Главная · Насморк · Убитые корпускулярные вакцины. Живые и убитые вакцины

Убитые корпускулярные вакцины. Живые и убитые вакцины

Вакцины — препараты, предназначенные для создания активного иммунитета в организме привитых людей или животных. Основным действующим началом каждой вакцины является иммуноген, т. е. корпускулярная или растворенная субстанция, несущая на себе химические структуры, аналогичные компонентам возбудителя заболевания, ответственным за выработку иммунитета.

В зависимости от природы иммуногена вакцины подразделяются на:

  • цельномикробные или цельновирионные , состоящие из микроорганизмов, соответственно бактерий или вирусов, сохраняющих в процессе изготовления свою целостность;
  • химические вакцины из продуктов жизнедеятельности микроорганизма (классический пример — анатоксины ) или его интегральных компонентов, т.н. субмикробные или субвирионные вакцины;
  • генно-инженерные вакцины , содержащие продукты экспрессии отдельных генов микроорганизма, наработанные в специальных клеточных системах;
  • химерные, или векторные вакцины , в которых ген, контролирующий синтез протективного белка, встроен в безвредный микроорганизм в расчете на то, что синтез этого белка будет происходить в организме привитого и, наконец;
  • синтетические вакцины , где в качестве иммуногена используется химический аналог протективного белка, полученный методом прямого химического синтеза.

В свою очередь среди цельномикробных (цельновирионных) вакцин выделяют инактивированные, или убитые , и живые аттенуированные. Эффективность живых вакцин определяется, в конечном счете, способностью аттенуированного микроорганизма размножаться в организме привитого, воспроизводя иммунологически активные компоненты непосредственно в его тканях. При использовании убитых вакцин иммунизирующий эффект зависит от количества иммуногена, вводимого в составе препарата, поэтому с целью создания более полноценных иммуногенных стимулов приходится прибегать к концентрации и очистке микробных клеток или вирусных частиц.

Живые вакцины

Аттенуированные - ослабленные в своей вирулентности (инфекционной агрессивности), т.е. искусственно модифицированные человеком или «подаренные» природой, изменившей их свойства в естественных условиях, примером чего служит осповакцина. Действующим фактором таких вакцин являются изменённые генетические признаки микроорганизмов, в то же время обеспечивающие перенесение ребенком «малой болезни» с последующим приобретением специфического противоинфекционного иммунитета. Примером могут служить вакцины против полиомиелита, кори, паротита, краснухи или туберкулеза .

Положительные стороны : по механизму действия на организм напоминают "дикий" штамм, может приживляться в организме и длительно сохранять иммунитет (для коревой вакцины вакцинация в 12 мес. и ревакцинация в 6 лет) , вытесняя "дикий" штамм. Используются небольшие дозы для вакцинации (обычно однократная) и поэтому вакцинацию легко проводить организационно. Последнее позволяет рекомендовать данный тип вакцин для дальнейшего использования.

Отрицательные стороны : живая вакцина корпускулярная — содержит 99 % балласта и поэтому обычно достаточно реактогенная, кроме того, она способна вызывать мутации клеток организма (хромосомные аберрации), что особенно опасно в отношении половых клеток. Живые вакцины содержат вирусы-загрязнители (контаминанты), особенно это опасно в отношении обезьяннего СПИДа и онковирусов. К сожалению, живые вакцины трудно дозируются и поддаются биоконтролю, легко чувствительны к действию высоких температур и требуют неукоснительного соблюдения холодовой цепи.

Хотя живые вакцины требуют специальных условий хранения, они продуцируют достаточно эффективный клеточный и гуморальный иммунитет и обычно требуют лишь одно бустерное введение. Большинство живых вакцин вводится парентерально (за исключением полиомиелитной вакцины).

На фоне преимуществ живых вакцин имеется и одно предостережение , а именно: возможность реверсии вирулентных форм, что может стать причиной заболевания вакцинируемого. По этой причине живые вакцины должны быть тщательно протестированы. Пациенты с иммунодефицитами (получающие иммуносупрессивную терапию, при СПИДе и опухолях) не должны получать такие вакцины.

Примером живых вакцин могут служить вакцины для профилактики краснухи (Рудивакс), кори (Рувакс), полиомиелита (Полио Сэбин Веро), туберкулеза, паротита (Имовакс Орейон).

Инактивированные (убитые) вакцины

Инактивированные вакцины получают путем воздействия на микроорганизмы химическим путем или нагреванием. Такие вакцины являются достаточно стабильными и безопасными, так как не могут вызвать реверсию вирулентности. Они часто не требуют хранения на холоде, что удобно в практическом использовании. Однако у этих вакцин имеется и ряд недостатков, в частности, они стимулируют более слабый иммунный ответ и требуют применения нескольких доз.

Они содержат либо убитый целый микроорганизм (например цельноклеточная вакцина против коклюша, инактивированная вакцина против бешенства, вакцина против вирусного гепатита А), либо компоненты клеточной стенки или других частей возбудителя, как например в ацеллюлярной вакцине против коклюша, коньюгированной вакцине против гемофилусной инфекции или в вакцине против менингококковой инфекции. Их убивают физическими (температура, радиация, ультрафиолетовый свет) или химическими (спирт, формальдегид) методами. Такие вакцины реактогенны, применяются мало (коклюшная, против гепатита А).

Инактивированные вакцины также являются корпускулярными. Анализируя свойства корпускулярных вакцин также следует выделить, как положительные так и их отрицательные качества. Положительные стороны : Корпускулярные убитые вакцины легче дозировать, лучше очищать, они длительно хранятся и менее чувствительны к температурным колебаниям. Отрицательные стороны : вакцина корпускулярная — содержит 99 % балласта и поэтому реактогенная, кроме того, содержит агент, используемый для умерщвления микробных клеток (фенол). Еще одним недостатком инактивированной вакцины является то, что микробный штамм не приживляется, поэтому вакцина слабая и вакцинация проводится в 2 или 3 приема, требует частых ревакцинаций (АКДС), что труднее в плане организации по сравнению с живыми вакцинами. Инактивированные вакцины выпускают как в сухом (лиофилизированном), так и в жидком виде. Многие микроорганизмы, вызывающие заболевания у человека, опасны тем, что выделяют экзотоксины, которые являются основными патогенетическими факторами заболевания (например, дифтерия, столбняк). Анатоксины, используемые в качестве вакцин, индуцируют специфический иммунный ответ. Для получения вакцин токсины чаще всего обезвреживают с помощью формалина.

Ассоциированные вакцины

Вакцины различных типов, содержащие несколько компонентов (АКДС).

Корпускулярные вакцины

Представляют собой бактерии или вирусы, инактивированные химическим (формалин, спирт, фенол) или физическим (тепло, ультрафиолетовое облучение) воздействием. Примерами корпускулярных вакцин являются: коклюшная (как компонент АКДС и Тетракок), антирабическая, лептоспирозная, гриппозные цельновирионные, вакцины против энцефалита, против гепатита А (Аваксим), инактивированная полиовакцина (Имовакс Полио, или как компонент вакцины Тетракок).

Химические вакцины

Химические вакцины — создаются из антигенных компонентов, извлеченных из микробной клетки. Выделяют те антигены, которые определяют иммуногенные характеристики микроорганизма. К таким вакцинам относятся: полисахаридные вакцины (Менинго А + С, Акт - ХИБ, Пневмо 23, Тифим Ви), ацеллюлярные коклюшные вакцины .

Биосинтетические вакцины

В 1980-е годы зародилось новое направление, которое сегодня успешно развивается, — это разработка биосинтетических вакцин — вакцин будущего.

Биосинтетические вакцины — это вакцины, полученные методами генной инженерии, и представляют собой искусственно созданные антигенные детерминанты микроорганизмов. Примером может служить рекомбинантная вакцина против вирусного гепатита B, вакцина против ротавирусной инфекции. Для их получения используют дрожжевые клетки в культуре, в которые встраивают вырезанный ген, кодирующий выработку необходимого для получения вакцины протеин, который затем выделяется в чистом виде.

На современном этапе развития иммунологии как фундаментальной медико- биологической науки стала очевидной необходимость создания принципиально новых подходов к конструированию вакцин на основе знаний об антигенной структуре патогена и об иммунном ответе организма на патоген и его компоненты.

Биосинтетические вакцины представляют собой синтезированные из аминокислот пептидные фрагменты, которые соответствуют аминокислотной последовательности тем структурам вирусного (бактериального) белка, которые распознаются иммунной системой и вызывают иммунный ответ. Важным преимуществом синтетических вакцин по сравнению с традиционными является то, что они не содержат бактерий и вирусов, продуктов их жизнедеятельности и вызывают иммунный ответ узкой специфичности. Кроме того, исключаются трудности выращивания вирусов, хранения и возможности репликации в организме вакцинируемого в случае использования живых вакцин. При создании данного типа вакцин можно присоединять к носителю несколько разных пептидов, выбирать наиболее иммуногенные из них для коплексирования с носителем. Вместе с тем, синтетические вакцины менее эффективны, по сравнению с традиционными, т. к. многие участки вирусов проявляют вариабельность в плане иммуногенности и дают меньшую иммуногенность, нежели нативный вирус. Однако, использование одного или двух иммуногенных белков вместо целого возбудителя обеспечивает формирование иммунитета при значительном снижении реактогенности вакцины и ее побочного действия.

Векторные (рекомбинантные) вакцины

Вакцины, полученные методами генной инженерии. Суть метода: гены вирулентного микроорганизма, отвечающий за синтез протективных антигенов, встраивают в геном какого-либо безвредного микроорганизма, который при культивировании продуцирует и накапливает соответствующий антиген. Примером может служить рекомбинантная вакцина против вирусного гепатита B, вакцина против ротавирусной инфекции. Наконец, имеются положительные результаты использования т.н. векторных вакцин, когда на носитель — живой рекомбинантный вирус осповакцины (вектор) наносятся поверхностные белки двух вирусов: гликопротеин D вируса простого герпеса и гемагглютинин вируса гриппа А. Происходит неограниченная репликация вектора и развивается адекватный иммунный ответ против вирусной инфекции обоих типов.

Рекомбинантные вакцины — для производства этих вакцин применяют рекомбинантную технологию, встраивая генетический материал микроорганизма в дрожжевые клетки, продуцирующие антиген. После культивирования дрожжей из них выделяют нужный антиген, очищают и готовят вакцину. Примером таких вакцин может служить вакцина против гепатита В (Эувакс В).

Рибосомальные вакцины

Для получения такого вида вакцин используют рибосомы, имеющиеся в каждой клетке. Рибосомы — это органеллы, продуцирующие белок по матрице — и-РНК. Выделенные рибосомы с матрицей в чистом виде и представляют вакцину. Примером может служить бронхиальная и дизентерийная вакцины (например, ИРС - 19, Бронхо-мунал, Рибомунил ).

Эффективность вакцинации

Поствакцинационный иммунитет — иммунитет, который развивается после введения вакцины. Вакцинация не всегда бывает эффективной. Вакцины теряют свои качества при неправильном хранении. Но даже если условия хранения соблюдались, всегда существует вероятность, что иммунитет не простимулируется.

На развитие поствакцинального иммунитета влияют следующие факторы:

1. Зависящие от самой вакцины:

Чистота препарата;
- время жизни антигена;
- доза;
- наличие протективных антигенов;
- кратность введения.

2. Зависящие от организма:

Состояние индивидуальной иммунной реактивности;
- возраст;
- наличие иммунодефицита;
- состояние организма в целом;
- генетическая предрасположенность.

3. Зависящие от внешней среды

Питание;
- условия труда и быта;
- климат;
- физико-химические факторы среды.

Идеальная вакцина

Разработка и изготовление современных вакцин производится в соответствии с высокими требованиями к их качеству, в первую очередь, безвредности для привитых. Обычно такие требования основываются на рекомендациях Всемирной Организации Здравоохранения, которая привлекает для их составления самых авторитетных специалистов из разных стран мира. "Идеальной" вакцин мог бы считаться препарат, обладающий такими качествами, как:

1. полной безвредностью для привитых, а в случае живых вакцин — и для лиц, к которым вакцинный микроорганизм попадает в результате контактов с привитыми;

2. способностью вызывать стойкий иммунитет после минимального количества введений (не более трех);

3. возможностью введения в организм способом, исключающим парентеральные манипуляции, например, нанесением на слизистые оболочки;

4. достаточной стабильностью, чтобы не допустить ухудшения свойств вакцины при транспортировке и хранении в условиях прививочного пункта;

5. умеренной ценой, которая не препятствовала бы массовому применению вакцины.

Живые вирусные вакцины - это, как правило, искусственно ослабленные посредством культивирования или природные авирулентные либо слабовирулентные иммуногенные штаммы вируса, которые, размножаясь в естественно восприимчивом организме, не проявляют повышения вирулентности и потеряли способность к горизонтальной передаче.

Безопасные высокоиммуногенные живые вакцины являются лучшими из всех существующих вирусных вакцин. Применение многих из них дало блестящие результаты в борьбе с наиболее опасными вирусными болезнями человека и животных. В основе эффективности живых вакцин лежит имитация субклинической инфекции. Живые вакцины вызывают иммунный ответ на каждый протективный антиген вируса.

Основным преимуществом живых вакцин считается активизация всех звеньев иммунной системы, вызывающая сбалансированный иммунный ответ (системный и локальный, иммуноглобулиновый и клеточный). Это имеет особое значение при тех инфекциях, когда клеточный иммунитет играет важную роль, а также при инфекциях слизистых оболочек, где требуется как системный, так и локальный иммунитет. Местное применение живых вакцин обычно является более эффективным для стимулирования локального ответа у непраймированных хозяев, чем инактивированные вакцины, вводимые парентерально.

В идеале, вакцинация должна повторять иммунологические стимулы естественной инфекции , сводя до минимума нежелательные эффекты. Она должна вызывать напряженный продолжительный иммунитет при введении в небольшой дозе. Ее введение, как правило, не должно сопровождаться слабой, кратковременной общей и местной реакцией. Хотя после введения живой вакцины иногда допускается развитие у небольшой части реципиентов отдельных слабовыраженных клинических признаков, напоминающих легкое течение естественной болезни. Живые вакцины больше, чем другие, отвечают этим требованиям и, кроме того, отличаются низкой стоимостью и простотой применения разными способами.

Вакцинные вирусные штаммы должны обладать генетической и фенотипической стабильностью. Их приживляемость в привитом организме должна быть выраженной, а способность к размножению ограниченной. Вакцинные штаммы обладают значительно менее выраженной инвазивностью, чем их вирулентные предшественники. Это связано в значительной мере с их частично ограниченной репликацией в месте проникновения и в органах-мишенях естественного хозяина. Репликация вакцинных штаммов в организме легче ограничивается естественными неспецифическими защитными механизмами. Вакцинные штаммы размножаются в привитом организме до тех пор, пока его защитные механизмы не затормозят их развитие.
В течение этого времени образуется такое количество антигена , которое значительно превышает его при введении с инактивированной вакциной.

Для аттенуации вирусов обычно применяют пассажи вируса в неестественном хозяине или культуре клеток, пассажи при пониженной температуре и мутагенез с последующей селекцией мутантов с измененным фенотипом.

Большинство современных живых вакцин , используемых для профилактики инфекционных болезней человека и животных, получены пассажами вирулентного вируса в гетерологичном хозяине (животные, куриные эмбрионы, различные клеточные культуры). Аттенуированные в чужеродном организме вирусы приобретают множественные мутации в геноме, препятствующие реверсии вирулентных свойств.

В настоящее время в практике широко применяют живые вакцины против многих вирусных заболеваний человека (полиомиелит, желтая лихорадка, грипп, корь, краснуха, паротит и др.) и животных (чума крупного рогатого скота, свиней, плотоядных, бешенство, герпес-, пикорна-, коронавирусные и другие болезни). Однако еще не удалось получить эффективных вакцин против ряда вирусных болезней человека (СПИД, парагрипп, респираторно-синциальная инфекция, денгевирусная инфекция и другие) и животных (африканская чума свиней, инфекционная анемия лошадей и другие).

Имеется много примеров тому, что традиционные методы аттенуации вирусов еще не исчерпали своих возможностей и продолжают играть существенную роль в разработке живых вакцин. Однако их значение постепенно уменьшается по мере увеличения масштабов использования новой технологии конструирования вакцинных штаммов. Несмотря на значительный прогресс в этой области, принципы получения живых вирусных вакцин, заложенные Л. Пастером, до сих пор не потеряли своей актуальности.

В мире существует столько лекарств, что, казалось бы, с ними можно вылечить любую болезнь. Фармацевтические компании постоянно выпускают новые препараты. Действительно, в своё время открытие пенициллина перевернуло мир. Сейчас человек шагнул ещё дальше. Однако некоторые болезни вылечить нельзя, единственная возможность защититься от них – вакцинация.

В мире официально применяется несколько сотен разновидностей вакцинных препаратов. Сюда включены не только инактивированные, рекомбинантные, химические, но и живые, формирующие иммунитет против ряда инфекционных заболеваний (бешенства, дифтерии, коклюша, кори, краснухи, полиомиелита, столбняка и других). А ещё чуть более века назад в медицинской практике использовалось только пять вакцин. Это были живые против бешенства, натуральной оспы и чумы, и инактивированные – от брюшного тифа и холеры. Такой ограниченный инструментарий объяснялся тем, что исследования заболеваний, чья этиология была предположительно инфекционной, производились на некрупных животных в лабораториях, которые были невосприимчивы к человеческим патогенам.

Революционное открытие было сделано в 1954 году американскими учёными Эндерсом, Уэллером и Роббинсом (за которое впоследствии они были удостоены Нобелевской премии). Они доказали на примере вируса полиомиелита, что патогенные микроорганизмы можно выращивать в культурах различных тканей. Это «развязало руки» иммунологам и вирусологам, предоставило им широкие возможности для изучения этиологической роли разных возбудителей, получения образцов штаммов с целью последующего использования их для прививок. Примерно тогда же стало понятно, что некоторые виды приматов чувствительны к инфекционным агентам, которые ранее считались опасными только для человека. Это позволило проводить лабораторные эксперименты на обезьянах.

Сегодняшние прививочные средства имеют различные варианты состава. Фармацевты делают все, чтобы прививка переносилась легче. Всё же самыми эффективными были и остаются живые вакцины. В них входят живые микроорганизмы, отсюда и название. О формах, свойствах и безопасности таких препаратов – в статье.

Живая вакцина – препарат, который используют для иммунизации. В его составе – обезвреженные штаммы микроорганизмов, вызывающих болезнь, они начинают распространяться в месте укола. Заболевание не прогрессирует, однако иммунитет формируется, причём стойкий – гуморальный, клеточный и секреторный.

Ослабленные штаммы получают в процессе деактивации гена, отвечающего за заразность бактерии. Обезвреживания добиваются различными способами – химическими или физическими (например, воздействием высоких температур). Обычно живые вакцины представляют собой порошок, который растворяют в жидкости для инъекции. Сухие препараты хранятся дольше и не повреждаются при транспортировке. Однократное введение средства способствует выработке иммунитета.

Одним из видов живых вакцин являются дивергентные. Они изготавливаются из микроорганизмов, находящихся в близком родстве с возбудителем инфекции, но вызвать заболевание не могут. Самый яркий пример подобного препарата – БЦЖ, в основе средства – бактерии не человеческого, а бычьего туберкулёза.

Чем отличается живая вакцина от неживой

Основная разница между живой и неживой вакцинами – то, что в основе первой содержатся живые микроорганизмы. Многие полагают, что поэтому она лучше и безопаснее, поскольку более естественна. На самом деле, это не совсем так. В различиях следует разобраться подробнее.

  1. Безопасность в применении. По этому поводу было проведено много исследований, в результате которых выявлено, что ни одно из средств не может спровоцировать аллергию. Уровень безопасности одинаковый. При этом живые вакцины всё же не применяют у пациентов с такими болезнями, как ВИЧ или онкология, чтобы не ослабить иммунитет ещё больше, ведь при введении живого микроба, пусть и инактивированного, есть вероятность развития настоящего заболевания.
  2. Достижение эффекта. Живая вакцина при однократном введении способна сформировать иммунитет на длительный срок. Неживая требует ревакцинации, хотя эффект тоже достаточно хорош.
  3. Воздействие. Действующие вещества живых препаратов начинают работу мгновенно, результат появляется сразу. Чтобы добиться эффекта от неживой вакцины, нужно завершить курс, включающий обычно два или три укола.

Существенных различий между живыми и неживыми вакцинами нет, поэтому, изучив инструкции к ним, пациент сам принимает решение о необходимости использования того или иного препарата.

Виды и их характеристика

Сегодня в медицине используются следующие виды вакцин.

  1. Живые. В их составе – живые микроорганизмы, провоцирующие развитие заболевания. Однако они были очищены в лаборатории. Такие прививки особенно тяжело переносятся организмом, так как оказывают на иммунную систему сильное давление. Иммунитет, создаваемый подобными препаратами, похож на естественный, выработанный после перенесённой болезни. Поэтому считается, что данные вакцинные составы наиболее эффективны.
  2. Химические. В состав таких препаратов входят антигены бактерий, полученные химическими способами. Попадая в организм, они мгновенно рассасываются, иммунная система не распознаёт их как «врагов». Обычно их используют в сочетании с другими вакцинами для формирования иммунитета против нескольких вирусов сразу.
  3. Корпускулярные. Этот вид вакцин содержит в формуле убитые клетки микробов, следовательно, воздействие на организм минимально. Однако иммунная система распознаёт чужеродное тело и начинает с ним бороться. Срок действия у такого препарата короче, чем у живого аналога, поэтому требуется ревакцинация.
  4. Анатоксины. Есть такие микроорганизмы, которые выделяют опасные вещества при попадании в организм. Именно эти токсины виноваты в развитии симптомов болезни. Анатоксины изготавливают из них, очищая при помощи формалина. Иммунитет после их введения менее стойкий, чем естественный, приобретённый после заболевания. Попытки улучшить данный вид вакцин продолжаются.
  5. Рекомбинантные. Новый тип действующего вещества в вакцинном препарате. Его получают посредством клонирования генов микробных частиц, затем созданные гены вводят в грибки или бактерии, получают клетки, из которых выделяют новые частицы. Плюсы подобных вакцин – эффективность и безопасность.
  6. Инактивированные. Их также можно назвать убитыми. Есть ещё название «мертвая» вакцина, поскольку микроорганизм, вызывающий болезнь, умерщвляют. На вирус или бактерию воздействуют, например, посредством температуры, и они погибают. Такие препараты отличаются безопасностью и стабильностью. Прививать ними можно, не опасаясь, что вирус распространится и проявит свои симптомы. Однако иммунный ответ будет слабее. В инактивированной вакцине «убитым» бывает либо целый микроорганизм, либо его составляющая часть.

Какие вакцины относятся к живым: полный перечень

Эпидемические вспышки брюшного тифа, кори, краснухи, полиомиелита, эпидемического паротита, зафиксированные в странах Европы и Северной Америки во второй половине 20-го столетия, определили вектор медицинских исследований в то время. В результате таких изысканий, уже к началу 70-х годов врачи оперировали тремя десятками живых вакцин.

Не во всех случаях применяют живые вакцины. Однако перечень болезней, от которых ними прививают, широк и включает такие инфекции, как:

  • полиомиелит;
  • туберкулёз;
  • паротит;
  • оспа;
  • корь;
  • бешенство;
  • грипп;
  • туляремия;
  • сибирская язва;
  • чума;
  • краснуха;
  • некоторые виды лихорадок.

В списке – обязательные прививки, предусмотренные календарём, и те, которые ставят по желанию.

Технология получения

Получение живых вакцин – процесс, включающий в себя множество этапов.

Бактериальные вакцины получают по такому алгоритму.

  1. Выращивание бактерий в питательной среде.
  2. Концентрирование и очищение.
  3. Формуляция и высушивание.

Противовирусные препараты синтезируют следующим образом.

  1. Выращивание штамма на клетках или эмбрионе курицы.
  2. Очистка и концентрирование.
  3. Высушивание.

Механизм, как правило, похож. Отличается он в случае производства ослабленных вакцин. Около девяти лет уходит на создание такого препарата, поскольку требуется многократно синтезировать и очищать полученные клетки.

Особенности применения

При использовании живых вакцин следует строго соблюдать правила хранения и интервал между инъекциями. Минимальный промежуток – 1 месяц, иначе высок риск появления побочных эффектов.

Нельзя замораживать препарат, а также перевозить его во вскрытой упаковке.

Прививку делают подкожно или накожно. Важно, чтобы средство не распространилось по всему телу, иначе осложнений не избежать.

Есть препараты, применяемые перорально, например, вакцина от полиомиелита. После её введения нельзя есть и употреблять жидкости несколько часов.

Вакцину от гриппа применяют интраназально.

Когда вскрывается ампула, важно избегать перепадов температур.

Иммунизация живыми вакцинами осуществляется не всегда. Существует ряд противопоказаний. Так, нельзя применять живые вакцины у:

  • беременных женщин – это может отрицательно повлиять на будущего малыша;
  • лиц, страдающих лейкозом или лейкомой;
  • пациентов, лечащихся иммунодепрессантами, стероидами, иначе эффект от терапии будет потерян;
  • детей с иммунодефицитом;
  • лиц, которые на момент прививки болеют, – следует дождаться выздоровления, в противном случае от вакцинации пользы ожидать не стоит.

Механизм действия

Живая вакцина включает в себя обезвреженные микроорганизмы. Они прошли этап очищения, поэтому не способны вызвать болезнь. А вот спровоцировать иммунную систему на ответ и формирование реакции они могут без труда.

Проникая в организм, ослабленные микробы пытаются ему навредить, тут и запускается защитный процесс – вырабатываются антитела к инфекции.

Так формируется стойкий защитный барьер против введённого возбудителя болезни.

Безопасность подобных препаратов доказана клинически, тем не менее, некоторые врачи продолжают сомневаться, особенно когда речь идёт об иммунизации детей.

Несмотря на это мнение, дети прививаются успешно, получая крепкий иммунитет благодаря живым вакцинам.

Как характеризуется иммунный ответ

После того, как живые бактерии препарата вводятся в организм, включается защитная функция – начинают вырабатываться антитела. В случае с живой вакциной этот процесс запускается практически мгновенно, то есть сразу после попадания состава под кожу. По статистике, скорость формирования иммунного ответа в два раза превышает скорость ответа после введения неживой вакцины. Поэтому, как правило, повторное введение не требуется или происходит через длительное время.

Иногда наблюдаются такие проявления, как гипертермия, слабость или сонливость. Некоторые пациенты теряют аппетит и жалуются на быструю утомляемость. Все эти реакции считаются нормальными и означают, что иммунная система борется с «незваным гостем».

Об эффективности иммунного ответа судят по количеству выработанных антител. Проверить этот показатель можно спустя неделю, тогда результат будет наиболее информативен.

На выработку антител также влияет ряд факторов, зависящих от вакцины и от организма.

К первым относятся:

  • чистота вещества;
  • время жизни антигена;
  • доза;
  • наличие защитных антигенов;
  • частота введения.

Факторы со стороны организма:

  • индивидуальная иммунная реактивность;
  • возраст;
  • нормальность или ослабленность иммунитета;
  • общее состояние;
  • генетические особенности.

Можно также выделить факторы внешней среды:

  • особенности питания;
  • условия жизни и работы;
  • климатические условия.

В целом, эффективность вакцины оценивается по следующим критериям.

  1. Безопасность. Важно, чтобы препарат не вызывал смертельных исходов.
  2. Защита. Вакцина должна формировать иммунитет против вируса, штамм которого она включает.
  3. Поддержание защитного иммунитета. Эффект должен сохраняться как можно дольше.
  4. Индукция нейтрализующих компонентов. Нейтрализующие антитела нужны, чтобы избежать заражения.
  5. Индукция защитных Т-клеток. Именно этот вид клеток наиболее эффективно контролирует распространение вредных микроорганизмов.
  6. Практические соображения. Удобство и длительность хранения, простота использования и стоимость.

Основные достоинства

В медицинской среде до сих пор ведутся споры о безопасности применения живых вакцин. Несмотря на это, большинство всё же считает, что у таких препаратов достоинства превышают недостатки. К положительным сторонам живых вакцин относятся:

  • возможность вводить препарат один раз в минимальной дозе, что никак не влияет на эффективность;
  • длительность и прочность иммунного ответа;
  • различные варианты введения (подкожно, накожно, перорально, интраназально);
  • быстрая реакция иммунной системы;
  • относительно простое изготовление;
  • длительное хранение при соблюдении всех условий;
  • небольшая цена.

Существенные недостатки

Однако и без недостатков не обошлось. Как и другие препараты, живая вакцина имеет свои минусы:

  • если прививку делать на фоне ослабленного иммунитета, возможно, появятся осложнения;
  • ослабленные антигены получают достаточно долго (ранее говорилось, что иногда может понадобиться около девяти лет на выведение определённого штамма);
  • из-за неправильного хранения или перевозки вакцина может испортиться;
  • сложно рассчитать дозу, во многих случаях её должен индивидуально подбирать врач;
  • есть вероятность занесения в организм латентных вирусов, поскольку в препарате содержатся их клетки (особенно это опасно при онкологии).

Длительный опыт вакцинопрофилактики (в Российской Федерации и за рубежом) свидетельствует о том, что риск возникновения постпрививочных осложнений и их тяжесть несоизмеримо ниже опасности развития последствий заражения инфекциями, от которых эти прививки защищают.

К вопросу вакцинации надо подходить очень серьёзно, особенно когда она касается детей. Выбор правильного препарата способен укрепить здоровье, а в некоторых случаях даже спасти жизнь, если начинается эпидемия того или иного заболевания. Перед проведением процедуры необходимо прочитать инструкцию по применению препарата, изучить противопоказания. Родителям важно помнить, что перед прививкой ребёнка должен осмотреть специалист, назначить анализы, чтобы убедиться, что в организме нет воспалительных процессов.

Разумный подход к иммунизации защитит от опасных болезней на долгий срок. Несмотря на то, что в медицинской практике уже активно используются вакцинные средства третьего и четвёртого поколений, живые аттенуированные вакцины по-прежнему актуальны. Они до сих пор считаются эффективными иммунобиологическими препаратами.

Они содержат ослабленный живой микроорганизм. Примером могут служить вакцины против полиомиелита, кори, паротита, краснухи или туберкулеза. Могут быть получены путем селекции (БЦЖ, гриппозная). Они способны размножаться в организме и вызывать вакцинальный процесс, формируя невосприимчивость. Утрата вирулентности у таких штаммов закреплена генетически, однако у лиц с иммунодефицитами могут возникнуть серьезные проблемы. Как правило, живые вакцины являются корпускулярными. Живые вакцины получают путем искусственного аттенуирования (ослабления штамма (BCG - 200-300 пассажей на желчном бульоне, ЖВС - пассаж на ткани почек зеленых мартышек) либо отбирая естественные авирулентные штаммы. В настоящее время возможен путь создания живых вакцин путем генной инженерии на уровне хромосом с использованием рестриктаз. Полученные штаммы будут обладать свойствами обеих возбудителей, хромосомы которых были взяты для синтеза. Анализируя свойства живых вакцин следует выделить, как положительные так и их отрицательные качества.

Положительные стороны: по механизму действия на организм напоминают "дикий" штамм, может приживляться в организме и длительно сохранять иммунитет (для коревой вакцины вакцинация в 12 мес. и ревакцинация в 6 лет), вытесняя "дикий" штамм. Используются небольшие дозы для вакцинации (обычно однократная) и поэтому вакцинацию легко проводить организационно. Последнее позволяет рекомендовать данный тип вакцин для дальнейшего использования.

Отрицательные стороны: живая вакцина корпускулярная - содержит 99% балласта и поэтому обычно достаточно реактогенная, кроме того, она способна вызывать мутации клеток организма (хромосомные аберрации), что особенно опасно в отношении половых клеток. Живые вакцины содержат вирусы-загрязнители (контаминанты), особенно это опасно в отношении обезьяннего СПИДа и онковирусов. К сожалению, живые вакцины трудно дозируются и поддаются биоконтролю, легко чувствительны к действию высоких температур и требуют неукоснительного соблюдения холодовой цепи. Хотя живые вакцины требуют специальных условий хранения, они продуцируют достаточно эффективный клеточный и гуморальный иммунитет и обычно требуют лишь одно бустерное введение. Большинство живых вакцин вводится парентерально (за исключением полиомиелитной вакцины).

На фоне преимуществ живых вакцин имеется и одно предостережение, а именно: возможность реверсии вирулентных форм, что может стать причиной заболевания вакцинируемого. По этой причине живые вакцины должны быть тщательно протестированы. Пациенты с иммунодефицитами (получающие иммуносупрессивную терапию, при СПИДе и опухолях) не должны получать такие вакцины.

Примером живых вакцин могут служить вакцины для профилактики краснухи (Рудивакс), кори (Рувакс), полиомиелита (Полио Сэбин Веро), туберкулеза, паротита (Имовакс Орейон). Живые вакцины выпускаются в лиофилизированном виде (кроме полиомиелитной).

Ассоциированные вакцины

Вакцины различных типов, содержащие несколько компонентов (АКДС).

Корпускулярные вакцины

Представляют собой бактерии или вирусы, инактивированные химическим (формалин, спирт, фенол) или физическим (тепло, ультрафиолетовое облучение) воздействием. Примерами корпускулярных вакцин являются: коклюшная (как компонент АКДС и Тетракок), антирабическая, лептоспирозная, гриппозные цельновирионные, вакцины против энцефалита, против гепатита А (Аваксим), инактивированная полиовакцина (Имовакс Полио, или как компонент вакцины Тетракок).

Оглавление темы "Иммунодефициты. Вакцины. Сыворотки. Иммуноглобулины.":









Инактивированные вакцины. Корпускулярные (цельновирионные) вакцины. Компонентные (субъединичные) вакцины.

В настоящее время также применяют вакцины , изготовленные из убитых микробных тел либо метаболитов, а также из отдельных Аг, полученных биосинтетическим или химическим путём. Вакцины , содержащие убитые микроорганизмы и их структурные компоненты, относят к группе корпускулярных вакцинных препаратов .

Неживые вакцины обычно проявляют меньшую (по сравнению с живыми вакцинами) иммуногенность, что диктует необходимость многократной иммунизации. В то же время неживые вакцины лишены балластных веществ, что значительно уменьшает частоту побочных эффектов, часто развивающихся после иммунизации живыми вакцинами.

Корпускулярные (цельновирионные) вакцины

Для их приготовления вирулентные микроорганизмы убивают либо термической обработкой, либо воздействием химических агентов (например, формалина или ацетона). Подобные вакцины содержат полный набор Аг. Спектр возбудителей, используемых для приготовления неживых вакцин , разнообразен; наибольшее распространение получили бактериальные (например, противочумная) и вирусные (например, антирабическая) вакцины .

Компонентные (субъединичные) вакцины

Компонентные (субъединичные) вакцины - разновидность корпускулярных неживых вакцин; они состоят из отдельных (главных, или мажорных) антигенных компонентов, способных обеспечить развитие невосприимчивости. В качестве Аг применяют иммуногенные компоненты возбудителя. Для их выделения используют различные физико-химические методы, поэтому препараты, получаемые из них, также известны как химические вакцины. В настоящее время разработаны субъединичные вакцины против пневмококков (на основе полисахаридов капсул), брюшного тифа (О-, Н- и Vi-Ar), сибирской язвы (полисахариды и полипептиды капсул), гриппа (вирусные нейраминидазы и гемагглютинин). Для придания более высокой иммуногенности компонентные вакцины нередко сочетают с адъювантами (например, сорбируют на гидр оксиде алюминия).