Главная · Насморк · Тепловой эффект реакции протекающей по уравнению. Теплота реакции и термохимические расчёты

Тепловой эффект реакции протекающей по уравнению. Теплота реакции и термохимические расчёты

Задача № 6

Вычислите среднюю теплоемкость вещества, приведенного в табл. 6, в интервале температур от 298 доТ К.

Таблица 6

Вещество

Вещество

Решение:

Рассмотрим расчет средней теплоемкости аммиака в интервале температур от 298 до 800 К.

Теплоемкость – это отношение количества теплоты, поглощаемой телом при нагревании, к повышению температуры, которым сопровождается нагревание. Для индивидуального вещества различают удельную (одного килограмма) и мольную (одного моля) теплоемкости.

Истинная теплоемкость

, (21)

где δ Q – бесконечно малое количество теплоты, необходимое для повышения температуры тела на бесконечно малую величину dT .

Средняя теплоемкость – это отношение количества теплоты Q к повышению температуры T = T 2 T 1 ,

.

Поскольку теплота не является функцией состояния и зависит от пути процесса, необходимо указывать условия протекания процесса нагревания. В изохорном и изобарном процессах для бесконечно малого изменения δ Q V = dU и δ Q p = dH , поэтому

и
. (22)

Связь между истинными изохорной (С V ) и изобарной (C p ) теплоемкостями вещества и его средними изохорной
и изобарной
теплоемкостями в интервале температур от Т 1 до Т 2 выражается уравнениями (23) и (24):

; (23)

. (24)

Зависимости истинной теплоемкости от температуры выражаются следующими эмпирическими уравнениями:

; (для неорганических веществ) (25)

. (для органических веществ) (26)

Воспользуемся справочником физико-химических величин. Выпишем коэффициенты (a, b, c) уравнения зависимости изобарной теплоемкости аммиака от температуры:

Таблица 7

Вещество

b ·10 3

c / ·10 –5

Запишем уравнение зависимости истинной теплоемкости аммиака от температуры:

.

Подставим это уравнение в формулу (24) и вычислим среднюю теплоемкость аммиака:

= 1/(800-298)
=

0,002 = 43,5 Дж/моль·К.

Задача №7

Для химической реакции, приведенной в табл. 2, постройте графики зависимостей суммы теплоемкостей продуктов реакции от температуры
и суммы теплоемкостей исходных веществ от температуры
. Уравнения зависимости
возьмите из справочника. Рассчитайте изменение теплоемкости в ходе химической реакции (
) при температурах 298 К, 400 К и Т К (табл. 6).

Решение:

Рассчитаем изменение теплоемкости при температурах 298 К, 400 К и 600 К на примере реакции синтеза аммиака:

Выпишем коэффициенты (a, b, c, с /) 1 уравнений зависимости истинной теплоемкости аммиака от температуры для исходных веществ и продуктов реакции с учетом стехиометрических коэффициентов . Вычислим сумму коэффициентов. Например, сумма коэффициентова для исходных веществ равна

= 27,88 + 3·27,28 = 109,72.

Сумма коэффициентов а для продуктов реакции равна

= 2·29,8 = 59,6.

=
=59,6 – 109,72 = –50,12.

Таблица 8

Вещество

b ·10 3

c / ·10 5

с·10 6

исходные

вещества

(
,
,
)

(
,
,
)

,
,

Таким образом, уравнение зависимости

для продуктов реакции имеет следующий вид:

= 59,60 + 50,96·10 –3 Т – 3,34·10 5 /Т 2 .

Для построения графика зависимости суммы теплоемкости продуктов реакции от температуры
рассчитаем сумму теплоемкостей при нескольких температурах:

При Т = 298 К

= 59,60 + 50,96·10 –3 · 298 – 3,34·10 5 /298 2 = 71,03 Дж/К;

При Т = 400 К
= 77,89 Дж/К;

При Т = 600 К
= 89,25 Дж/К.

Уравнение зависимости
для исходных веществ имеет вид:

= 109,72 + 14,05·10 –3 Т + 1,50·10 -5 /Т 2 .

Аналогично рассчитываем
исходных веществ при нескольких температурах:

При Т=298 К

=109,72 + 14,05·10 –3 · 298 + 1,50·10 5 /298 2 =115,60 Дж/К;

При Т = 400 К
= 116,28 Дж/К;

При Т = 600 К
= 118,57 Дж/К.

Далее рассчитываем изменение изобарной теплоемкости
в ходе реакции при нескольких температурах:

= –50,12 + 36,91·10 –3 Т – 4,84·10 5 /Т 2 ,

= –44,57 Дж/К;

= –38,39 Дж/К;

= –29,32 Дж/К.

По рассчитанным значениям строим графики зависимостей суммы теплоемкостей продуктов реакции и суммы теплоемкостей исходных веществ от температуры.

Рис 2. Зависимости суммарных теплоемкостей исходных веществ и продуктов реакции от температуры для реакции синтеза аммиака

В данном интервале температур суммарная теплоемкость исходных веществ выше суммарной теплоемкости продуктов, следовательно,
во всем интервале температур от 298 К до 600 К.

Задача №8

Вычислите тепловой эффект реакции, приведенной в табл. 2, при температуре Т К (табл. 6).

Решение:

Вычислим тепловой эффект реакции синтеза аммиака при температуре 800 К.

Зависимость теплового эффекта
реакции от температуры описываетзакон Кирхгоффа

, (27)

где
- изменение теплоемкости системы в ходе реакции. Проанализируем уравнение:

1) Если
> 0, т.е сумма теплоемкостей продуктов реакции больше суммы теплоемкостей исходных веществ, то> 0,. зависимость
возрастающая, и с повышением температуры тепловой эффект увеличивается.

2) Если
< 0, то< 0, т.е. зависимость убывающая, и с повышением температуры тепловой эффект уменьшается.

3) Если
= 0, то= 0, тепловой эффект не зависит от температуры.

В интегральном виде уравнение Кирхгоффа имеет следующий вид:

. (28)

а) если теплоемкость во время процесса не меняется, т.е. сумма теплоемкостей продуктов реакции равна сумме теплоемкостей исходных веществ (
), то тепловой эффект не зависит от температуры

= const.

б) для приближенного расчета можно пренебречь зависимостью теплоемкостей от температуры и воспользоваться значениями средних теплоемкостей участников реакции (
). В этом случае расчет производится по формуле

в) для точного расчета необходимы данные по зависимости теплоемкости всех участников реакции от температуры
. В этом случае тепловой эффект рассчитывают по формуле

(30)

Выписываем справочные данные (табл.9) и вычисляем изменения соответствующих величин для каждого столбца по аналогии с задачей №7). Полученные данные используем для расчета:

Приближенно:

= –91880 + (–31,88)(800 – 298) = –107883,8 Дж = – 107, 88 кДж.

= –91880 + (–50,12)(800 – 298) + 1/2·36,91·10 -3 (800 2 – 298 2) +

– (–4,84·10 5)(1/800 – 1/298) = – 107815 Дж = – 107,82 кДж.

Для реакции синтеза аммиака изменение теплоемкости в ходе реакции
< 0 (см. задачу №7). Следовательно< 0, с повышением температуры тепловой эффект уменьшается.

Таблица 9

Вещество

Сумма для продуктов реакции

Сумма для исходных веществ

Изменение в ходе реакции

,


=


=

=

, Дж/(моль·К)


=


=

=


=


=

=


=


=

=


=


= 1,5

=


= 0


= 0

= 0

Теплотой реакции (тепловым эффектом реакции) называется количество выделенной или поглощённой теплоты Q. Если в ходе реакции теплота выделяется, такая реакция называется эк­зотермической, если теплота поглощается, реакция называется эндотермической.

Теплота реакции определяется, исходя из первого закона (начала) термодинамики, матема­тическим выражением которого в его наиболее простой форме для химических реакций является урав­нение:

Q = ΔU + рΔV (2.1)

где Q - теплота реакции, ΔU - изменение внутренней энергии, р -давление, ΔV - изменение объёма.

Термохимический расчёт заключается в определении теплового эффекта реакции. В соот­ветствии с уравнением (2.1) численное значение теплоты реакции зависит от способа её проведения. В изохорном процессе, проводимом при V=const, теплота реакции Q V = ΔU, в изобарном процессе при p=const тепловой эффект Q P = ΔH. Таким образом, термохимический расчёт заключаетсяв определении величины изменения или внутренней энергии, или энтальпии в ходе реакции. Поскольку подавляющее большинство реакций протекает в изобарных условиях (например, это все реакции в открытых сосу­дах. протекающие при атмосферном давлении), при приведении термохимических расчётов практическивсегда производится расчёт ΔН. Если ΔН<0, то реакция экзотермическая, если же ΔН>0, то ре­акция эндотермическая.

Термохимические расчёты производятся, используя или закон Гесса, согласно которому тепло­вой эффект процесса не зависит от его пути, а определяется лишь природой и состоянием исход­ных веществ и продуктов процесса, или, чаще всего, следствие из закона Гесса: тепловой эффект реакции равен сумме теплот (энтальпий) образования продуктов за вычетом суммы теплот (эн­тальпий) образования реагентов.

В расчётах по закону Гесса используются уравнения вспомогательных реакций, тепловые эффек­ты которых известны. Суть операций при расчётах по закону Гесса заключается в том, что над уравне­ниями вспомогательных реакций производят такие алгебраические действия, которые приводят к урав­нению реакции с неизвестным тепловым эффектом.

Пример 2.1. Определение теплоты реакции: 2СО + O 2 = 2СO 2 ΔН - ?

В качестве вспомогательных используем реакции: 1)С + О 2 = С0 2 ; ΔН 1 = -393,51 кДж и 2)2С + О 2 = 2СО; ΔН 2 = -220,1 кДж, где ΔН / и ΔН 2 - тепловые эффекты вспомогательных реакций. Используя уравнения этих реакций, можно получить уравнение заданной реакции, если вспомогатель­ное уравнение 1) умножить на два и из полученного результата вычесть уравнение 2). Поэтому неиз­вестная теплота заданной реакции равна:


ΔН = 2 ΔH 1 - ΔН 2 = 2(-393,51) - (-220,1) = -566,92 кДж.

Если в термохимическом расчёте используется следствие из закона Гесса, то для реакции, выра­женной уравнением aA+bB=cC+dD, пользуются соотношением:

ΔН =(сΔНобр,с + dΔHoбp D) - (аΔНобр A + bΔН обр,в) (2.2)

где ΔН - теплота реакции; ΔН o бр - теплоты (энтальпии) образования, соответственно, продуктов реак­ции С и D и реагентов А и В; с, d, a, b - стехиометрические коэффициенты.

Теплотой (энтальпией) образования соединения называется тепловой эффект реакции, в ходе которой образуется 1 моль этого соединения из простых веществ, находящихся в термодина­мически устойчивых фазах и модификациях 1 *. Например, теплота образования воды в парообразном состоянии равна половине теплоты реакции, выражаемой уравнением: 2Н 2 (г) + О 2 (г) = 2Н 2 О(г). Раз­мерность теплоты образования - кДж/моль.

В термохимических расчётах теплоты реакций, как правило, определяются для стандартных ус­ловий, для которых формула (2.2) приобретает вид:

ΔН°298 = (сΔН° 298,обр,С + dΔH° 298, o 6 p , D) - (аΔН° 298,обр A + bΔН° 298,обр,в) (2.3)

где ΔН° 298 - стандартная теплота реакции в кДж (стандартность величины указывается верхним индек­сом "0") при температуре 298К, а ΔН° 298,обР - стандартные теплоты (энтальпии) образования также при температуре 298К.Значения ΔН° 298 .обР .определены для всех соединений и являются табличны­ми данными. 2 * - см. таблицу приложения.

Пример 2.2. Расчёт стандартной теплоты р еакции, выраженной уравнением:

4NH 3 (r) + 5O 2 (г) = 4NO(г) + 6Н 2 О(г).

Согласно следствию из закона Гесса записываем 3* :

ΔН 0 298 = (4 ΔН 0 298. o б p . No + 6 ΔH 0 298. одр.Н20) - 4 ΔH 0 298 обр. NH з. Подставив табличные значения стандартных теплот образования соединений, представленных в уравнении, получим: ΔН°298 = (4(90,37) + 6(-241,84)) - 4(-46,19) = - 904,8 кДж.

Отрицательный знак теплоты реакции указывает на экзотермичность процесса.

В термохимии тепловые эффекты принято указывать в уравнениях реакций. Такиеуравнения с обозначенным тепловым эффектом называются термохимическими. Например, термохимическое уравнение рассмотренной в примере 2.2 реакции записывается:

4NH 3 (г) + 50 2 (г) = 4NО(г) + 6Н 2 0(г); ΔН° 29 8 = - 904,8 кДж.

Если условия отличаются от стандартных, в практических термохимических расчётах допускает­ся использование приближения:ΔН ≈ ΔН° 298 (2.4) Выражение(2.4) отражает слабую зависимость величины теплоты реакции от условий её протекания.

Все методы расчета тепловых эффектов основаны на уравнении Кирхгоффа в интегральной форме.

Чаще всего, в качестве первой температуры используют стандартную 298,15K.

Все методы расчета тепловых эффектов сводятся к способам взятия интеграла правой части уравнения.

Методы взятия интеграла:

I. По средним теплоемкостям. Данный метод является наиболее простым и наименее точным. В этом случае выражение под знаком интеграла заменяется на изменение средней теплоемкости, которая не зависит от температуры в выбранном диапазоне.

Средние теплоемкости табулированы и измерены для большинства реакций. Их легко рассчитать по справочным данным.

II. По Истинным теплоемкостям. (С помощью температурных рядов)

В этом методе подынтегральное выражение теплоемкости записывается как температурный ряд:

III. По высокотемпературным составляющим энтальпии. Данный метод получил большое распространение с развитием ракетной техники при расчете тепловых эффектов химических реакций при высоких температурах. Он основан на определении изобарной теплоемкости:

Высокотемпературная составляющая энтальпии. Она показывает, насколько изменится энтальпия индивидуального вещества при нагревании его на определенное количество градусов.

Для химической реакции записываем:

Таким образом:

Лекция №3.

План лекции:

1. II закон термодинамики, определение, математическая запись.

2. Анализ II закона термодинамики

3. Расчет изменения энтропии в некоторых процессах

Любая химическая реакция сопровождается выделением или поглощением энергии в виде теплоты.

По признаку выделения или поглощения теплоты различают экзотермические и эндотермические реакции.

Экзотермические реакции – такие реакции, в ходе которых тепло выделяется (+Q).

Эндотермические реакции – реакции, при протекании которых тепло поглощается (-Q).

Тепловым эффектом реакции (Q ) называют количество теплоты, которое выделяется или поглощается при взаимодействии определенного количества исходных реагентов.

Термохимическим уравнением называют уравнение, в котором указан тепловой эффект химической реакции. Так, например, термохимическими являются уравнения:

Также следует отметить, что термохимические уравнения в обязательном порядке должны включать информацию об агрегатных состояниях реагентов и продуктов, поскольку от этого зависит значение теплового эффекта.

Расчеты теплового эффекта реакции

Пример типовой задачи на нахождение теплового эффекта реакции:

При взаимодействии 45 г глюкозы с избытком кислорода в соответствии с уравнением

C 6 H 12 O 6(тв.) + 6O 2(г) = 6CO 2(г) + 6H 2 O(г) + Q

выделилось 700 кДж теплоты. Определите тепловой эффект реакции. (Запишите число с точностью до целых.)

Решение:

Рассчитаем количество вещества глюкозы:

n(C 6 H 12 O 6) = m(C 6 H 12 O 6) / M(C 6 H 12 O 6) = 45 г / 180 г/моль = 0,25 моль

Т.е. при взаимодействии 0,25 моль глюкозы с кислородом выделяется 700 кДж теплоты. Из представленного в условии термохимического уравнения следует, что при взаимодействии 1 моль глюкозы с кислородом образуется количество теплоты, равное Q (тепловой эффект реакции). Тогда верна следующая пропорция:

0,25 моль глюкозы - 700 кДж

1 моль глюкозы - Q

Из этой пропорции следует соответствующее ей уравнение:

0,25 / 1 = 700 / Q

Решая которое, находим, что:

Таким образом, тепловой эффект реакции составляет 2800 кДж.

Расчёты по термохимическим уравнениям

Намного чаще в заданиях ЕГЭ по термохимии значение теплового эффекта уже известно, т.к. в условии дается полное термохимическое уравнение.

Рассчитать в таком случае требуется либо количество теплоты, выделяющееся/поглощающееся при известном количестве реагента или продукта, либо же, наоборот, по известному значению теплоты требуется определить массу, объем или количество вещества какого-либо фигуранта реакции.

Пример 1

В соответствии с термохимическим уравнением реакции

3Fe 3 O 4(тв.) + 8Al (тв.) = 9Fe (тв.) + 4Al 2 O 3(тв.) + 3330 кДж

образовалось 68 г оксида алюминия. Какое количество теплоты при этом выделилось? (Запишите число с точностью до целых.)

Решение

Рассчитаем количество вещества оксида алюминия:

n(Al 2 O 3) = m(Al 2 O 3) / M(Al 2 O 3) = 68 г / 102 г/моль = 0,667 моль

В соответствии с термохимическим уравнением реакции при образовании 4 моль оксида алюминия выделяется 3330 кДж. В нашем же случае образуется 0,6667 моль оксида алюминия. Обозначив количество теплоты, выделившейся при этом, через x кДж составим пропорцию:

4 моль Al 2 O 3 - 3330 кДж

0,667 моль Al 2 O 3 - x кДж

Данной пропорции соответствует уравнение:

4 / 0,6667 = 3330 / x

Решая которое, находим, что x = 555 кДж

Т.е. при образовании 68 г оксида алюминия в соответствии с термохимическим уравнением в условии выделяется 555 кДж теплоты.

Пример 2

В результате реакции, термохимическое уравнение которой

4FeS 2 (тв.) + 11O 2 (г) = 8SO 2(г) + 2Fe 2 O 3(тв.) + 3310 кДж

выделилось 1655 кДж теплоты. Определите объем (л) выделившегося диоксида серы (н.у.). (Запишите число с точностью до целых.)

Решение

В соответствии с термохимическим уравнением реакции при образовании 8 моль SO 2 выделяется 3310 кДж теплоты. В нашем же случае выделилось 1655 кДж теплоты. Пусть количество вещества SO 2 , образовавшегося при этом, равняется x моль. Тогда справедливой является следующая пропорция:

8 моль SO 2 - 3310 кДж

x моль SO 2 - 1655 кДж

Из которой следует уравнение:

8 / х = 3310 / 1655

Решая которое, находим, что:

Таким образом, количество вещества SO 2 , образовавшееся при этом, составляет 4 моль. Следовательно, его объем равен:

V(SO 2) = V m ∙ n(SO 2) = 22,4 л/моль ∙ 4 моль = 89,6 л ≈ 90 л (округляем до целых, т.к. это требуется в условии.)

Больше разобранных задач на тепловой эффект химической реакции можно найти .

Стандартной теплотой образования (энтальпией образования) вещества называется энтальпия реакции образования 1 моля этого вещества из элементов (простых веществ, то есть состоящих из атомов одного вида), находящихся в наиболее устойчивом стандартном состоянии. Стандартные энтальпии образования веществ (кДж/моль) приводятся в справочниках. При использовании справочных значений необходимо обращать внимание на фазовое состояние веществ, участвующих в реакции. Энтальпия образования наиболее устойчивых простых веществ равна 0.

Следствие из закона Гесса о расчете тепловых эффектов химических реакций по теплотам образования : стандартный тепловой эффект химической реакции равен разности теплот образования продуктов реакции и теплот образования исходных веществ с учетом стехиометрических коэффициентов (количества молей) реагентов :

CH 4 + 2 CO = 3 C ( графит ) + 2 H 2 O.

газ газ тв. газ

Теплоты образования веществ в указанных фазовых состояниях приведены в табл. 1.2.

Таблица 1.2

Теплоты образования веществ

Р е ш е н и е

Так как реакция проходит при P = const, то стандартный тепловой эффект находим в виде изменения энтальпии по известным теплотам образования по следствию из закона Гесса (формула (1.17):

ΔН о 298 = { 2 · (–241,81) + 3·0} – {–74,85 + 2 · (–110,53)} = –187,71 кДж = = –187710 Дж.

ΔН о 298 < 0, реакция является экзотермической, протекает с выделением теплоты.

Изменение внутренней энергии находим на основании уравнения (1.16):

ΔU о 298 = ΔH о 298 Δ ν · RT .

Для данной реакции изменений числа молей газообразных веществ за счет прохождения химической реакции Δν = 2 – (1 + 2) = –1; Т = 298 К, тогда

Δ U о 298 = –187710 – (–1) · 8,314· 298 = –185232 Дж.

Расчет стандартнвх тепловых эффектов химических реакций по стандартным теплотам сгорания веществ, участвующих в реакции

Стандартной теплотой сгорания (энтальпией сгорания) вещества называется тепловой эффект полного окисления 1 моля данного вещества (до высших оксидов или специально указываемых соединений) кислородом при условии, что исходные и конечные вещества имеют стандартную температуру. Стандартные энтальпии сгорания веществ
(кДж/моль) приводятся в справочниках. При использовании справочной величины необходимо обратить внимание на знак величины энтальпии реакции сгорания, которая всегда является экзотермической (Δ H <0), а в таблицах указаны величины
.Энтальпии сгорания высших оксидов (например, воды и диоксида углерода) равны 0.

Следствие из закона Гесса о расчете тепловых эффектов химических реакций по теплотам сгорания : стандартный тепловой эффект химической реакции равен разности теплот сгорания исходных веществ и теплот сгорания продуктов реакции с учетом стехиометрических коэффициентов (количества молей) реагентов:

C 2 H 4 + H 2 O = С 2 Н 5 ОН.