Главная · Температура · Ангиотензин 2 литики механизм действия. Блокаторы рецепторов ангиотензина – что это? Комбинация сартанов с мочегонными лекарствами

Ангиотензин 2 литики механизм действия. Блокаторы рецепторов ангиотензина – что это? Комбинация сартанов с мочегонными лекарствами

То есть они:

    снижают сопротивление артериол,

    увеличивают венозный пул крови,

    увеличивают сердечный выброс, сердечный индекс,

    снижают реноваскулярное сопротивление,

    приводят к увеличению натийуреза(экскреции натрия с мочой).

Концентрация ренина в крови увеличивается за негативной обратной связи между преобразованием AI в AII. Уровень ангиотензина I также растет по аналогичной причине. Количество AII и альдостерона – уменьшается, тогда как брадикинина – увеличивается за счет снижения его инактивации, которая осуществляется при участии АПФ.

В обычных условиях, ангиотензин II имеет такое влияние на организм:

1. Действует как вазоконстриктор (сужает кровеносные сосуды).

Вследствие такого воздействия происходит повышение артериального давления и появляется артериальная гипертензия. Кроме того, сужение эфферентных артериол почек приводит к повышению перфузионного давления в клубочках этих органов;

2. Приводит к ремоделированию (изменению размеров) и гипертрофии желудочков сердца;

3. Приводит к активации процессов освобождения корой надпочечников – альдостерона, гормона, который действует в почечных канальцах и приводит к удержанию натрия и ионов хлорида и в организме и повышает экскрецию калия. Натрий удерживает воду, что приводит к увеличению объема крови, а, соответственно и к повышению артериального давления.

4. Стимулирует заднюю долю гипофиза , что ведет к освобождению вазопрессина (который также известный под названием антидиуретический гормон (АДГ)) и приводит к удержанию воды через воздействие на почки.

5. Снижает уровень почечной протеинкиназы.

Применение ингибиторов АПФ снижает действие ангиотензина II, вследствие чего происходит снижение кровяного давления.

Механизм действия ренин-ангиотензин-альдостероновой системы на организм и воздействие на нее ингибиторов АПФ.

Эпидемиологические и клинические исследования показали, что ингибиторы АПФ замедляют развитие диабетической нефропатии. Этот механизм действия ингибиторов АПФ, используется для профилактики диабетической почечной недостаточности.

Можно также сказать, что ингибиторы АПФ эффективны не только для лечения гипертензии, но и для преодоления некоторых симптомов у людей с нормальным АД.

Использование максимальной дозы ингибиторов АПФ для таких больных (в том числе для профилактики диабетической нефропатии, застойной сердечной недостаточности, профилактики сердечно-сосудистых расстройств) является оправданным, поскольку эти препараты улучшают клиническое состояние больных, независимо от их действия на артериальное давление.

Такое лечение обычно требует тщательного и постепенного титрования дозы препарата, для того чтобы предотвратить последствия быстрого снижения АД (головокружение, потеря сознания и др).

Ингибиторы АПФ также вызывают повышение активности центральной парасимпатической системы у здоровых людей и людей с сердечной недостаточностью, при этом возрастаетвариабельность сердечного ритма. Это может уменьшить распространенность злокачественных нарушений ритма сердца и сократить риск внезапной смерти человека.

Один из ингибиторов АПФ – эналаприл также сокращает сердечной кахексию у больных с хронической сердечной недостаточностью.

Кахексия – это очень плохой прогностический признак у пациентов с хронической сердечной недостаточностью. Ингибиторы АПФ в настоящее время используются также для того, чтобы улучшить проявления слабости и атрофии мышц у пожилых пациентов без сердечной недостаточности.

Побочные эффекты.

Типичные побочные реакции, которые возникают при употреблении ИАПФ включают:

    гипотензию

  • гиперкалиемию

    головную боль

    головокружение

    усталость

  • почечную недостаточность.

Данные некоторых исследований указывают также на то, что ингибиторы АПФ могут увеличить боль, вызванную воспалительными процессами.

Устойчивый сухой кашель является относительно частым побочным эффектом действия ИАПФ, который, как считается, связан с увеличением уровня образования брадикинина, хотя роль этого вещества в процессе возникновении этих симптомов некоторыми исследователями оспаривается. Пациенты, у которых возникает кашель, часто начинают употреблять антагонисты рецепторов ангиотензина II.

Высыпания и нарушение вкусовых ощущений, которые редко встречаются при приеме большинства ингибиторов АПФ, часто возникают при употреблении каптоприла и объясняются его сульфгидрильными частицами. Именно это является причиной уменьшения частоты использования каптоприла в клинических условиях, хотя препарат все еще используется при сцинтиграфии почек.

Одним из самых опасных побочных эффектов действия всех ингибиторов АПФ является почечная недостаточность, причина возникновения которой сегодня до конца не известна. Некоторые исследователи считают, что это связано с их влиянием на косвенные гомеостатические функции ангиотензина II, такие как почечный кровоток.

Почечный кровоток может быть нарушен из-за действия ангиотензина II, поскольку этот фермент сужает эфферентные артериолы клубочков почек, увеличивая тем самым скорость клубочковой фильтрации (СКФ). Таким образом, именно за счет снижения уровня ангиотензина II, ингибиторы АПФ могут уменьшить СКФ, которая является своеобразным показателем функциональности почек.

Если говорить точнее, то ингибиторы АПФ могут вызывать или обострять почечную недостаточность у пациентов со стенозом почечных артерий. Особенно существенной эта проблема считается тогда, когда пациент одновременно принимает НПВП (не стероидные противовоспалительные препараты) и мочегонные средства. Ведь параллельное употребление этих трех медикаментов существенно повышает риск развития почечной недостаточности.

Кроме того, стоит отметить, что ингибиторы АПФ могут привести к гиперкалиемии. Подавление действия ангиотензина II приводит к уменьшению уровня альдостерона, который в свою очередь отвечает за повышение экскреции калия, именно потому, ингибиторы АПФ в конечном итоге могут вызвать задержку калия в организме.

Если этот эффект выражен умеренно, то это может быть полезно для организма, однако тяжелая гиперкалиемия может вызывать нарушения ритма и проводимости сердца, а также другие тяжелые осложнения.

Тяжелая аллергическая реакция, на препараты, которая может возникать очень редко, влияет на стенки кишечника и, соответственно, может вызвать боль в животе.

Также, у некоторых пациентов через повышение уровня брадикинина возникает отек Квинке. Однако, считается, что такая негативная реакция вызвана генетической предрасположенностью пациента, и именно поэтому брадикинин расщепляется медленнее, чем должен.

Если беременные женщины принимают ингибиторы АПФ в течение первого триместра беременности, то это может стать причиной появления серьезных врожденных пороков развития,рождения мертвого ребенка и смерти новорожденных.

Распространенные аномалии развития плода включают:

Гипотензию,

Почечную дисплазию,

Анурии (олигурии),

Маловодье,

Задержку внутриутробного развития плода,

Легочную гипоплазию,

Открытую артериальную протоку,

Неполную оссификацию черепа.

Противопоказания и меры предосторожности

Ингибиторы АПФ противопоказаны пациентам с:

    возникновением в прошлом отека Квинке, который связан с употреблением ингибиторов АПФ;

    стенозом почечной артерии (двусторонним или односторонним);

    повышенной чувствительностью к ингибиторам АПФ;

Ингибиторы АПФ следует применять осторожно пациентам с:

    нарушениями функций почек;

    стенозом аортального клапана или с нарушением сердечного оттока;

    гиповолемией или дегидратацией;

    гемодиализом с помощью мембран высокого потока из полиакрилонитрила.

Ингибиторы АПФ относятся к препаратам категории D , то есть их использования следует избегать женщинам, планирующим в ближайшее время забеременеть.

Кроме того в инструкции к этим препаратам указано, что они существенно повышают риск возникновения врожденных дефектов, если их принимать на втором или третьем триместре беременности.

Их использование на первом триместре также связано с риском возникновения серьезных врожденных пороков развития, особенно это касается нарушений сердечно-сосудистой и центральной нервной системы.

Препараты калия следует использовать очень осторожно и под наблюдением врача, через вероятность развития гиперкалиемии вследствие приема ингибиторов АПФ.

Классификация.

Ингибиторы АПФ могут быть разделены на три группы в зависимости от их молекулярного строения:

    каптоприл (торговая марка Capoten), первый ингибитор АПФ;

    зофеноприл.

    эналаприл (вазокет / ренитек);

    рамиприл (Altace / Tritace / Ramace / Ramiwin);

    хинаприл (Accupril);

    периндоприл (Престариум / Coversyl / Aceon);

    лизиноприл (Listril / Lopril / Новатэк / Prinivil / Zestril);

    беназеприл (Lotensin);

    имидаприл (Tanatril);

    зофеноприл (Zofecard);

Единственным представителем этой группы является фозиноприл (Моноприл).

Естественное происхождение

    Казокинины (сasokinins) и лактокинины (lactokinins) являются продуктами распада казеина и молочной сыворотки. В естественных условиях (в организме человека) они образуются после употребления молочных продуктов, сыворотки, то есть их образование происходит в природе после употребления молочных продуктов, особенно кисломолочных. Их влияние на артериальное давление на сегодня до конца не определено.

    Лактотрипептиды Val-Pro-Pro и Ile-Pro-Pro, которые образуются пробиотиком Lactobacillus helveticus или получаемые из казеина также приводят к ингибированию АПФ и имеют антигипертензивные функции.

Эквиваленты ИАПФ.

Ингибиторы АПФ имеют разную силу воздействия и, соответственно, разные стартовые дозы. Дозировка препарата должна быть скорректировано в зависимости от реакции организма на действие препарата, что проявляется в течение первых пяти-десяти дней от начала лечения.

Дозы ингибиторов АПФ при артериальной гипертензии.

Дозы ингибиторв АПФ при артериальной гипертензии

Название

Эквивалентная суточная доза

Дозирование

Начало

Ежедневное употребление

Максимальная доза

Беназеприл

Каптоприл

50 мг (25 мг дважды в сутки)

12.5–25 мг (дважды-трижды в сутки)

25–50 мг (дважды-трижды в сутки)

Еналаприл

Фозиноприл

Лизиноприл

Моэксиприл

Периндоприл

Хинаприл

Рамиприл

Трандолаприл

В крови расщепляет другой белок ангиотензиноген (АТГ) с образованием белка ангиотензина 1 (АТ1) , состоящего из 10 аминокислот (декапептид).

Другой фермент крови – АПФ (Ангиотензин превращающий фермент, Ангиотензинконвертин энзим (АСЕ), Конвертирующий фактор Е лёгких) отщепляет от АТ1 две хвостовые аминокислоты с образованием белка из 8 аминокислот (октапептид), который называется ангиотензин 2 (АТ2) . Способностью образовывать из АТ1 ангиотензин 2 обладают и другие ферменты – химазы, катепсин G, тонин и другие сериновые протеазы, но в меньшей степени. В эпифизе головного мозга содержится большое количество химазы, которая превращает АТ1 в АТ2. В основном ангиотензин 2 образуется из ангиотензина 1 под влиянием АПФ. Образование АТ2 из АТ1с помощью химаз, катепсина G, тонина и других сериновых протеаз, называется альтернативным путём образования АТ2. АПФ присутствует в крови и во всех тканях организма, но больше всего синтезируется АПФ в лёгких. АПФ является кининазой, поэтому расщепляет кинины, которые в организме оказывают сосудорасширяющее действие.

Ангиотензин 2 оказывает своё действие на клетки организма через белки на поверхности клеток, которые называются ангиотензин рецепторами (АТ рецепторами). АТ-рецепторы бывают разных типов: АТ1 рецепторы, АТ2 рецепторы, АТ3 рецепторы, АТ4 рецепторы и другие. Наибольшее сродство АТ2 имеет к АТ1 рецепторам. Поэтому в первую очередь АТ2 вступает в соединение с АТ1 рецепторами. В результате этого соединения происходят процессы, которые приводят к повышению артериального давления (АД). Если уровень АТ2 высок, а свободных АТ1 рецепторов нет (не связанных с АТ2), то АТ2 соединяется с АТ2 рецепторами, к которым имеет меньшее сродство. Соединение АТ2 с АТ2 рецепторами запускает противоположные процессы, которые приводят к понижению АД.

Ангиотензин 2 (АТ2) соединяясь с АТ1 рецепторами:

  1. оказывает на сосуды очень сильное и продолжительное сосудосуживающее действие (до нескольких часов), увеличивая тем самым сопротивление сосудов, а, значит, и артериальное давление (АД). В результате соединения АТ2 с АТ1 рецепторами клеток кровеносных сосудов, запускаются химические процессы, в результате которых происходит сокращение гладкомышечных клеток средней оболочки, сосуды сужаются (происходит спазм сосудов), внутренний диаметр сосуда (просвет сосуда) уменьшается, сопротивление сосуда увеличивается. В дозе всего лишь 0,001 мг АТ2 может увеличить АД более чем на 50 мм.рт.ст.
  2. инициирует задержку натрия и воды в организме, что увеличивает объём циркулирующей крови, а, значит, и АД. Ангиотензин 2 действует на клетки клубочковой зоной надпочечников. В результате этого действия клетки клубочковой зоны надпочечников начинают синтезировать и выделять в кровь гормон альдостерон (минералокортикоид). АТ2 способствует образованию альдостерона из кортикостерона через действие на альдостеронсинтетазу. Альдостерон усиливает реабсорбцию (поглощение) натрия, а, значит, и воды из почечных канальцев в кровь. Это приводит:
    • к задержке воды в организме, а, значит, – к увеличению объёма циркулирующей крови и к обусловленному этим, повышению АД;
    • задержка в организме натрия приводит к тому, что натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри. Увеличение концентрации натрия в клетке приводит к увеличению количества воды в клетке. Эндотелиальные клетки увеличиваются в объёме (набухают, «отекают»). Это приводит к сужению просвета сосуда. Уменьшение просвета сосуда увеличивает его сопротивление. Увеличение сопротивления сосуда увеличивает силу сердечных сокращений. Кроме того, задержка натрия – повышает чувствительность АТ1 рецепторов к АТ2. Это ускоряет и усиливает сосудосуживающее действие АТ2. Всё это суммарно приводит к повышению АД
  3. стимулирует клетки гипоталамуса на синтез и выделение в кровь антидиуретического гормона вазопрессина и клетками аденогипофиза (передней доли гипофиза) адренокортикотропного гормона (АКТГ). Вазопрессин оказывает:
    1. сосудосуживающее действие;
    2. задерживает воду в организме, усиливая в результате расширения межклеточных пор реабсорбцию (поглощение) воды из почечных канальцев в кровь. Это приводит к увеличению объёма циркулирующей крови;
    3. усиливает сосудосуживающее действие катехоламинов (адреналина, норадреналина) и ангиотензина 2.

    АКТГ стимулирует синтез клетками пучковой зоны коркового слоя надпочечников глюкокортикоидов: кортизола, кортизона, кортикостерона, 11-дезоксикортизола, 11-дегидрокортикостерона. Наибольшим биологическим действием обладает кортизол. Кортизол не обладает сосудосуживающим действием, но усиливает сосудосуживающее действие гормонов адреналина и норадреналина, синтезируемых клетками пучковой зоны коркового слоя надпочечников.

  4. является кининазой, поэтому расщепляет кинины, которые в организме оказывают сосудорасширяющее действие.

При увеличении уровня ангиотензина 2 в крови может появиться ощущение жажды, сухости во рту.

При продолжительном увеличении в крови и в тканях АТ2:

  1. гладкомышечные клетки кровеносных сосудов продолжительное время находятся в состоянии сокращения (сжатия). В результате этого развивается гипертрофия (утолщение) гладкомышечных клеток и избыточное образование коллагеновых волокон – стенки сосудов утолщаются, внутренний диаметр сосудов уменьшается. Таким образом, гипертрофия мышечного слоя кровеносных сосудов, развившаяся под продолжительным влиянием на сосуды избыточного количества АТ2 в крови, увеличивает периферическое сопротивление сосудов, а, значит, – и АД;
  2. сердце продолжительное время вынуждено сокращаться с большей силой, чтобы перекачивать больший объём крови и преодолевать большее сопротивление спазмированных сосудов. Это приводит сначала к развитию гипертрофии сердечной мышцы, к увеличению её размеров, к увеличению размеров сердца (больше левого желудочка), а затем происходит истощение клеток сердечной мышцы (миокардиоцитов), их дистрофия (миокардиодистрофия), заканчивающаяся их гибелью и замещением соединительной тканью (кардиосклероз), что в конечном итоге приводит к сердечной недостаточности;
  3. продолжительный спазм кровеносных сосудов в сочетании с гипертрофией мышечного слоя сосудов приводит к ухудшению кровоснабжения органов и тканей. От недостаточного кровоснабжения страдают в первую очередь почки, головной мозг, зрение, сердце. Недостаточное кровоснабжение почек на протяжении длительного времени приводит клетки почек к состоянию дистрофии (истощению), гибели и замещению соединительной тканью (нефросклероз, сморщивание почки), ухудшению функции почек (почечной недостаточности). Недостаточное кровоснабжение мозга приводит к ухудшению интеллектуальных возможностей, памяти, коммуникабельности, работоспособности, к эмоциональным расстройствам, расстройствам сна, головным болям, головокружениям, к ощущению шума в ушах, чувствительным расстройствам и другим расстройствам. Недостаточное кровоснабжение сердца – к ишемической болезни сердца (стенокардия, инфаркт миокарда). Недостаточное кровоснабжение сетчатки глаза – к прогрессирующему нарушению остроты зрения;
  4. уменьшается чувствительность клеток организма к инсулину (инсулинорезистентность клеток) – инициация возникновения и прогрессирования сахарного диабета 2 типа. Инсулинорезистентность приводит к увеличению инсулина в крови (гиперинсулинемия). Продолжительная гиперинсулинемия становится причиной стойкого повышения АД – артериальной гипертензии, так как приводит:
    • к задержке натрия и воды в организме – увеличение объёма циркулирующей крови, увеличение сопротивления сосудов, увеличение силы сердечных сокращений – повышение АД;
    • к гипертрофии гладкомышечных клеток сосудов – – повышение АД;
    • к повышенному содержанию ионов кальция внутри клетки – – повышение АД;
    • к повышению тонуса – , увеличение объёма циркулирующей крови, увеличение силы сердечных сокращений – повышение АД;

Ангиотензин 2 подвергается дальнейшему ферментативному разщеплению глютамил аминопептидазой с образованием Ангиотензина 3, состоящего из 7 аминокислот. У ангиотензина 3 сосудосуживающее действие слабее, чем у ангиотензина 2, а способность стимулировать синтез альдостерона – сильнее. Ангиотензин 3 ферментом аргинин аминопептидазой расщеплятся до ангиотензина 4, состоящего из 6 аминокислот.

Который преобразуется из своего предшественника сывороточного глобулина, синтезируемого печенью. Ангиотензин крайне важен для гормональной ренин-ангиотензиновой системы – системы, которая отвечает за объем крови и давление в организме человека.

Вещество ангиотензиноген относится к классу глобулинов, оно состоит из более, чем 400 . Его производство и высвобождение в кровь производится печенью постоянно. Уровень ангиотензина может увеличиваться под воздействием ангиотензина II, тиреоидного гормона, эстрогена, плазменных кортикостероидов. Когда кровяное давление понижается, это действует как стимулирующий фактор для производства ренина, выделения его в кровь. Этот процесс запускает синтез ангиотензина.

Ангиотензин I и ангиотензин II

Под воздействием ренина из ангиотензиногена образуется следующее вещество — ангиотензин I . Данное вещество не несет какой-либо биологической активности, его главная роль – быть предшественником ангиотензина II . Последний гормон уже является активным: он обеспечивает синтез альдостерона, сужает сосуды. Данная система является мишенью для лекарств, которые понижают , а также для множества ингибирующих средств, которые уменьшают концентрацию ангиотензина II.

Роль ангиотензина в организме

Данное вещество является сильным вазоконстриктором . Это означает, что оно сужает и артерии, а это, в свою очередь, ведет к увеличению артериального давления. Такая его активность обеспечивается благодаря химическим связям, которые образуются при взаимодействии гормона со специальным рецептором. Также среди функций, относящихся к сердечнососудистой системе, можно выделить агрегацию тромбоцитов , регулирование адгезии и протромботический эффект. За возникающие в нашем организме отвечает как раз данный гормон. Он вызывает увеличение секреции в нейросекреторных клетках в таком отделе мозга, как гипоталамус , а также секреции адренокортикотропного гормона в гипофизе . Это приводит к быстрому высвобождению норадреналина. Гормон альдостерон , выделяемый надпочечниками, выбрасывается в кровь как раз благодаря ангиотензину. Играет важную роль в поддержание электролитного и водного баланса, ренальной гемодинамики. Задержка натрия данным веществом обеспечивается благодаря его способности воздействовать на проксимальные канальцы. В общем, он способен катализировать реакцию гломерулярной фильтрации за счет увеличения давления в почках и сужения почечных эфферентных артериол.

Для определения уровня данного гормона в крови сдается обычный анализ крови, как и на любые другие гормоны. Его избыток может свидетельствовать о повышенной концентрации эстрогена , наблюдаться при использовании оральных противозачаточных таблеток и во время , после бинефрэктомии, может быть симптомом болезни болезнь Иценко-Кушинга. Пониженный уровень ангиотензина наблюдается при недостаточности глюкокортикоидов, к примеру, при заболеваниях печени, болезни Аддисона.

Ангиотензин – это пептидный гормон, который вызывает сужение кровеносных сосудов (вазоконстрикцию), повышение артериального давления, а также высвобождение альдостерона из коры надпочечников в кровеносное русло.

Ангиотензин играет значимую роль в ренин-ангиотензин-альдостероновой системе, которая является главной целью лекарственных средств, снижающих артериальное давление.

Основной механизм действия антагонистов рецепторов ангиотензина 2 связан с блокадой АТ 1 -рецепторов, за счет чего устраняется неблагоприятное воздействие ангиотензина 2 на тонус сосудов и нормализуется повышенное артериальное давление.

Уровень ангиотензина в крови повышается при почечной гипертензии и новообразованиях почек, продуцирующих ренин, а понижается при обезвоживании организма, синдроме Конна и удалении почки.

Синтез ангиотензина

Предшественником ангиотензина является ангиотензиноген – белок класса глобулинов, который относится к серпинам и вырабатывается преимущественно печенью.

Выработка ангиотензина 1 происходит под влиянием на ангиотензиноген ренина. Ренин – протеолитический фермент, который относится к наиболее значимым почечным факторам, принимающим участие в регуляции артериального давления, при этом сам он прессорными свойствами не обладает. Ангиотензин 1 также не обладает вазопрессорной активностью и быстро превращается в ангиотензин 2, который является наиболее мощным из всех известных прессорных факторов. Превращение ангиотензина 1 в ангиотензин 2 происходит за счет удаления С-концевых остатков под воздействием ангиотензинпревращающего фермента, который присутствует во всех тканях организма, однако больше всего синтезируется в легких. Последующее расщепление ангиотензина 2 обусловливает образование ангиотензина 3 и ангиотензина 4.

Помимо этого, способностью образовывать ангиотензин 2 из ангиотензина 1 обладают тонин, химазы, катепсин G и другие сериновые протеазы, что является так называемым альтернативным путем образования ангиотензина 2.

Ренин-ангиотензин-альдостероновая система

Ренин-ангиотензин-альдостероновая система – это гормональная система, которая обеспечивает регуляцию артериального давления и объема циркулирующей в организме крови.

Лекарственные средства, действующие путем блокады ангиотензиновых рецепторов, были созданы в ходе изучения ингибиторов ангиотензина 2, которые способны блокировать его образование или действие и таким образом снижать активность ренин-ангиотензин-альдостероновой системы.

Ренин-ангиотензин-альдостероновый каскад начинается с синтеза препроренина путем трансляции рениновой мРНК в юкстагломерулярных клетках афферентных артериол почек, где из препроренина, в свою очередь, образуется проренин. Значительная часть последнего путем экзоцитоза выбрасывается в кровоток, однако часть проренина превращается в ренин в секреторных гранулах юкстагломерулярных клеток, затем также выделяясь в кровеносное русло. По этой причине в норме объем циркулирующего в крови проренина значительно выше концентрации активного ренина. Контроль выработки ренина является определяющим фактором активности ренин-ангиотензин-альдостероновой системы.

Ренин регулирует синтез ангиотензина 1, не обладающего биологической активностью и выступающего прекурсором ангиотензина 2, служащего сильным вазоконстриктором прямого действия. Под его влиянием происходит сужение кровеносных сосудов и последующее повышение кровяного давления. Также он имеет протромботический эффект – регулирует адгезию и агрегацию тромбоцитов. Кроме того, ангиотензин 2 потенциирует высвобождение норадреналина , повышает выработку адренокортикотропного гормона и антидиуретического гормона, способен вызывать чувство жажды. За счет повышения давления в почках и сужения эфферентных артериол ангиотензин 2 увеличивает скорость гломерулярной фильтрации.

Ангиотензин 2 оказывает свое действие на клетки организма через рецепторы ангиотензина (АТ-рецепторы) разных типов. Наибольшее сродство ангиотензин 2 имеет к АТ 1 -рецепторам, которые локализуются преимущественно в гладкой мускулатуре кровеносных сосудов, сердце, некоторых областях мозга, печени, почках, коре надпочечников. Период полураспада ангиотензина 2 составляет 12 минут. Ангиотензин 3, формирующийся из ангиотензина 2, обладает 40% его активности. Период полураспада ангиотензина 3 в кровотоке составляет примерно 30 секунд, в тканях организма – 15–30 минут. Ангиотензин 4 является гексопептидом и схож по своим свойствам с ангиотензином 3.

Продолжительное повышение концентрации ангиотензина 2 приводит к уменьшению чувствительности клеток к инсулину с высоким риском развития сахарного диабета второго типа.

Ангиотензин 2 и внеклеточный уровень ионов калия относятся к наиболее значимым регуляторам альдостерона, который является важным регулятором баланса калия и натрия в организме и играет значимую роль в контроле объема жидкостей. Он увеличивает реабсорбцию воды и натрия в дистальных извитых канальцах, собирательных трубках, слюнных и потовых железах, толстом кишечнике, вызывая экскрецию ионов калия и водорода. Повышенная концентрация альдостерона в крови приводит к задержке в организме натрия и усиленному выделению калия с мочой, то есть к снижению уровня данного микроэлемента в сыворотке крови (гипокалиемия).

Повышенный уровень ангиотензина

При длительном увеличении концентрации ангиотензина 2 в крови и тканях повышается образование коллагеновых волокон и развивается гипертрофия гладкомышечных клеток кровеносных сосудов. В результате стенки кровеносных сосудов утолщаются, уменьшается их внутренний диаметр, что приводит к повышению артериального давления . Помимо этого, происходит истощение и дистрофия клеток сердечной мышцы с их последующей гибелью и замещением соединительной тканью, что является причиной развития сердечной недостаточности .

Длительный спазм и гипертрофия мышечного слоя кровеносных сосудов обусловливают ухудшение кровоснабжения органов и тканей, в первую очередь головного мозга, сердца, почек, зрительного анализатора. Продолжительный недостаток кровоснабжения почек приводит к их дистрофии, нефросклерозу и формированию почечной недостаточности. При недостаточном кровоснабжении головного мозга наблюдаются нарушения сна, эмоциональные расстройства, снижение интеллекта, памяти, шум в ушах, головная боль, головокружение и пр. Ишемия сердца может осложняться стенокардией , инфарктом миокарда . Недостаточное кровоснабжение сетчатки глаза приводит к прогрессирующему снижению остроты зрения.

Ренин регулирует синтез ангиотензина 1, не обладающего биологической активностью и выступающего прекурсором ангиотензина 2, служащего сильным вазоконстриктором прямого действия.

Продолжительное повышение концентрации ангиотензина 2 приводит к уменьшению чувствительности клеток к инсулину с высоким риском развития сахарного диабета второго типа.

Блокаторы ангиотензина 2

Блокаторы ангиотензина 2 (антагонисты ангиотензина 2) – это группа лекарственных средств, снижающих артериальное давление.

Лекарственные средства, действующие путем блокады ангиотензиновых рецепторов, были созданы в ходе изучения ингибиторов ангиотензина 2, которые способны блокировать его образование или действие и таким образом снижать активность ренин-ангиотензин-альдостероновой системы. К таким веществам относятся ингибиторы синтеза ринина, ингибиторы образования ангиотензиногена, ингибиторы ангиотензинпревращающего фермента, антагонисты ангиотензиновых рецепторов и пр.

Блокаторы (антагонисты) рецепторов ангиотензина 2 – это группа гипотензивных лекарственных средств, которая объединяет препараты, модулирующие функционирование ренин-ангиотензин-альдостероновой системы через взаимодействие с ангиотензиновыми рецепторами.

Основной механизм действия антагонистов рецепторов ангиотензина 2 связан с блокадой АТ 1 -рецепторов, за счет чего устраняется неблагоприятное воздействие ангиотензина 2 на тонус сосудов и нормализуется повышенное артериальное давление. Прием препаратов данной группы обеспечивает продолжительный антигипертензивный и органопротекторный эффект.

В настоящее время продолжаются клинические исследования, посвященные изучению эффективности и безопасности блокаторов рецепторов ангиотензина 2.

Видео с YouTube по теме статьи:


Для цитирования: Сидоренко Б.А., Преображенский Д.В., Заикина Н.В. ФАРМАКОТЕРАПИЯ ГИПЕРТОНИЧЕСКОЙ БОЛЕЗНИ. Часть VI. Блокаторы ангиотензиновых рецепторов I типа как антигипертензивные препараты // РМЖ. 1998. №24. С. 4

Рассмотрены физиология ренин-ангиотензиновой системы и роль ее повышенной активности в патогенезе гипертонической болезни. Представлена сравнительная характеристика блокаторов ангиотензиновых рецепторов I типа.

The paper considers the physiology of the renin-angiotensin system and the role of its increased activity in the pathogenesis of essential hypertension. It comparatively characterizes antihypertensive angiotensin I receptor antagonists.

Б.А. Сидоренко, Д.В. Преображенский,
Н.В. Заикина - Медицинский центр Управления делами Президента Российской Федерации, Москва

V. A. Sidorenko, D. V. Preobrazhensky,
N. V. Zaikina - Medical Center, Administration of Affairs of the President of the Russian Federation, Moscow

Часть VI. Блокаторы ангиотензиновых рецепторов I типа как антигипертензивные препараты

Повышенная активность ренин-ангиотензиновой системы (РАС) в кровяном русле и тканях, как известно, является важным фактором патогенеза гипертонической болезни (ГБ) и некоторых вторичных форм артериальной гипертензии. Высокая активность ренина в плазме крови, отражающая гиперактивность РАС, является прогностически неблагоприятным показателем при ГБ. Так, у больных ГБ с высокой активностью ренина в плазме риск развития инфаркта миокарда в 3,8 раза выше, чем у больных с низкой активностью ренина. Высокая активность ренина в плазме крови сочетается с увеличением вероятности развития сердечно-сосудистых осложнений в 2,4 раза и смертности от всех причин - в 2,8 раза . До недавнего времени для подавления чрезмерной активности РАС у больных ГБ использовались симпатолитические средства центрального действия (резерпин), агонисты центральных a 2 -адренорецепторов (метилдопа, клонидин), b -адреноблокаторы (пропранолол, атенолол, метопролол и др.) и ингибиторы ангиотензинпревращающего фермента (АПФ). В 90-е годы появилась новая группа высокоэффективных антигипертензивных препаратов, действие которых основано на торможении активности РАС на уровне ангиотензиновых рецепторов I типа (АТ 1 -рецепторов) для ангиотензина II. Эти препараты получили название блокаторы АТ 1 -рецепторов, или антагонисты рецепторов для ангиотензина II.

Физиология ренин-ангиотензиновой системы

Для лучшего понимания механизмов антигипертензивного действия блокаторов АТ 1 -рецепторов необходимо остановиться на молекулярных и функциональных аспектах РАС.
Главным эффекторным пептидом РАС является ангиотензин II, который образуется из неактивного ангиотензина I под действием АПФ и некоторых других сериновых протеаз. Действие ангиотензина II на клеточном уровне опосредуется двумя типами мембранных рецепторов - АТ
1 и АТ 2 . Почти все известные физиологические (сердечно-сосудистые и нейроэндокринные) эффекты ангиотензина II опосредуются АТ 1 -рецепторами. Например, при ГБ имеют важное значение такие опосредуемые АТ 1 -рецепторами эффекты ангиотензина II, как артериальная вазоконстрикция и секреция альдостерона, а также стимуляция пролиферации кардиомиоцитов и гладкомышечных клеток сосудистой стенки. Все эти эффекты ангиотензина II, как полагают, способствуют повышению артериального давления (АД), развитию гипертрофии левого желудочка и утолщению стенок артерий, которое сопровождается уменьшением их просвета, у больных ГБ.
Таблица 1. Физиологические эффекты ангиотензина II, которые опосредуются АТ1- и АТ2-рецепторами (по C. Johnston и J. Risvanis)

АТ 1 -рецепторы АТ 2 -рецепторы
Вазоконстрикция Стимуляция апоптоза
Стимуляция синтеза и секреции альдостерона Антипролиферативный эффект
Реабсорбция натрия в почечных канальцах Дифференцировка и развитие эмбриональных тканей
Гипертрофия кардиомиоцитов Рост эндотелиальных клеток
Пролиферация гладкомышечных клеток сосудистой стенки Вазодилатация
Усиление периферической норадреналинергической активности
Усиление активности центрального звена симпатической
нервной системы
Стимуляция высвобождения вазопрессина
Снижение почечного кровотока
Торможение секреции ренина

Эффекты ангиотензина II, опосредуемые АТ 2 -рецепторами, стали известны лишь в последние годы. При ГБ наиболее важное значение имеют те физиологические эффекты ангиотензина II (а также ангиотензина III), которые опосредуются АТ 2 -рецепторами, а именно вазодилатация и торможение пролиферации клеток, в том числе кардиомиоцитов, фибробластов и гладкомышечных клеток сосудистой стенки (табл. 1). Как можно видеть, при стимуляции АТ 2 -рецепторов ангиотензин II частично ослабляет свои собственные эффекты, связанные со стимуляцией АТ 1 -рецепторов.

Схема 1. Пути образования двух основных эффекторных пептидов РАС - ангиотензина II и ангиотензина-(I-7). Ангиотензин II в дальнейшем превращается в ангиотензин III и ангиотензин IV, обладающие некоторой биологической активностью, которая опосредуется соответственно АТ 3 - и АТ 4 -рецепторами (на схеме не обозначены).

АТ 1 -рецепторы на мембранах гепатоцитов и клеток юкстагломерулярного аппарата (ЮГА) почек опосредуют механизмы отрицательной обратной связи в РАС. Поэтому в условиях блокады АТ 1 -рецепторов в результате нарушений этих механизмов отрицательной обратной связи увеличиваются синтез ангиотензиногена в печени и секреция ренина клетками ЮГА почек. Иными словами, при блокаде АТ 1 -рецепторов происходит реактивная активация РАС, которая проявляется повышением уровня ангиотензиногена, ренина, а также ангиотензина I и ангиотензина II.
Повышенное образование ангиотензина II в условиях блокады АТ
1 -рецепторов приводит к тому, что начинают преобладать эффекты ангиотензина II, опосредуемые АТ 2 -рецепторами. Следовательно, последствия блокады АТ 1 -рецепторов двоякие. Прямые последствия связаны с ослаблением фармакологических эффектов, опосредуемых АТ 1 -рецепторами. Косвенные последствия являются результатом стимуляции АТ 2 -рецепторов ангиотензином II, который в условиях блокады АТ 1 -рецепторов образуется в повышенном количестве.
Третий механизм антигипертензивного действия блокаторов АТ
1 -рецепторов объясняется повышенным образованием в условиях блокады АТ 1 -рецепторов другого эффекторного пептида РАС - ангиотензина-(I-7), обладающего вазодилатирующими свойствами. Ангиотензин-(I-7) образуется из ангиотензина I под действием нейтральной эндопептидазы и из ангиотензина II под действием пролиловой эндопептидазы. В условиях блокады АТ 1 -рецепторов повышенный уровень ангиотензина I и ангиотензина II в крови предрасполагает к усиленному превращению их в ангиотензин-(I-7) .
Ангиотензин-(I-7) обладает вазодилатирующим действием и натрийуретическими свойствами, которые опосредуются простагландинами I2, кининами и оксидом азота. Эти эффекты ангиотензина-(I-7) обусловлены его действием на неидентифицированные пока АТ-рецепторы - АТх-рецепторы (схема 1).
Таким образом, механизмов антигипертензивного действия у блокаторов АТ
1 -рецепторов три - один прямой и два косвенных. Прямой механизм связан с ослаблением эффектов ангиотензина II, которые опосредуются АТ 1 -рецепторами. Косвенные механизмы связаны с реактивной активацией РАС в условиях блокады АТ 1 -рецепторов, которая ведет к повышенному образованию как ангиотензина II, так и ангиотензина-(I-7). Ангиотензин II оказывает антигипертензивное действие, стимулируя незаблокированные АТ 2 -рецепторы, в то время как ангиотензин-(I-7) оказывает антигипертензивное действие, стимулируя АТх-рецепторы (схема 2).

Клиническая фармакология блокаторов АТ 1 -рецепторов

Существуют два основных типа АТ-рецепторов - АТ 1 и АТ 2 . Соответственно различают селективные блокаторы АТ 1 - и АТ 2 -рецепторов. В клинической практике используются блокаторы АТ 1 -рецепторов, которые оказывают антигипертензивное действие. В настоящее время применяются или проходят клинические испытания по меньшей мере восемь непептидных селективных блокаторов АТ 1 -рецепторов: вальзартан, золарзартан, ирбезартан, кандезартан, лозартан, тазозартан, тельмизартан и эпрозартан.
По химической структуре непептидные блокаторы АТ
1 -рецепторов можно разделить на три основные группы:
. бифениловые производные тетразола - лозартан, ирбезартан, кандезартан и др.;
. небифениловые производные тетразола - эпрозартан и др.;
. негетероциклические соединения - вальзартан и др. .
Некоторые блокаторы АТ
1 -рецепторов сами по себе обладают фармакологической активностью (вальзартан, ирбезартан), другие (например, кандезартана цилексетил) становятся активными лишь после ряда метаболических превращений в печени. Наконец, у таких активных АТ 1 -блокаторов, как лозартан и тазозартан, есть активные метаболиты, оказывающие более сильное и длительное действие, чем сами препараты. Следовательно, блокаторы АТ 1 -рецепторы можно разделить на активные препараты и пролекарственные формы АТ 1 -блокаторов.
По механизму связывания с АТ
1 -рецепторами доступные АТ 1 -блокаторы разделяются на конкурентные и неконкурентные антагонисты ангиотензина II. К конкурентным АТ 1 -блокаторам относятся вальзартан, ирбезартан и лозартан, к неконкурентным - активная форма кандезартана цилексетила (кандезартан) и активный метаболит лозартана (Е-3174).
Продолжительность антигипертензивного действия блокаторов АТ
1 -рецепторов определяется как прочностью их связи с АТ 1 -рецепторами, так и периодом полужизни препаратов или их активных лекарственных форм и активных метаболитов (табл. 2).
Наряду с блокаторами АТ 1 -рецепторов существуют селективные блокаторы АТ 2 -рецепторов - CGP 42112 и PD 123319. В отличие от АТ 1 -блокаторов блокаторы АТ 2 -рецепторов не оказывают антигипертензивного действия и пока не используются в клинической практике.
Лозартан - первый непептидный блокатор АТ 1 -рецепторов, который успешно прошел клинические испытания и разрешен к использованию для лечения ГБ и хронической сердечной недостаточности.
После приема внутрь лозартан всасывается в желудочно-кишечном тракте; концентрация препарата в плазме крови достигает максимума в течение 30 - 60 мин. При первом прохождении через печень лозартан в значительной степени метаболизируется, в результате чего его системная биодоступность составляет 19 - 62% (в среднем 33%). Период полужизни лозартана в плазме крови составляет 2,1 ± 0,5 ч. Тем не менее антигипертензивный эффект препарата сохраняется на протяжении 24 ч, что объясняется наличием у него активного метаболита - Е-3174, который в 10 - 40 раз сильнее блокирует АТ
1 -рецепторы, чем лозартан. Кроме того, у Е-3174 более длительный период полужизни в плазме крови - от 4 до 9 ч. Лозартан и Е-3174 выводятся из организма как через почки, так и через печень. Через почки выводится примерно 50% всего количества Е-3174.
Рекомендуемая доза лозартана при лечении артериальной гипертензии - 50 - 100 мг/сут в один прием .

Вальзартан - высокоселективный блокатор АТ 1 -рецепторов. Он более селективен, чем лозартан. В то время как у лозартана сродство к АТ 1 -рецепторам в 10 000 раз выше, чем к АТ 2 -рецепторам, у вальзартана показатель АТ 1 -селективности составляет 20 000 - 30 000: 1. У вальзартана в отличие от лозартана нет активных метаболитов. Период его полужизни в плазме крови составляет около 5 - 7 ч и сопоставим с таковым активного метаболита лозартана Е-3174. Это объясняет, почему антигипертензивный эффект вальзартана сохраняется в течение 24 ч. Основной путь элиминации вальзартана - выведение с желчью и калом.
Больным ГБ вальзартан назначают в дозе 80 - 160 мг/сут в один прием .
Ирбезартан - селективный блокатор АТ
1 -рецепторов. Как АТ 1 -блокатор он менее селективен, чем вальзартан. Показатель АТ 1 -селективности у ирбезартана такой же, как у лозартана - 10 000: 1. Ирбезартан в 10 раз сильнее связывается с АТ 1 -рецепторами, чем лозартан, и несколько сильнее, чем активный метаболит лозартана Е-3174.
Биодоступность ирбезартана составляет 60 - 80%, что значительно выше, чем у других блокаторов АТ
1 -рецепторов.

Схема 2. Прямые и косвенные последствия блокады АТ 1 -рецепторов. Снижение АД при лечении селективными блокаторами АТ 1 -рецепторов является следствием не только ослабления эффектов ангиотензина II, опосредуемых АТ 1 -рецепторами, но и усиления эффектов ангиотензина II, опосредуемых АТ 2 -рецепторами, и эффектов ангиотензина-(I-7), опосредуемых АТ х -рецепторами.

В отличие от лозартана и вальзартана биодоступность ирбезартана не зависит от совместного приема пищи. Период полужизни ирбезартана в плазме крови достигает 11 - 17 ч. Ирбезартан выводится из организма преимущественно с желчью и калом; с мочой выводится примерно 20% дозы препарата.
Для лечения ГБ ирбезартан назначают в дозе 75 - 300 мг/сут в один прием .
Кандезартана цилексетил - пролекарственная форма АТ 1 -блокатора. После приема внутрь кандезартана цилексетила в крови не обнаруживается, поскольку быстро и полностью превращается в активное соединение - кандезартан (CV-11974). Сродство кандезартана к АТ 1 -рецепторам более чем в 10 000 раз выше, чем сродство к АТ 2 -рецепторам. Кандезартан в 80 раз сильнее связывается с АТ 1 -рецепторами, чем лозартан, и в 10 раз сильнее, чем активный метаболит лозартана Е-3174.
Кандезартан прочно связывается с АТ
1 -рецепторами, диссоциация его из связи с АТ 1 -рецепторами происходит медленно. Эти данные о кинетике связывания кандезартана с АТ 1 -рецепторами дают основание предполагать, что в отличие от лозартана кандезартан действует как неконкурентный антагонист ангиотензина II.
После приема кандезартана цилексетила максимальная концентрация его активной формы - кандезартана - в плазме крови обнаруживается через 3,5 - 6 ч. Период полужизни кандезартана в плазме крови колеблется от 7,7 до 12,9 ч, составляя в среднем 9 ч. Из организма кандезартан выводится через почки, а также с желчью и калом.
Средняя доза кандезартана цилексетила для лечения артериальной гипертензии - 8 - 16 мг/сут в один прием .
Эпрозартан - селективный блокатор АТ 1 -рецепторов. По химической структуре он отличается от других АТ 1 -блокаторов тем, что является небифениловым производным тетразола. Эпрозартан обладает важным дополнительным свойством: он блокирует пресинаптические АТ 1 -рецепторы в симпатической нервной системе. Благодаря этому свойству эпрозартан (в отличие от вальзартана, ирбезартана и лозартана) тормозит высвобождение норадреналина из окончаний симпатических нервных волокон и тем самым уменьшает стимуляцию a1-адренорецепторов гладкой мускулатуры сосудов. Иными словами, у эпрозартана имеется дополнительный механизм вазодилатирующего действия. Кроме того, эпрозартан, и вальзартан в отличие от лозартана и ирбезартана не оказывают влияния на активность ферментов цитохромной Р-450 системы и не взаимодействует с другими лекарственными препаратами.
Таблица 2. Сравнительная характеристика основных блокаторов АТ1-рецепторов

Препарат Биодоступность, % Активный метаболит

Период полужизни, ч

препарата активного метаболита
Вальзартан 10 - 35 Нет 5 - 7 -
Ирбезартан 60 - 80 Нет 11 - 17 -
Кандезартана цилексетил ? Кандезартан 3,5 - 4 8 - 13
Лозартан 19 - 62 Е-3174 1,5 - 2 4 - 9
Эпрозартан 13 Нет 5 - 9 -

Эпрозартан является активной формой блокатора АТ 1 -рецепторов. Его биодоступность при приеме внутрь составляет около 13%. Концентрация эпрозартана в плазме крови достигает максимума в течение 1 - 2 ч после приема препарата внутрь. Период полужизни эпрозартана в плазме крови составляет 5 - 9 ч. Эпрозартан выводится из организма в основном с желчью и калом в неизмененном виде; примерно 37% принятой внутрь дозы препарата экскретируется с мочой.
Для лечения артериальной гипертензии эпрозартан назначают в дозе 600 - 800 мг/сут в один или два приема .
Таблица 3. Основные сердечно-сосудистые и нейроэндокринные эффекты блокаторов АТ1-рецепторов

. Сердечно-сосудистые (и почечные) эффекты:

Системная артериальная вазодилатация (снижение АД, уменьшение общего периферического сосудистого сопротивления и посленагрузки на левый желудочек);
- коронарная вазодилатация (увеличение коронарного кровотока), улучшение регионарного кровообращения в почках, головном мозге, скелетной мускулатуре и других органах;
- обратное развитие гипертрофии левого желудочка и миокардиофиброза (кардиопротекция);
- подавление гипертрофии гладкой мускулатуры стенки артерий (ангиопротекция);
- увеличение натрийуреза и диуреза, задержка калия в организме (калийсберегающее действие);
- уменьшение внутриклубочковой гипертензии благодаря преимущественной дилатации эфферентных (выносящих) артериол клубочков (ренопротекция);
- уменьшение микроальбуминурии (и протеинурии);
- подавление развития нефросклероза.

Нейроэндокринные эффекты:

Повышение уровня ангиотензина II, ангиотензина I и активности ренина в плазме;
- уменьшение секреции альдостерона, аргинин-вазопрессина;
- снижение функциональной активности симпатико-адреналовой системы;
- увеличение образования кининов, простагландина I2 и оксида азота;
- повышение чувствительности тканей к действию инсулина.

Фармакологические эффекты блокаторов АТ 1 -рецепторов
По механизму действия блокаторы АТ
1 -рецепторов во многом напоминают ингибиторы АПФ. Блокаторы АТ 1 -рецепторов и ингибиторы АПФ подавляют чрезмерную активность РАС, действуя на различные уровни этой системы. Поэтому фармакологические эффекты АТ 1 -блокаторов и ингибиторов АПФ в общем сходны, однако первые, будучи более избирательными ингибиторами РАС, значительно реже дают побочные эффекты.
Основные сердечно-сосудистые и нейроэндокринные эффекты блокаторов АТ
1 -рецепторов приведены в табл. 3.
Показания и противопоказания к назначению АТ
1 -блокаторов также во многом совпадают с таковыми для ингибиторов АПФ. Блокаторы АТ 1 -рецепторов предназначены для длительной терапии ГБ и хронической сердечной недостаточности. Перспективным, как полагают, может оказаться применение АТ 1 -блокаторов при лечении диабетической нефропатии и других поражений почек, включая реноваскулярную гипертензию.
Противопоказаниями к назначению блокаторов АТ
1 -рецепторов считаются: индивидуальная непереносимость препарата, беременность, грудное вскармливание. Требуется большая осторожность при назначении блокаторов АТ 1 -рецепторов при стенозирующем поражении обеих почечных артерий или артерии единственной функционирующей почки.

Опыт применения блокаторов АТ 1 -рецепторов при лечении ГБ

В последние годы блокаторы АТ 1 -рецепторов находят все более широкое применение в качестве антигипертензивных средств. Это объясняется тем, что АТ 1 -блокаторы сочетают высокую антигипертензивную эффективность с превосходной переносимостью. Кроме того, блокаторы АТ 1 -рецепторов дают клинически значимый протективный эффект. Они способны вызывать обратное развитие гипертрофии левого желудочка и подавлять гипертрофию гладкой мускулатуры сосудистой стенки, уменьшают внутриклубочковую гипертензию и протеинурию. В сердце и почках АТ 1 -блокаторы ослабляют развитие фиброзных изменений.
В большинстве случаев блокаторы АТ
1 -рецепторов оказывают значительное и равномерное антигипертензивное действие, которое сохраняется до 24 ч. Поэтому все доступные АТ 1 -блокаторы рекомендуется принимать один раз в сутки. Если антигипертензивный эффект блокатора АТ 1 -рецепторов недостаточен, добавляют диуретик.
Лозартан был первым блокатором АТ
1 -рецепторов, который стал использоваться для лечения ГБ. По данным литературы , лозартан в дозе 50 - 100 мг/сут снижает систолическое АД в среднем на 10 - 20%, диастолическое - на 6 - 18%. Антигипертензивная эффективность лозартана сравнима с таковой эналаприла, атенолола и фелодипина-ретард и значительно превосходит эффективность каптоприла.
Опыт клинического изучения эффективности и безопасности лозартана почти у 3000 больных ГБ свидетельствует, что побочные эффекты при его применении встречаются с такой же частотой, как и при назначении плацебо (соответственно 15,3 и 15,5%).
В отличие от ингибиторов АПФ лозартан и другие АТ 1 -рецепторов не вызывают мучительного сухого кашля и ангионевротического отека. Поэтому АТ 1 -блокаторы, как правило, рекомендуют использовать для лечения артериальной гипертензии у больных с противопоказаниями к назначению ингибиторов АПФ.
Лозартан - единственный АТ
1 -блокатор, о котором известно, что он способен увеличивать продолжительность жизни больных с хронической сердечной недостаточностью в большей степени, чем ингибитор АПФ каптоприл . Учитывая данные о профилактической эффективности лозартана при хронической сердечной недостаточности, все блокаторы АТ 1 -рецепторов рекомендуется использовать в качестве антигипертензивных препаратов первого ряда для лечения артериальной гипертензии у больных с систолической дисфункцией левого желудочка.
Вальзартан назначают в дозе 80 - 160 мг/сут. В дозе 160 мг/сут вальзартан, по-видимому, более эффективен как антигипертензивный препарат, чем лозартан в дозе 1
00 мг/сут. Как и другие АТ 1 -блокаторы, вальзартан отличается превосходной переносимостью. Частота побочных эффектов при его длительном применении не отличается от таковой при назначении плацебо (соответственно 15,7 и 14,5%) .
Ирбезартан назначают в дозе 150 - 300 мг/сут. В дозе 300 мг/сут препарат более эффективен, чем лозартан в дозе 100 мг/сут. Частота побочных эффектов при лечении ирбезартаном и назначении плацебо одинакова .
Кандезартана цилексетил, по-видимому, самый сильный из доступных в
настоящее время блокаторов АТ 1 -рецепторов. Его назначают в дозе 4 - 16 мг/сут. В дозе 16 мг/сут кандезартан в значительно большей степени снижает АД, чем лозартан в дозе 50 мг/сут. Кандезартан, по-видимому, оказывает более продолжительное антигипертензивное действие, чем лозартан. Кандезартан превосходно переносится больными. Из-за развития побочных эффектов препарат пришлось отменить у 1,6 - 2,2% больных ГБ против 2,6% больных, получавших плацебо .
Эпрозартан назначают в дозе 600 и 800 мг/сут в
один прием. При тяжелой гипертензии эпрозартан и эналаприл в одинаковой степени снижали диастолическое АД (в среднем соответственно на 20,1 и 16,2 мм рт. ст.), однако эпрозартан вызывал достоверно большее снижение систолического АД, чем эналаприл (в среднем соответственно на 29,1 и 21,1 мм рт. ст.). Частота побочных эффектов при назначении эпрозартана такая же, как при приеме плацебо.
Таким образом, блокаторы АТ 1 -рецепторов представляют собой новый класс антигипертензивных препаратов. Антигипертензивная эффективность АТ 1 -блокаторов сопоставима с таковой ингибиторов АПФ при гораздо лучшей переносимости.

Литература:

1. Alderman MN, Ooi WL, Madhavan S, et al. Plasma renin activity: A risk factor for myocardial infection in hypertensive patients. Amer J Hypertens 1997;10:1-8.
2. Johnston CI, Risvanis J. Preclinical pharmacology of angiotensin II receptor anta-
gonists. Amer J Hypertens 997;10:306S-310S.
3. Преображенский Д.В., Сидоренко Б.А., Соколова Ю.В., Носова И.К. Физиология и фармакология ренин-ангиотензиновой системы. Кардиология 1997;11:91-5.
4. Bauer JH, Reams GP. The angiotensin II type receptor antagonists. Arch Intern Med 1955;155:1361-8.
5. Сидоренко Б.А., Преображенский Д.В., Соколова Ю.В. Лозартан - первый представитель нового класса гипотензивных препаратов. Кардиология 1996;1:84-9.
6. Goa KL, Wagstaff A. Losartan potassium. A review of its pharmacology. Drugs 1996;51:820-45.
7. McIntyre M, Caffe SE, Machalar RA, Reid JL. Losartan, an orally active angiotensin (AT
1) receptor antagonist: A review of its efficacy and safety in essential hypertension. Pharmacol Ther 1997;74:181-94.
8. Markham A, Goa KL. Valsartan. A review of its pharmacology and therapeutic use in essential hypertension. Drugs 1997;54:299-311.
9. Brunner HR. The new angiotensin II receptor antagonist, irbesartan. Pharmacokinentec and pharmacodynamic considerations. Amer J Hypertens 1997;10:311S-317S.
10. Nishikawa K, Naka T, Chatani F, Ioshimure I. Candesartan cilexetil: A review of its preclinic
al pharmacology. J Hum Hypertens 1997;11(suppl 2):9-17.
11. Edwards RM, Aiyar N, Ohlstein EH, et al. Pharmacological characterization of non-peptide angiotensin II receptor antagonist, SK&F 108566. J Pharmacol Exp Ther 1992;260:175-81.
12. Сидоренко
Б.А., Носова И.К., Преображенский Д.В. Антагонисты АТ 1 -ангиотензиновых рецепторов - новая группа лекарственных препаратов для лечения артериальной гипертензии и хронической сердечной недостаточности. Клин. вестник 1997;4:26-8.
13. Pitt B, Segal R, Marti
nez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with hert failure (Evaluation of Losartan in the Elderly study, ELITE). Lancet 1997;349:747-52.
14. Pool JL, Gutlirie RM, Littlejohn TW, et al. Dose-related antihypertensive effects of irbesartan in patients with mild-to-moderate hypertension. Amer J Hypertens 1998;11:462-70.
15. Andersson OK, Neldam S. The antihypertensive effect and tolerability of candesartan cilexetil, a new generation angiotensin II antagonist, in co
mparison with losartan. Blood Pressure 1998;7:53-9.
16. Belcher G, HЯbner R, George M, et al. Candesartan cilexetil: safety and tolerability in healthy volunteers and patients with hypertension. J Hum Hypertens 1997;11(suppl 2):85-9.