СМО, представляет собой марковский случайный процесс с дискретными состояниями и непрерывным временем. При выполнении некоторых условий для этого процесса существует финальный стационарный режим, при котором как вероятности состояний, так и другие характеристики процесса не зависят от времени.

Модели СМО удобны для описания отдельных подсистем современных вычислительных систем, таких как подсистема процессор - основная память, канал ввода-вывода и т. д.

Вычислительная система в целом представляет собой совокупность взаимосвязанных подсистем, взаимодействие которых носит вероятностный характер. Заявка на решение некоторой задачи, поступающая в вычислительную систему, проходит последовательность этапов счета, обращения к внешним запоминающим устройствам и устройствам ввода-вывода.

После выполнения некоторой последовательности таких этапов, число и продолжительность которых зависит от трудоемкости программы, заявка считается обслуженной и покидает вычислительную систему.

Таким образом, вычислительную систему в целом можно представлять совокупностью СМО, каждая из которых отображает процесс функционирования отдельного устройства или группы однотипных устройств, входящих в состав системы.

Задачи теории массового обслуживания - это нахождение вероят-ностей различных состояний СМО, а также установление зависимости между заданными параметрами (числом каналов п, интенсивностью потока заявок л, распределением времени обслуживания и т. д.) и характеристиками эффективности работы СМО. В качестве таких характеристик могут рассматриваться, например, следующие:

Среднее число заявок А, обслуживаемое СМО в единицу времени, или абсолютная пропускная способность СМО;

Вероятность обслуживания поступившей заявки Q или относительная пропускная способность СМО; Q = А/л;

Вероятность отказа Ротк, т.е. вероятность того, что поступившая заявка не будет обслужена и получит отказ; Ротк= 1 - Q;

Среднее число заявок в СМО (обслуживаемых или ожидающих в очереди) ;

Среднее число заявок в очереди;

Среднее время пребывания заявки в СМО (в очереди или под обслуживанием) ;

Среднее время пребывания заявки в очереди;

Среднее число занятых каналов.

В общем случае все эти характеристики зависят от времени. Но многие СМО работают в неизменных условиях достаточно долгое время, и поэтому для них успевает установиться режим, близкий к стационарному.

Мы здесь повсюду, не оговаривая этого каждый раз специально, будем вычислять финальные вероятности состояний и финальные характеристики эффективности СМО, относящиеся к предельному стационарному режиму ее работы.

СМО называется открытой, если интенсивность поступающего на нее потока заявок не зависит от состояния самой СМО.

Для любой открытой СМО в предельном стационарном режиме среднее время пребывания заявки в системе выражается через среднее число заявок в системе с помощью формулы Литтла:

где л - интенсивность потока заявок.

Аналогичная формула (называемая также формулой Литтла) связывает среднее время пребывания заявки в очереди и среднее число заявок в очереди:

Формулы Литтла очень полезны, так как позволяют вычислять не обе характеристики эффективности (среднее время пребывания и среднее число заявок), а только какую-нибудь одну из них.

Специально подчеркнем, что формулы (1) и (2) справедливы для любой открытой СМО (одноканальной, многоканальной, при любых видах потоков заявок и потоков обслуживания); единственное требование к потокам заявок и обслуживании - чтобы они были стационарными.

Аналогично универсальное значение для открытых СМО имеет формула, выражающая среднее число занятых каналов через абсолютную пропускную способность А:

где - интенсивность потока обслуживания.

Очень многие задачи теории массового обслуживания, касающиеся простейших СМО, решаются при помощи схемы гибели и размножения.

Финальные вероятности состояний выражаются формулами:

Перечень характеристик систем массового обслуживания можно представить следующим образом:

· среднее время обслуживания;

· среднее время ожидания в очереди;

· среднее время пребывания в СМО;

· средняя длина очереди;

· среднее число заявок в СМО;

· количество каналов обслуживания;

· интенсивность входного потока заявок;

· интенсивность обслуживания;

· интенсивность нагрузки;

· коэффициент нагрузки;

· относительная пропускная способность;

· абсолютная пропускная способность;

· доля времени простоя СМО;

· доля обслуженных заявок;

· доля потерянных заявок;

· среднее число занятых каналов;

· среднее число свободных каналов;

· коэффициент загрузки каналов;

· среднее время простоя каналов.

1 . 2 Моделирование систем массового обслуживания

Переходы СМО из одного состояния в другое происходят под воздействием вполне определенных событий - поступления заявок и их обслуживания. Последовательность появления событий, следующих одно за другим в случайные моменты времени, формирует так называемый поток событий. Примерами таких потоков в коммерческой деятельности являются потоки различной природы -- товаров, денег, документов, транспорта, клиентов, покупателей, телефонных звонков, переговоров. Поведение системы обычно определяется не одним, а сразу несколькими потоками событий. Например, обслуживание покупателей в магазине определяется потоком покупателей и потоком обслуживания; в этих потоках случайными являются моменты появления покупателей, время ожидания в очереди и время, затрачиваемое на обслуживание каждого покупателя.

При этом основной характерной чертой потоков является вероятностное распределение времени между соседними событиями. Существуют различные потоки, которые отличаются своими характеристиками.

Поток событий называется регулярным, если в нем события следуют одно за другим через заранее заданные и строго определенные промежутки времени. Такой поток является идеальным и очень редко встречается на практике. Чаще встречаются нерегулярные потоки, не обладающие свойством регулярности.

Поток событий называется стационарным, если вероятность попадания любого числа событий на промежуток времени зависит только от длины этого промежутка и не зависит от того, как далеко расположен этот промежуток от начала отсчета времени. Стационарность потока означает независимость от времени его вероятностных характеристик, в частности, интенсивность такого потока есть среднее число событий в единицу времени и остается величиной постоянной. На практике обычно потоки могут считаться стационарными только на некотором ограниченном промежутке времени. Обычно поток покупателей, например, в магазине существенно меняется в течение рабочего дня. Однако можно выделить определенные временные интервалы, внутри которых этот поток допустимо рассматривать как стационарный, имеющий постоянную интенсивность.

Поток событий называется потоком без последствия, если число событий, попадающих на один из произвольно выбранных промежутков времени, не зависит от числа событий, попавших на другой, также произвольно выбранный промежуток, при условии, что эти промежутки не пересекаются между собой. В потоке без последствия события появляются в последовательные моменты времени независимо друг от друга. Например, поток покупателей, входящих в магазин, можно считать потоком без последствия потому, что причины, обусловившие приход каждого из них, не связаны с аналогичными причинами для других покупателей.

Поток событий называется ординарным, если вероятность попадания на очень малый отрезок времени сразу двух или более событий пренебрежимо мала по сравнению с вероятностью попадания только одного события. В ординарном потоке события происходят поодиночке, а не по два или более разу. Если поток одновременно обладает свойствами стационарности, ординарности и отсутствием последствия, то такой поток называется простейшим (или пуассоновским) потоком событий. Математическое описание воздействия такого потока на системы оказывается наиболее простым. Поэтому, в частности, простейший поток играет среди других существующих потоков особую роль.

Рассмотрим на оси времени некоторый промежуток времени t. Допустим, вероятность попадания случайного события на этот промежуток p, а полное число возможных событий -- п. При наличии свойства ординарности потока событий вероятность р должна быть достаточно малой величиной, а я -- достаточно большим числом, поскольку рассматриваются массовые явления.

В этих условиях для вычисления вероятности попадания на промежуток времени t некоторого числа событий т можно воспользоваться формулой Пуассона:

Pm, n= am_e-a ; (m=0,n),

где величина а = пр - среднее число событий, попадающих на промежуток времени t, которое можно определить через интенсивность потока событий X следующим образом: a= л ф

Размерность интенсивности потока X есть среднее число событий в единицу времени. Между п и л, р и ф имеется следующая связь:

n= л t; p= ф/t

где t- весь промежуток времени, на котором рассматривается действие потока событий.

Необходимо определить распределение интервала времени Т между событиями в таком потоке. Поскольку это случайная величина, найдем ее функцию распределения. Как известно из теории вероятностей, интегральная функция распределения F(t) есть вероятность того, что величина T будет меньше времени t.

F(t)=P(T

По условию в течение времени T не должно произойти ни одного события, а на интервале времени t должно появиться хотя бы одно событие. Эта вероятность вычисляется с помощью вероятности противоположного события на промежутке времени (0; t), куда не попало ни одного события, т.е. m = 0, тогда

F(t)=1-P0=1-(a0*e-a)0!=1-e-Xt,t?0

Для малых?t можно получить приближенную формулу, получаемую заменой функции e-Xt, только двумя членами разложения в ряд по степеням?t, тогда вероятность попадания на малый промежуток времени?t хотя бы одного события составляет

P(T

Плотность распределения промежутка времени между двумя последовательными событиями получим, продифференцировав F(t) по времени,

f(t)= л e- л t ,t?0

Пользуясь полученной функцией плотности распределения, можно получить числовые характеристики случайной величины Т: математическое ожидание М (Т), дисперсию D(T) и среднее квадратическое отклонение у(Т).

М(Т)= л??0 t*e-лt*dt=1/ л; D(T)=1/ л2 ; у(T)=1/ л.

Отсюда можно сделать следующий вывод: средний интервал времени Т между любыми двумя соседними событиями в простейшем потоке в среднем равен 1/л, и его среднее квадратическое отклонение также равно 1/л, л где, -- интенсивность потока, т.е. среднее число событий, происходящих в единицу времени. Закон распределения случайной величины, обладающей такими свойствами М(Т) = Т, называется показательным (или экспоненциальным), а величина л, является параметром этого показательного закона. Таким образом, для простейшего потока математическое ожидание интервала времени между соседними событиями равно его среднеквадратическому отклонению. В этом случае вероятность того, что число заявок, поступающих на обслуживание за промежуток времени t, равно к, определяется по закону Пуассона:

Pk(t)=(лt)k/ k! *e-л t,

где л - интенсивность поступления потока заявок, среднее число событий в СМО за единицу времени, например[чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] .

Для такого потока заявок время между двумя соседними заявками Т распределено экспоненциально с плотностью вероятности:

ѓ(t)= л e-л t.

Случайное время ожидания в очереди начала обслуживания t тоже можно считать распределенным экспоненциально:

? (tоч)=V*e-v tоч,

где v -- интенсивность потока прохода очереди, определяемая средним числом заявок, проходящих на обслуживание в единицу времени:

v=1/Точ,

где Точ среднее время ожидания обслуживания в очереди.

Выходной поток заявок связан с потоком обслуживания в канале, где длительность обслуживания tобс является тоже случайной величиной и подчиняется во многих случаях показательному закону распределения с плотностью вероятности:

?(t обс)=µ*е µ t обс,

где µ - интенсивность потока обслуживания, т.е. среднее число заявок, обслуживаемых в единицу времени:

µ=1/ t обс[чел/мин; руб./час; чеков/час; докум./день; кг./час; т./год] ,

где t обс - среднее время обслуживания заявок.

Важной характеристикой СМО, объединяющей показатели л и µ , является интенсивность нагрузки: с= л/ µ, которая показывает степень согласования входного и выходного потоков заявок канала обслуживания и определяет устойчивость системы массового обслуживания.

Кроме понятия простейшего потока событий часто приходится пользоваться понятиями потоков других типов. Поток событий называется потоком Пальма, когда в этом потоке промежутки времени между последовательными событиями T1, T2, ..., Тk ..., Тn являются независимыми, одинаково распределенными, случайными величинами, нов отличие от простейшего потока не обязательно распределенными по показательному закону. Простейший поток является частным случаем потока Пальма.

Важным частным случаем потока Пальма является так называемый поток Эрланга.

Этот поток получается «прореживанием» простейшего потока. Такое «прореживание» производится путем отбора по определенному правилу событий из простейшего потока.

Например, условившись учитывать только каждое второе событие из образующих простейший поток, мы получим поток Эрланга второго порядка. Если брать только каждое третье событие, то образуется поток Эрланга третьего порядка и т.д.

Можно получить потоки Эрланга любого к-го порядка. Очевидно, простейший поток есть поток Эрланга первого порядка.

Любое исследование системы массового обслуживания начинается с изучения того, что необходимо обслуживать, следовательно, с изучения входящего потока заявок и его характеристик.

Поскольку моменты времени t и интервалы времени поступления заявок ф, затем продолжительность операций обслуживания t обс и время ожидания в очереди tоч, а также длина очереди lоч -- случайные величины, то, следовательно, характеристики состояния СМО носят вероятностный характер, а для их описания следует применять методы и модели теории массового обслуживания.

Перечисленные выше характеристики к, ф, л, Lоч, Точ, v, tобс, µ, р, Рk являются наиболее общими для СМО, которые являются обычно лишь некоторой частью целевой функции, поскольку необходимо учитывать еще и показатели коммерческой деятельности.

1 . 3 Простейшая СМО с отказами

На n-канальную СМО с отказами поступает простейший поток заявок с интенсивностью л; время обслуживания - показательное с параметром. Состояния СМО нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди оно совпадает с числом занятых каналов):

S0 - СМО свободна;

S1 - занят один канал, остальные свободны;

...;

Sk - занятоk каналов, остальные свободны (1k n );

…;

Sn - заняты все n каналов.

Финальные вероятности состояний выражаются формулами Эрланга:

где с=л/м.

Характеристики эффективности:

A=(1-pn ); Q = 1-pn ; Pотк= pn ; =(1-pn ).

При больших значениях п вероятности состояний (1*) удобно вычислять через табулированные функции:

(распределение Пуассона) и

,

из которых первую можно выразить через вторую:

Пользуясь этими функциями, формулы Эрланга (1*) можно переписать в виде

.

1.4 Одноканальная СМО с отказами

Проведем анализ простой одноканальной СМО с отказами в обслуживании, на которую поступает пуассоновский поток заявок с интенсивностью л, а обслуживание происходит под действием пуассоновского потока с интенсивностью м.

Работу одноканальной СМО n=1 можно представить в виде размеченного графа состояний (3.1).

Переходы СМО из одного состояния S0 в другое S1 происходят под действием входного потока заявок с интенсивностью л, а обратный переход - под действием потока обслуживания с интенсивностью м.

Запишем систему дифференциальных уравнений Колмогорова для вероятностей состояния по изложенным выше правилам:

Откуда получим дифференциальное уравнение для определения вероятности р0(t) состояния S0:

Это уравнение можно решить при начальных условиях в предположении, что система в момент t=0 находилась в состоянии S0, тогда р0(0)=1, р1(0)=0.

В этом случае решение дифференциального уравнения позволяет определить вероятность того, что канал свободен и не занят обслуживанием:

Тогда нетрудно получить выражение для вероятности определения вероятности занятости канала:

Вероятность р0(t) уменьшается с течением времени и в пределе при t>? стремится к величине

а вероятность р1(t) в то же время увеличивается от 0, стремясь в пределе при t>? к величине

Эти пределы вероятностей могут быть получены непосредственно из уравнений Колмогорова при условии

Функции р0(t) и р1(t) определяют переходный процесс в одноканальной СМО и описывают процесс экспоненциального приближения СМО к своему предельному состоянию с постоянной времени характерной для рассматриваемой системы.

С достаточной для практики точностью можно считать, что переходный процесс в СМО заканчивается в течение времени, равно 3ф.

Вероятность р0(t) определяет относительную пропускную способность СМО, которая определяет долю обслуживаемых заявок по отношению к полному числу поступающих заявок, в единицу времени.

Действительно, р0(t) есть вероятность того, что заявка, пришедшая в момент t, будет принята к обслуживанию. Всего в единицу времени приходит в среднем л заявок и из них обслуживается лр0 заявок.

Тогда доля обслуживаемых заявок по отношению ко всему потоку заявок определятся величиной

В пределе при t>? практически уже при t>3ф значение относительной пропускной способности будет равно

Абсолютная пропускная способность, определяющая число заявок, обслуживаемых в единицу времени в пределе при t>?, равна:

Соответственно доля заявок, получивших отказ, составляет в этих же предельных условиях:

а общее число не обслуженных заявок равно

Примерами одноканальных СМО с отказами в обслуживании являются: стол заказов в магазине, диспетчерская автотранспортного предприятия, контора склада, офис управления коммерческой фирмы, с которыми устанавливается связь по телефону.

1.5 Многоканальная СМО с отказами

В коммерческой деятельности примерами многоканальных СМО являются офисы коммерческих предприятий с несколькими телефонными каналами, бесплатная справочная служба по наличию в авто магазинах самых дешевых автомобилей в Москве имеет 7 телефонных номеров, а дозвониться и получить справку, как известно, очень трудно.

Следовательно, авто магазины теряют клиентов, возможность увеличить количество проданных автомобилей и выручку от продаж, товарооборот, прибыль.

Туристические фирмы по продаже путевок имеют два, три, четыре и более каналов, как, например, фирма Express-Line.

Рассмотрим многоканальную СМО с отказами в обслуживании на вход которой поступает пуассоновский поток заявок с интенсивностью л.

Поток обслуживания в каждом канале имеет интенсивность м. По числу заявок СМО определяются ее состояния Sk, представленные в виде размеченного графа:

S0 - все каналы свободны k=0,

S1 - занят только один канал, k=1,

S2 - заняты только два канала, k=2,

Sk - заняты k каналов,

Sn - заняты все n каналов, k= n.

Состояния многоканальной СМО меняются скачкообразно в случайные моменты времени. Переход из одного состояния, например S0 в S1, происходит под воздействием входного потока заявок с интенсивностью л, а обратно - под воздействием потока обслуживания заявок с интенсивностью м.

Для перехода системы из состояния Skв Sk-1 безразлично, какой именно из каналов освободиться, поэтому поток событий, переводящий СМО, имеет интенсивность kм, следовательно, поток событий, переводящий систему из Snв Sn-1, имеет интенсивность nм.

Так формулируется классическая задача Эрланга, названная по имени датского инженера - математика- основателя теории массового обслуживания.

Случайный процесс, протекающий в СМО, представляет собой частный случай процесса «рождения- гибели» и описывается системой дифференциальных уравнений Эрланга, которые позволяют получить выражения для предельных вероятностей состояния рассматриваемой системы, называемые формулами Эрланга:

.

Вычислив все вероятности состояний n - канальной СМО с отказами р0 , р1, р2, …,рk,…, рn, можно найти характеристики системы обслуживания.

Вероятность отказа в обслуживании определяется вероятностью того, что поступившая заявка на обслуживание найдет все n каналов занятыми, система будет находиться в состоянии Sn:

k=n.

В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому:

Ротк+Робс=1

На этом основании относительная пропускная способность определяется по формуле

Q = Pобс= 1-Ротк=1-Рn

Абсолютную пропускную способность СМО можно определить по формуле

А=л*Робс

Вероятность обслуживания, или доля обслуженных заявок, определяет относительную пропускную способность СМО, которая может быть определена и по другой формуле:

Из этого выражения можно определить среднее число заявок, находящихся под обслуживанием, или, что же самое, среднее число занятых обслуживанием каналов

Коэффициент занятости каналов обслуживанием определятся отношением среднего числа занятых каналов к их общему числу

Вероятность занятости каналов обслуживанием, которая учитывает среднее время занятости tзан и простоя tпр каналов, определяется следующим образом:

Из этого выражения можно определить среднее время простоя каналов

Среднее время пребывания заявки в системе в установившемся режиме определятся формулой Литтла

Тсмо= nз/л.

1.6 Одноканальная СМО с ограниченной длиной очереди

В коммерческой деятельности чаще встречаются СМО с ожиданием (очередью).

Рассмотрим простую одноканальную СМО с ограниченной очередью, в которой число мест в очереди т - фиксированная величина. Следовательно, заявка, поступившая в тот момент, когда все места в очереди заняты, не принимается к обслуживанию, не встает в очередь и.покидает систему.

Граф этой СМО представлен на рис. 3.4 и совпадает с графом рис. 2.1 описывающим процесс «рождения--гибели», с тем отличием, что при наличии только одного канала.

Размеченный граф процесса «рождения - гибели» обслуживания все интенсивности потоков обслуживания равны

Состояния СМО можно представить следующим образом:

S0 - канал обслуживания свободен,

S, - канал обслуживания занят, но очереди нет,

S2- канал обслуживания занят, в очереди стоит одна заявка,

S3- канал обслуживания занят, в очереди стоят две заявки,

Sm+1 - канал обслуживания занят, в очереди все т мест заняты, любая следующая заявка получает отказ.

Для описания случайного процесса СМО можно воспользоваться изложенными ранее правилами и формулами. Напишем выражения, определяющие предельные вероятности состояний:

Выражение для р0 можно в данном случае записать проще, пользуясь тем, что в знаменателе стоит геометрическая прогрессия относительно р, тогда после соответствующих преобразований получаем:

с= (1- с )

Эта формула справедлива для всех р, отличных от 1, если же р = 1, то р0 = 1/(т + 2), а все остальные вероятности также равны 1/(т + 2).

Если предположить т = 0, то мы переходим от рассмотрения одноканальной СМО с ожиданием к уже рассмотренной одноканальной СМО с отказами в обслуживании.

Действительно, выражение для предельной вероятности р0в случае т = 0 имеет вид:

pо = м / (л+м)

И в случае л =м имеет величину р0= 1 / 2.

Определим основные характеристики одноканальной СМО с ожиданием: относительную и абсолютную пропускную способность, вероятность отказа, а также среднюю длину очереди и среднее время ожидания заявки в очереди.

Заявка получает отказ, если она поступает в момент времени, когда СМО уже находится в состоянии Sm+1 и, следовательно, все места в очереди да заняты и один канал обслуживает

Поэтому вероятность отказа определяется вероятностью появлением

Состояния Sm+1:

Pотк = pm+1 = сm+1 * p0

Относительная пропускная способность, или доля обслуживаемых заявок, поступающих в единицу времени, определяется выражением

Q = 1- pотк = 1- сm+1 * p0

абсолютная пропускная способность равна:

Среднее число заявок Lочстоящих в очереди на обслуживание, определяется математическим ожиданием случайной величины к - числа заявок, стоящих в очереди

случайная величина к принимает следующие только целочисленные значения:

1 - в очереди стоит одна заявка,

2 - в очереди две заявки,

т-в очереди все места заняты

Вероятности этих значений определяются соответствующими вероятностями состояний, начиная с состояния S2. Закон распределения дискретной случайной величины к изображается следующим образом:

Таблица 1. Закон распределения дискретной случайной величины

Математическое ожидание этой случайной величины равно:

Lоч = 1* p2 +2* p3 +...+ m* pm+1

В общем случае при p ?1 эту сумму можно преобразовать, пользуясь моделями геометрической прогрессии, к более удобному виду:

Lоч = p2 * 1- pm * (m-m*p+1) * p0

В частном случае при р = 1, когда все вероятности pkоказываются равными, можно воспользоваться выражением для суммы членов числового ряда

1+2+3+ m = m (m +1)

Тогда получим формулу

L"оч= m(m+1) * p0 = m(m+1) (p=1).

Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания заявки а очереди определяется формулами Литтла

Точ = Lоч/А (при р? 1) и Т1оч= L"оч /А(при р = 1).

Такой результат, когда оказывается, что Точ ~ 1/ л, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина Lоч является функцией от л и м и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более mзаявок.

Заявка, поступившая в СМО в момент времени, когда все каналы заняты, получает отказ, и, следовательно, время ее «ожидания» в СМО равно нулю. Это приводит в общем случае (при р? 1) к уменьшению Точростом л, поскольку доля таких заявок с ростом л увеличивается.

Если отказаться от ограничения на длину очереди, т.е. устремить m--> >?, то случаи р < 1 и р?1 начинают существенно различаться. Записанные выше формулы для вероятностей состояний преобразуются в случае р < 1 к виду

При достаточно большом к вероятностьpk стремится к нулю. Поэтому относительная пропускная способность будет Q= 1, а абсолютная пропускная способность станет равной А --л Q -- л следовательно, обслуживаются все поступившие заявки, причем средняя длина очереди окажется равной:

Lоч =p 2 1-p

а среднее время ожидания по формуле Литтла

Точ = Lоч/А

В пределе р << 1 получаем Точ = с / м т.е. среднее время ожидания быстро уменьшается с увеличением интенсивности потока обслуживания. В противном случае при р? 1 оказывается, что в СМО отсутствует установившийся режим. Обслуживание не успевает за потоком заявок, и очередь неограниченно растет со временем (при t > ?). Предельные вероятности состояний поэтому не могут быть определены: при Q= 1 они равны нулю. Фактически СМО не выполняет своих функций, поскольку она не в состоянии обслужить все поступающие заявки.

Нетрудно определить, что доля обслуживаемых заявок и абсолютная пропускная способность соответственно составляют в среднем с и м, однако неограниченное увеличение очереди, а следовательно, и времени ожидания в ней приводит к тому, что через некоторое время заявки начинают накапливаться в очереди на неограниченно долгое время.

В качестве одной из характеристик СМО используют среднее время Тсмо пребывания заявки в СМО, включающее среднее время пребывания в очереди и среднее время обслуживания. Эта величина вычисляется по формулам Литтла: если длина очереди ограничена -- среднее число заявок, находящихся в очереди, равно:

Lсмо= m +1 ;2

Тсмо= L смо; при p ?1

A тогда среднее время пребывания заявки в системе массового обслуживания (как в очереди, так и под обслуживанием) равно:

Тсмо= m +1 при p ?1 2м

1.7 Одноканальная СМО с неограниченной очередью

В коммерческой деятельности в качестве одноканальной СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, милиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы. марковский отказ обслуживание модель

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу).

Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары.

Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью л и интенсивностью обслуживания?.

Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания.

Размеченный граф состояний такой системы приведен на рис. 3.5

Количество возможных состояний ее бесконечно:

Канал свободен, очереди нет, ;

Канал занят обслуживанием, очереди нет, ;

Канал занят, одна заявка в очереди, ;

Канал занят, заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выделенных для СМО с неограниченной очередью, путем перехода к пределу при m>?:

Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем.

Такая последовательность представляет собой сумму бесконечного числа членов при.

Эта сумма сходится, если прогрессия, бесконечно убывающая при, что определяет установившийся режим работы СМО, с при очередь при с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому, следовательно, относительная пропускная способность, соответственно, а абсолютная пропускная способность

Вероятность пребывания в очереди k заявок равна:

Среднее число заявок в очереди -

Среднее число заявок в системе -

Среднее время пребывания заявки в системе -

Среднее время пребывания заявки с системе -

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания, то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при.

1.8 Многоканальная СМО с ограниченной длиной очереди

Рассмотрим многоканальную СМО, на вход которой поступает пуассоновский поток заявок с интенсивностью, а интенсивность обслуживания каждого канала составляет, максимально возможное число мест в очереди ограничено величиной m. Дискретные состояния СМО определяются количеством заявок, поступивших в систему, которые можно записать.

Все каналы свободны, ;

Занят только один канал (любой), ;

Заняты только два канала (любых), ;

Заняты все каналов, .

Пока СМО находится в любом из этих состояний, очереди нет. После того как заняты все каналы обслуживания, последующие заявки образуют очередь, тем самым, определяя дальнейшие состояние системы:

Заняты все каналов и одна заявка стоит в очереди,

Заняты все каналов и две заявки стоят в очереди,

Заняты все каналов и все мест в очереди,

Переход СМО в состояние с большими номерами определяется потоком поступающих заявок с интенсивностью, тогда как по условию в обслуживании этих заявок принимают участие одинаковых каналов с интенсивностью потока обслуживания равного для каждого канала. При этом полная интенсивность потока обслуживания возрастает с подключением новых каналов вплоть до такого состояния, когда все n каналов окажутся занятыми. С появлением очереди интенсивность обслуживания более увеличивается, так как она уже достигла максимального значения, равного.

Запишем выражения для предельных вероятностей состояний:

Выражение для можно преобразовать, используя формулу геометрической прогрессии для суммы членов со знаменателем:

Образование очереди возможно, когда вновь поступившая заявка застанет в системе не менее требований, т.е. когда в системе будет находиться требований.

Эти события независимы, поэтому вероятность того, что все каналы заняты, равна сумме соответствующих вероятностей

Поэтому вероятность образования очереди равна:

Вероятность отказа в обслуживании наступает тогда, когда все каналов и все мест в очереди заняты:

Относительная пропускная способность будет равна:

Абсолютная пропускная способность -

Среднее число занятых каналов -

Среднее число простаивающих каналов -

Коэффициент занятости (использования) каналов -

Коэффициент простоя каналов -

Среднее число заявок, находящихся в очередях -

В случае если, эта формула принимает другой вид -

Среднее время ожидания в очереди определяется формулами Литтла -

Среднее время пребывания заявки в СМО, как и для одноканальной СМО, больше среднего времени ожидания в очереди на среднее время обслуживания, равное, поскольку заявка всегда обслуживается только одним каналом:

1.9 Многоканальная СМО с неограниченной очередью

Рассмотрим многоканальную СМО с ожиданием и неограниченной длиной очереди, на которую поступает поток заявок с интенсивностью и которая имеет интенсивность обслуживания каждого канала.

Размеченный граф состояний представлен на рис 3.7 Он имеет бесконечное число состояний:

S - все каналы свободны, k=0;

S - занят один канал, остальные свободны, k=1;

S - заняты два канала, остальные свободны, k=2;

S - заняты все n каналов, k=n, очереди нет;

S - заняты все n каналов, одна заявка в очереди, k=n+1,

S - заняты все n каналов, r заявок в очереди, k=n+r,

Вероятности состояний получим из формул для многоканальной СМО с ограниченной очередью при переходе к пределу при m.

Следует заметить, что сумма геометрической прогрессии в выражении для p расходится при уровне загрузки p/n>1, очередь будет бесконечно возрастать, а при p/n<1 ряд сходится, что определяет установившийся стационарный режим работы СМО.

Очереди нет

Поскольку отказа в обслуживании в таких системах не может быть, то характеристики пропускной способности равны:

среднее число заявок в очереди -

среднее время ожидания в очереди -

среднее число заявок в СМО -

Вероятность того, что СМО находится в состоянии, когда нет заявок и не занято ни одного канала, определяется выражением

Эта вероятность определяет среднюю долю времени простоя канала обслуживания. Вероятность занятости обслуживанием k заявок -

На этом основании можно определить вероятность, или долю времени занятости всех каналов обслуживанием

Если же все каналы уже заняты обслуживанием, то вероятность состояния определяется выражением

Вероятность оказаться в очереди равна вероятности застать все каналы уже занятыми обслуживанием

Среднее число заявок, находящихся в очереди и ожидающих обслуживания, равно:

Среднее время ожидания заявки в очереди по формуле Литтла:

и в системе

среднее число занятых каналов обслуживанием:

среднее число свободных каналов:

коэффициент занятости каналов обслуживанием:

Важно заметить, что параметр характеризует степень согласования входного потока, например покупателей в магазине с интенсивностью потока обслуживания. Процесс обслуживания будет стабилен при Если же в системе будут возрастать средняя длина очереди и среднее время ожидания покупателями начала обслуживания и, следовательно, СМО будет работать неустойчиво.

1.10 Алгоритм моделирования СМО

Рассматриваемая в задаче СМО представляет собой СМО с:

Двухканальным обслуживанием;

Двухканальным входным потоком (имеет 2 входа, на один из которых поступают случайный поток Заявок I, на другой вход - поток Заявок II).

Определение времен поступления и обслуживания заявок:

· Времена поступления и обслуживания заявок генерируются случайно с заданным показательным законом распределения;

· Интенсивности поступления и обслуживания заявок заданы;

Функционирование рассматриваемой СМО:

Каждый канал обслуживает в каждый момент времени одну заявку;

Если в момент поступления новой заявки свободен хотя бы один канал, то пришедшая заявка поступает на обслуживание;

Если отсутствуют Заявки то система простаивает.

Дисциплина обслуживания:

Приоритет Заявок I: если система занята (оба канала обслуживают заявки), причем один из каналов занят Заявкой II, Заявка I вытесняют Заявку II; Заявка II покидает систему необслуженной;

Если к моменту поступления Заявки II оба канала заняты, Заявка II не обслуживается;

Если к моменту поступления Заявки I оба канала обслуживают Заявки I, поступившая Заявка I покидает систему необслуженной;

Задача моделирования:зная параметры входных потоков заявок промоделировать поведение системы и вычислить её основные характеристики её эффективности. Меняя величину Т от меньших значений до больших (интервал времени, в течении которого происходит случайный процесс поступления заявок 1-го и 2-го потока в СМО на обслуживание), можно найти изменения критерия эффективности функционирования и выбрать оптимальный.

Критерии эффективности функционирования СМО:

· Вероятность отказа;

· Относительная пропускная способность;

· Абсолютная пропускная способность;

Принцип моделирования:

Вводим начальные условия: общее время работы системы, значения интенсивностей потоков заявок; число реализаций работы системы;

Генерируем моменты времени, в которые прибывают заявки, последовательность прихода Заявок I Заявок II, время обслуживания каждой пришедшей заявки;

Считаем сколько заявок было обслужено, а сколько получило отказ;

Рассчитываем критерий эффективности СМО;

ГЛАВА 2 . ПРАКТИЧЕСКАЯ ЧАСТЬ

Рисунок 1. Зависимость ОПСС от времени

PROGRAM CAN_SMO;

CHANNAL = (FREE, CLAIM1, CLAIM2);

INTENSITY = word;

STATISTICS = word;

CHANNAL1, CHANNAL2: CHANNAL;{Каналы }

T_, t, tc1, tc2: TIME; {Время}

l1, l2, n1, n2: INTENSITY;{Интенсивности }

served1, not_served1,

served2, not_served2,

S: STATISTICS; {Статистика}

M,N:INTEGER;{число реализаций}

FUNCTION W(t: TIME; l: INTENSITY) : boolean;{Определяет появилась ли заявка}

Begin {по интенсивности потока l}

if random < l/60 then W:= TRUE else W:= FALSE;

FUNCTION F(t: TIME; n: INTENSITY) : TIME;{Определяет сколько будет обрабатываться заявка}

Begin {по интенсивности обслуживания заявок n}

F:= t +round(60/(n));

Рисунок 2. Зависимость ОППС от времени

WRITELN("ВВЕДИТЕ ЧИСЛО РЕАЛИЗАЦИЙ РАБОТЫ СМО");

writeln(M, "-ая реализация");

CHANNAL1:= FREE; CHANNAL2:= FREE;

l1:= 3; l2:= 1; n1:= 2; n2:= 1;

served1:= 0; not_served1:= 0;

served2:= 0; not_served2:= 0;

write("Введите время исследования СМО - Т: "); readln(_T_);

if CHANNAL1 = CLAIM1 then inc(served1) else inc(served2);

CHANNAL1:= FREE;

writeln("Канал1 выполнил заявку");

if CHANNAL2 = CLAIM1 then inc(served1) else inc(served2);

CHANNAL2:= FREE;

writeln("Канал2 выполнил заявку");

Рисунок 3. График зависимости вероятности отказа в системе от времени

writeln("Поступила заявка1");

if CHANNAL1 = FREE then

begin CHANNAL1:= CLAIM1; tc1:= F(t,n1); writeln("Канал1 принял заявку1"); end

else if CHANNAL2 = FREE then

begin CHANNAL2:= CLAIM1; tc2:= F(t,n1); writeln("Канал2 принял заявку1"); end

else if CHANNAL1 = CLAIM2 then

begin CHANNAL1:= CLAIM1; tc1:= F(t,n1); inc(not_served2); writeln("Канал1 принял заявку1 вместо заявки2"); end

else if CHANNAL2 = CLAIM2 then

begin CHANNAL2:= CLAIM1; tc2:= F(t,n1); inc(not_served2); writeln("Канал2 принял заявку1 вместо заявки2"); end

else begin inc(not_served1); writeln("заявка1 не обслужена"); end;

Рисунок 4. Зависимость числа заявок от времени

writeln("Поступила заявка2");

if CHANNAL1 = FREE then

begin CHANNAL1:= CLAIM2; tc1:= F(t,n2); writeln("Канал1 принял заявку2");end

else if CHANNAL2 = FREE then

begin CHANNAL2:= CLAIM2; tc2:= F(t,n2); writeln("Канал2 принял заявку2");end

else begin inc(not_served2); writeln("заявка2 не обслужена"); end;

S:= served1 + not_served1 + served2 + not_served2;

writeln("время работы СМО ",_T_);

writeln("обслужено каналом1: " ,served1);

writeln("обслужено каналом2: ",served2);

writeln("Поступило заявок: ",S);

writeln("Обслужено заявок: ",served1+served2);

writeln("Не обслужено заявок: ",not_served1+not_served2);

{writeln("Интенсивность поступления заявок в систему: ",(served1+served2)/_T_:2:3);}

writeln("Абсолютная пропускная способность системы: ",(served1+served2)/T:2:3);

writeln("Вероятность отказа: ",(not_served1+not_served2)/S*100:2:1,"%");

writeln("Относительная пропускная способность системы: ",(served1+served2)/S:2:3);

writeln("моделирование закончено");

Таблица 2. Результаты работы СМО

Характеристики работы СМО

Время работы СМО

Поступило заявок

Обслужено заявок

Не обслужено заявок

Абсолютная пропускная способность системы

Относительная пропускная способность системы

ГЛАВА 3. ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ

Общее положения

· К работе в компьютерном классе допускаются лица, ознакомленные с инструкцией по технике безопасности и правилам поведения.

· В случае нарушения инструкции студент отстраняется от работы и допускается к занятию только по письменному разрешению преподавателя.

· Работа студентов в компьютерном классе разрешается только в присутствии преподавателя (инженера, лаборанта).

· Помните, что каждый студент в ответе за состояние своего рабочего места и сохранность размещенного на нем оборудования.

Перед началом работы:

· Перед началом работы следует убедиться в отсутствии видимых повреждений аппаратуры и проводов. Компьютеры и периферийные устройства должны находиться на столах в устойчивом положении.

· Учащимся категорически запрещается проникать внутрь устройств. Включать устройства можно только по разрешению преподавателя.

При работе в компьютерном классе запрещается:

1. Входить и выходить из класса без разрешения учителя.

2. Опаздывать на урок.

3. Входить в класс в грязной и мокрой обуви, пыльной одежде, в холодное время года в верхней одежде.

4. Работать на компьютере влажными руками.

5. Класть на рабочее место посторонние предметы.

6. Вставать во время работы, поворачиваться по сторонам, разговаривать с соседом.

7. Включать и выключать аппаратуру без разрешения учителя.

8. Нарушать порядок включения и выключения аппаратуры.

9. Трогать клавиатуру и мышь при выключенном компьютере, передвигать мебель и аппаратуру.

10. Трогать экран дисплея, кабели, соединительные провода, разъёмы, вилки и розетки.

11. Подходить к рабочему месту учителя без разрешения

Главная угроза для здоровья человека при работе с ПК - это угроза поражения электрическим током. Поэтому запрещается:

1. Работать на аппаратуре, имеющей видимые дефекты. Открывать системный блок.

2. Присоединять или отсоединять кабели, трогать разъемы соединительных кабелей, провода и розетки, устройствам заземления.

3. Прикасаться к экрану и к тыльной стороне монитора, клавиатуры.

4. Пытаться самостоятельно устранять неисправности в работе аппаратуры.

5. Работать во влажной одежде и влажными руками

6. Выполнять требования преподавателя и лаборанта; Соблюдать тишину и порядок;

7. Находясь в сети работать только под своим именем и паролем;

8. Соблюдать режим работы (согласно Санитарных правил и норм);

9. Начало и окончание работы производить только по разрешению преподавателя.

10. При резком ухудшении самочувствия (появлении рези в глазах, резком ухудшении видимости, невозможности сфокусировать взгляд или навести его на резкость, появления боли в пальцах и кистях рук, усиления сердцебиения) немедленно покинуть рабочее место, сообщить о происшедшем преподавателю и обратиться к врачу;

11. Соблюдать чистоту рабочего места.

12. Окончание работы произвести по разрешению преподавателя.

13. Сдать выполненную работу.

14. Завершить все активные программы и корректно выключить компьютер.

15. Привести рабочее место в порядок.

16. Дежурному проверить готовность кабинета к следующему занятию.

При эксплуатации оборудования необходимо остерегаться: - поражения электрическим током;

- механических повреждений, травм

При возникновении аварийных ситуаций:

1. При обнаружения искрения, появлении запаха гари или обнаружения иных неполадках следует немедленно прекратить работу и сообщить об этом учителю.

2. При поражении кого-либо электротоком необходимо: прекратить работу и отойти на безопасное расстояние; отключить напряжение (на распределительном щитке кабинета); сообщить учителю; приступить к оказанию первой помощи и вызвать врача.

3. При пожаре необходимо: прекратить работу и начать эвакуацию; сообщить учителю и вызвать пожарную охрану (по тел. 01); отключить напряжение (на распределительном щитке кабинета); приступить к тушению пожара огнетушителем (водой тушить запрещается.

Подобные документы

    Математическая теория массового обслуживания как раздел теории случайных процессов. Системы массового обслуживания заявок, поступающих через промежутки времени. Открытая марковская сеть, ее немарковский случай, нахождение стационарных вероятностей.

    курсовая работа , добавлен 07.09.2009

    Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.

    курсовая работа , добавлен 15.02.2009

    Оптимизация управления потоком заявок в сетях массового обслуживания. Методы установления зависимостей между характером требований, числом каналов обслуживания, их производительностью и эффективностью. Теория графов; уравнение Колмогoрова, потоки событий.

    контрольная работа , добавлен 01.07.2015

    Теория массового обслуживания – область прикладной математики, анализирующая процессы в системах производства, в которых однородные события повторяются многократно. Определение параметров системы массового обслуживания при неизменных характеристиках.

    курсовая работа , добавлен 08.01.2009

    Определение случайного процесса и его характеристики. Основные понятия теории массового обслуживания. Понятие марковского случайного процесса. Потоки событий. Уравнения Колмогорова. Предельные вероятности состояний. Процессы гибели и размножения.

    реферат , добавлен 08.01.2013

    Стационарное распределение вероятностей. Построение математических моделей, графов переходов. Получение уравнения равновесия систем массового обслуживания с различным числом приборов, требованиями различных типов и ограниченными очередями на приборах.

    дипломная работа , добавлен 23.12.2012

    Анализ эффективности простейших систем массового обслуживания, расчет их технических и экономических показателей. Сравнение эффективности системы с отказами с соответствующей смешанной системой. Преимущества перехода к системе со смешанными свойствами.

    курсовая работа , добавлен 25.02.2012

    Составление имитационной модели и расчет показателей эффективности системы массового обслуживания по заданны параметрам. Сравнение показателей эффективности с полученными путем численного решения уравнений Колмогорова для вероятностей состояний системы.

    курсовая работа , добавлен 17.12.2009

    Примеры процессов размножения и гибели в случае простейших систем массового обслуживания. Математическое ожидание для системы массового обслуживания. Дополнительный поток и бесконечное число приборов. Система с ограничением на время пребывания заявки.

    курсовая работа , добавлен 26.01.2014

    Некоторые математические вопросы теории обслуживания сложных систем. Организация обслуживания при ограниченной информации о надёжности системы. Алгоритмы безотказной работы системы и нахождение времени плановой предупредительной профилактики систем.

операции или эффективности системы массового обслуживания являются следующие.

Для СМО с отказами :

Для СМО с неограниченным ожиданием как абсолютная, так и относительная пропускная способности теряют смысл, так как каждая поступившая заявка рано или поздно будет обслужена. Для такой СМО важными показателями являются:

Для СМО смешанного типа используются обе группы показателей: как относительная и абсолютная пропускная способности , так и характеристики ожидания.

В зависимости от цели операции массового обслуживания любой из приведенных показателей (или совокупность показателей) может быть выбран в качестве критерия эффективности.

Аналитической моделью СМО является совокупность уравнений или формул, позволяющих определять вероятности состояний системы в процессе ее функционирования и рассчитывать показатели эффективности по известным характеристикам входящего потока и каналов обслуживания.

Всеобщей аналитической модели для произвольной СМО не существует . Аналитические модели разработаны для ограниченного числа частных случаев СМО. Аналитические модели, более или менее точно отображающие реальные системы, как правило, сложны и труднообозримы.

Аналитическое моделирование СМО существенно облегчается, если процессы, протекающие в СМО, марковские (потоки заявок простейшие, времена обслуживания распределены экспоненциально). В этом случае все процессы в СМО можно описать обыкновенными дифференциальными уравнениями, а в предельном случае, для стационарных состояний - линейными алгебраическими уравнениями и, решив их, определить выбранные показатели эффективности.

Рассмотрим примеры некоторых СМО.

2.5.1. Многоканальная СМО с отказами

Пример 2.5 . Три автоинспектора проверяют путевые листы у водителей грузовых автомобилей. Если хотя бы один инспектор свободен, проезжающий грузовик останавливают. Если все инспекторы заняты, грузовик, не задерживаясь, проезжает мимо. Поток грузовиков простейший, время проверки случайное с экспоненциальным распределением.

Такую ситуацию можно моделировать трехканальной СМО с отказами (без очереди). Система разомкнутая, с однородными заявками, однофазная, с абсолютно надежными каналами.

Описание состояний:

Все инспекторы свободны;

Занят один инспектор;

Заняты два инспектора;

Заняты три инспектора.

Граф состояний системы приведен на рис. 2.11 .


Рис. 2.11.

На графе: - интенсивность потока грузовых автомобилей; - интенсивность проверок документов одним автоинспектором.

Моделирование проводится с целью определения части автомобилей, которые не будут проверены.

Решение

Искомая часть вероятности - вероятности занятости всех трех инспекторов. Поскольку граф состояний представляет типовую схему "гибели и размножения", то найдем , используя зависимости (2.2).

Пропускную способность этого поста автоинспекторов можно характеризовать относительной пропускной способностью :

Пример 2.6 . Для приема и обработки донесений от разведгруппы в разведотделе объединения назначена группа в составе трех офицеров. Ожидаемая интенсивность потока донесений - 15 донесений в час. Среднее время обработки одного донесения одним офицером - . Каждый офицер может принимать донесения от любой разведгруппы. Освободившийся офицер обрабатывает последнее из поступивших донесений. Поступающие донесения должны обрабатываться с вероятностью не менее 95 %.

Определить, достаточно ли назначенной группы из трех офицеров для выполнения поставленной задачи.

Решение

Группа офицеров работает как СМО с отказами, состоящая из трех каналов.

Поток донесений с интенсивностью можно считать простейшим, так как он суммарный от нескольких разведгрупп. Интенсивность обслуживания . Закон распределения неизвестен, но это несущественно, так как показано, что для систем с отказами он может быть произвольным.

Описание состояний и граф состояний СМО будут аналогичны приведенным в примере 2.5.

Поскольку граф состояний - это схема "гибели и размножения", то для нее имеются готовые выражения для предельных вероятностей состояния:

Отношение называют приведенной интенсивностью потока заявок . Физический смысл ее следующий: величина представляет собой среднее число заявок, приходящих в СМО за среднее время обслуживания одной заявки.

В примере .

В рассматриваемой СМО отказ наступает при занятости всех трех каналов, то есть . Тогда:

Так как вероятность отказа в обработке донесений составляет более 34 % (), то необходимо увеличить личный состав группы. Увеличим состав группы в два раза, то есть СМО будет иметь теперь шесть каналов, и рассчитаем :

Таким образом, только группа из шести офицеров сможет обрабатывать поступающие донесения с вероятностью 95 %.

2.5.2. Многоканальная СМО с ожиданием

Пример 2.7 . На участке форсирования реки имеются 15 однотипных переправочных средств. Поток поступления техники на переправу в среднем составляет 1 ед./мин, среднее время переправы одной единицы техники - 10 мин (с учетом возвращения назад переправочного средства).

Оценить основные характеристики переправы, в том числе вероятность в немедленной переправе сразу по прибытии единицы техники.

Решение

Абсолютная пропускная способность , т. е. все, что подходит к переправе, тут же практически переправляется.

Среднее число работающих переправочных средств:

Коэффициенты использования и простоя переправы:

Для решения примера была также разработана программа. Интервалы времени поступления техники на переправу, время переправы приняты распределенными по экспоненциальному закону.

Коэффициенты использования переправы после 50 прогонов практически совпадают: .