Главная · Температура · Изучение взаимосвязи между несколькими переменными. Типы отношений между зависимой и независимой переменными Отношения между переменными

Изучение взаимосвязи между несколькими переменными. Типы отношений между зависимой и независимой переменными Отношения между переменными

1. Значение изучения темы (актуальность изучаемой проблемы). Знание методов оценки взаимосвязи между отдельными признаками

дает возможность решать одну из кардинальных задач любого нау чного исследования: возможность предвидеть, прогнозировать развитие ситуации при изменении тех или иных известных характеристик объекта исследования.

2. Цели обучения: Знать:

- понятия корреляционной и функциональной зависимостей;

- понятия прямой и обратной корреляционной связи;

- понятие коэффициента корреляции;

- методики расчета коэффициентов корреляции Пирсона и Спир-

- использование коэффициентов корреляции в медицине и здраво-

охранении.

- отобразить численные данные на корреляционном поле;

- оценить силу и направление связи по величине коэффициента

корреляции;

- правильно выбрать метод корреляционного или регрессионного анализа для оценки имеющихся данных.

- методиками расчета коэффициентов корреляции Пирсона и

Спирмэна;

- навыками представления численных данных на корреляционном

3. Основные понятия и положения темы

Одной из задач большинства медико-биологических исследований, является выявление взаимной связи одного или нескольких явлений.

Свет в окне может означать (с той или иной вероятностью), что хозяева находятся дома, кашель с мокротой может означать заболевание хроническим бронхитом. Если в серии повторяющихся наблюдений один из признаков (или его часть) появляется одновременно с другим чаще, чем можно объяснить случайным стечением обстоятельств, то это служит основанием говорить о взаимосвязи, сопряженности появления этих признаков.

Постановка задачи в такого рода исследованиях обычно выглядит следующим образом: определить наличие и силу статистической связи какоголибо признака от одного или нескольких других признаков. Знание взаимосвязи отдельных признаков дает возможность решать одну из основных задач любого научного исследования : возможность предвидеть, прогнозировать раз-

витие ситуации при изменении тех или иных известных характеристик объекта исследования.

Термин зависимость при статистической обработке медикобиологических исследований должен использоваться весьма осторожно. С помощью статистических методов можно дать только формальную оценку взаимосвязи. Попытки механически перенести данные статистических расчетов в объективную реальность могут привести к ошибочным выводам.

Например, утверждение: «Чем громче утром кричат воробьи, тем выше встает солнце», несмотря на явную несуразность, с точки зрения формальной статистики, вполне правомерно. Таким образом, термин «зависимость» в статистическом анализе подразумевает только статистическую оценку взаимосвязи.

Любые явления в окружающем нас мире могут быть связаны прямой или обратной связью. Эта характеристика называется направленностью связи.

По направленности связь может быть прямой или обратной.

Прямая (или положительная) связь характеризует зависимость, при которой увеличение или уменьшение значения одного признака ведет, соответственно, к увеличению или уменьшению – второго. Например, при увеличение температуры возрастает давление газа (при сохранении неизменным его объема). При уменьшении температуры – снижается и давление.

Обратная (или отрицательная) связь характеризуется такой зависи-

мостью, когда при увеличении одного признака второй уменьшается или, наоборот, при уменьшении одного, второй – увеличивается. Обратная зависимость или обратная связь является основой нормального регулирования почти всех процессов жизнедеятельности любого организма.

По характеру связь может быть функциональной или корреляционной (статистической).

Функциональная зависимость – такой вид зависимости, когда каждому значению одного признака соответствует точное значение другого (зависимость может быть задана функцией). Например: взаимосвязь радиуса и длины окружности. Такую зависимость можно считать полной (исчерпывающей). Она полностью объясняет изменение одного признака изменением другого. Этот вид связи характерен для объектов, являющихся точкой приложения точных наук. В медико-биологических исследованиях сталкиваться с функциональной связью приходится крайне редко, поскольку объекты исследований имеют большую индивидуальную изменчивость. С другой стороны, характеристики биологических объектов зависят, как правило, от комплекса большого числа сложных взаимосвязей и не могут быть сведены к отношению двух или трех факторов.

Корреляционная зависимость – существует в том случае, когда при изменении величины одного признака наблюдается тенденция соответствующего изменения значений другого признака.

Например, при изменении роста человека меняется и масса тела. Однако, эта зависимость не является полной, т.е. функциональной. У людей с оди-

наковым ростом может быть разная масса тела, поскольку на нее влияют и многие другие факторы (питание, здоровье и т.п.). При оценке статистических связей можно говорить только о тенденции, когда возрастание одного признака вызывает тенденцию возрастания или уменьшения другого признака.

Корреляционная связь описывается с помощью различных статистических характеристик. Выбор характеристики для определения взаимосвязи обусловлен видом исследуемых признаков, способами их группировки и предполагаемым характером связи. Подчас, для выявления реально существующих взаимосвязей достаточно правильно составить статистическую таблицу распределения или построить наглядный график этого распределения.

Корреляционный анализ занимается измерением степени связи между двумя переменными (х и у). Вначале предполагаем, что как х, так и у - количественные величины, например, рост и вес.

Предположим, что есть пара величин (х, у), измеренных у каждого из пациентов в выборке. Мы можем отметить точку, соответствующую паре ве-

личин каждого пациента, на двухмерном графике рассеяния точек (рис

1,2,3). Обычно переменную х располагают на горизонтальной оси, а у - на вертикальной в той же диаграмме. Размещая точки для всех пациентов, получаем график рассеяния точек (корреляционное поле ), который говорит о взаимосвязи между этими двумя переменными.

В результате могут возникнуть следующие ситуации:

Рисунок 1. Положительная (прямая) корреляционная связь

Рисунок 2. Отрицательная (обратная) корреляционная связь

Рисунок 3. Корреляционная связь отсутствует

Если на графике рассеяния точек построить прямую линию, наилучшим образом описывающую изображенные данные (расстояния от точек до прямой минимальны), то полученная прямая является линией регрессии . Расчет коэффициентов корреляции дает численную характеристику того, насколько близко находятся наблюдения к линии регрессии. Основными коэффициентами корреляции являются коэффициент корреляции Пирсона и коэффициент корреляции Спирмэна .

Свойства коэффициентов корреляции:

Значения коэффициента корреляции изменяются в пределах от -1

до +1 .

Знак коэффициента корреляции показывает направление связи, увеличивается (положительный r , прямая связь) или уменьшается (отрицательный r , обратная связь) одна переменная, по мере того как увеличивается другая.

Величина коэффициента корреляции указывает, как близко расположены точки к прямой линии. В частности, если r = +1 или r = -1 , то имеется абсолютная (функциональная) корреляция по всем точкам, лежащим на линии (рис 1, рис. 2); если r = 0 , то линейной корреляции нет (рис. 3). Чем ближе r к крайним точкам (±1), тем больше степень линейной связи.

Коэффициент корреляции безразмерен, т.е. не имеет единиц из-

Величина коэффициента корреляции действительна только в диапазоне значений х и у в выборке. Невозможно заключить, что коэффициент будет иметь ту же величину при рассмотрении значений х или у, значительно больших, чем в выборке.

Неважно, какой из признаков обозначить за х , а какой за у; х и у могут заменять друг друга, не влияя на величину r (rху ~rух ).

Корреляция между х и у необязательно означает соотношение «причины и следствия».

Следует отметить, что в случае биологических факторов тот или иной характер связи сохраняется, как правило, только в определенном интервале изменений признаков. За пределами этого интервала связь может ослабнуть, стать прямо противоположной по направлению либо совсем исчезнуть.

Например, при увеличении возраста ребенка сила скелетной мускулатуры увеличивается. В зрелом возрасте такой связи уже нет. А в старших возрастных группах тенденция становится обратной.

Сила корреляционной связи между признаками оценивается по величине коэффициента корреляции согласно Таблице 1 :

Таблица 1

Распределение значений коэффициента линейной корреляции

Характеристики связи

Обратная

Связи нет

от 0 до -0,3

от 0,3 до 0,7

от - 0,3 до -0,7

от - 0,7 до - 1

Полная (функциональная)

Случаи, в которых не следует рассчитывать коэффициент линейной корреляции:

получено нелинейное соотношение между признаками, например, квадратичное соотношение (рис. 4,а);

данные включают более одного наблюдения по каждому пациенту;

присутствуют аномальные значения (рис. 4,б);

данные содержат подгруппы пациентов, для которых средние уровни наблюдений, по крайней мере, по одной из переменных, отличаются (рис. 4,в).

Рисунок 4. Диаграммы, показывающие, когда не следует рассчитывать коэффициент корреляции, (а) - соотношение нелинейно, (б) - при наличии выброса (выбросов), (в) - данные состоят из подгрупп.

Коэффициент корреляции Пирсона

Коэффициент корреляции Пирсона () определяет силу и направле-

ние связи только для количественных данных (x, y – значения исследуемых признаков, n –количество пар данных):

∑ (∑)(∑)

Условия для расчета коэффициента корреляции Пирсона:

исследуемые признаки являются количественными;

выборка состоит из независимых пар величин х и у; по крайней мере, одна из этих двух переменных нормально распределена.

Достоверность коэффициента корреляции устанавливается по ве-

личине средней ошибки. Поскольку коэффициент корреляции в клинических исследованиях рассчитывается обычно для ограниченного числа наблюдений, нередко возникает вопрос о надежности полученного коэффициента. С этой целью определяют среднюю ошибку коэффициента корреляции. При достаточно большом числе наблюдений (больше 100) средняя ошибка коэффициента корреляции () вычисляется по формуле:

n – число наблюдений.

В том случае, если число наблюдений меньше 100 точнее определять среднюю ошибку коэффициента корреляции, по формуле:

С достаточной для медицинских исследований надежностью о наличии той или иной степени связи можно утверждать только тогда, когда величина коэффициента корреляции превышает или равняется величине трех своих ошибок (r ≥3m r ). Обычно это отношение коэффициента корреляции (r ) к его средней ошибке (m r ) обозначают буквой t r :

Если t r ≥3, то коэффициент корреляции является статистически значи-

Пример расчета коэффициента корреляции Пирсона

Необходимо определить, существует ли связь между количеством часов, посвященных студентом подготовке к тестовому экзамену по статистике и итоговым количеством правильных ответов (и соответственно итоговой оценкой). В тестирование включает в себя 100 вопросов из банка тестовых заданий. В таблице приведены данные о 6 случайно выбранных студентах.

Очевидно, что количество часов напрямую отражается на финальной оценке. Переменная «Часы подготовки» (х ) является независимой переменной, т.к. она приводит к наблюдаемой вариации переменной «Балл на экзамене» (у ). Причинная связь между зависимыми и независимыми переменными существует только в одном направлении: Независимая переменная (х)→ Зависимая переменная (у). В обратном направлении эта связь не работает.

Коэффициент корреляции Пирсона (r) вычисляется при помощи следующего уравнения

∑ (∑)(∑)

Таблица, приведенная ниже, поможет разбить это уравнение на несколько несложных вычислений.

Часы изучения

Балл на экза-

∑ =79

Используя эти значения и n=6 (общее количество студентов), получаем:

∑ (∑)(∑)

Теперь рассчитаем среднюю ошибку коэффициента корреляции

√ √

Установим, надежной, ли является установленная нами связь

Т.к. t r ≥3 , то коэффициент корреляции является статистически значи-

Таким образом, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует статистически значимая сильная положительная (прямая) корреляция. Отсюда следует, что экзаменационные результаты можно предугадать на основе определенного количества часов, посвященных изучению предмета.

Коэффициент корреляции Спирмэна

Ранговый коэффициент корреляции Спирмэна (rs ) – непараметриче-

ский аналог корреляционного коэффициента Пирсона.

Применение этого коэффициента корреляции может быть рекомендовано в случаях:

когда необходимо быстро ориентировочно определить связь между какими-то признаками;

если необходимо оценить связь между качественными (ранго-

выми) и количественными признаками или только между качественными признаками;

когда распределение значений учетных признаков (в том числе и количественных) не соответствует нормальному распределению или рас-

пределение неизвестно.

Вычисление:

1. Располагают величины х в возрастающем порядке, начиная с наименьшей величины, и придают им последовательные ранги (номера 1, 2, 3, .., n). Равные варианты получают среднее значение из суммы их порядковых номеров.

2. Подобным образом ранжируют у .

3. Рассчитывается r s - коэффициент корреляции между рангами х и у по формуле:

где (

) – разности между рангами соответствующих пар y и x;

n – число сопоставляемых пар.

Пример расчета коэффициента корреляции Спирмэна.

Необходимо определить по Таблице 2 , существует ли связь между количеством часов, посвященных студентом подготовке к тестовому экзамену по статистике, и итоговым количеством правильных ответов (и, соответственно, итоговой оценкой). Тестирование включает в себя 100 вопросов из банка тестовых заданий.

Составляем вариационный ряд x и ранжируем:

Составляем вариационный ряд y и ранжируем:

Для удобства расчета заполняем следующую таблицу:

Ry - Rx

(Ry - Rx ) 2

Таким образом, получено, что исследуемая корреляционная связь является прямой и сильной.

В ходе корреляционного анализа или анализа корреляционной связи решается целая группа взаимосвязанных задач:

1) Установление направления (прямая или обратная) и формы (линейная или нелинейная) корреляционной связи.

2) Оценка тесноты (силы, плотности) корреляционной связи.

3) Оценка репрезентативности статистических оценок взаимосвязей, полученных по выборочным данным (величина ошибки, доверительный интервал, уровень значимости).

4) Установление величины детерминации (доли взаимовлияния) коррелируемых факторов.

Таким образом, статистические методы изучения связи между переменными зависят от:

характера переменных (качественные, количественные)

характера распределения количественных переменных (нормальное,

ненормальное, неизвестное)

числа наблюдений (большое, малое)

взаимоотношения между наблюдениями (зависимые, независимые). Статистические методы изучения связи между переменными могут

однофакторными, т.е. принимающими во внимание только взаимоотношения между двумя анализируемыми переменными

многофакторными, т.е. учитывающими влияние на изучаемую связь между двумя переменными со стороны некоторых других переменных.

Понятие о регрессионном анализе

Регрессия определяет математическую зависимость между зависи-

мой переменной (отклик) и одной или более независимыми переменными (предикторами).

Регрессионный анализ с помощью коэффициента регрессии позволяет количественно прогнозировать изменения одной переменной при изменении другой.

Для описания связи могут использоваться различные математические функции, основными из которых являются:

■ линейная

экспоненциальная

■ логистическая

Простая линейная регрессия или множественная регрессия могут применяться для непрерывных признаков, например, давление, вес.

Логистическая регрессия применима в тех случаях, когда зависимые признаки являются бинарными (например, умер/жив, выздоровел/не выздоровел).

Линейная регрессия

Математическое уравнение, которое оценивает линию простой линейной регрессии:

х – называется предиктором – независимой или объясняющей переменной. Для данной величины х, Y - значение переменной у (называемой зави-

симой, выходной переменной, или переменной отклика), которое расположено на линии оценки. Это есть значение, которое мы ожидаем для у (в среднем), если мы знаем величину х, и называется она «предсказанное значение у» (рис. 5).

а – свободный член (пересечение) линии оценки; это значение Y, когда

b – угловой коэффициент или градиент оценённой линии; он представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем х на одну единицу (рис. 5). Коэффициент b называют коэффициентом регрессии.

Например : при увеличении температуры тела человека на 1о С, частота пульса увеличивается в среднем на 10 ударов в минуту.

Рисунок 5. Линия линейной регрессии, показывающая коэффициент а и угловой коэффициент b (величину возрастания Y при увеличении х на одну единицу)

Математически решение уравнения линейной регрессии сводится к вычислению параметров а и b таким образом, чтобы точки исходных данных корреляционного поля как можно ближе лежали к прямой регрессии .

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого Френсису Гальтону (1889). Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» или «двигался вспять» к среднему росту всех

отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Мы наблюдаем регрессию к среднему при скрининге и клинических исследованиях, когда подгруппа пациентов может быть выбрана для лечения потому, что их уровни определённой переменной, скажем, холестерина, крайне высоки (или низки). Если это измерение через некоторое время повторяется, средняя величина второго считывания для подгруппы обычно меньше, чем при первом считывании, имея тенденцию (т.е. регрессируя) к среднему, подобранному по возрасту и полу в популяции, независимо от лечения, которое они могут получить. Пациенты, набранные в клиническое исследование на основе высокого уровня холестерина при их первом осмотре, таким образом, вероятно, покажут в среднем падение уровня холестерина при втором осмотре, даже если в этот период они не лечились.

Часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.

Насколько хорошо линия регрессии согласуется с данными, можно судить, рассчитав коэффициент R (обычно выраженный в процентах и называемый коэффициентом детерминации), который равняется квадрату коэффициента корреляции (r2 ). Он представляет собой долю или процент дисперсии у, который можно объяснить связью с х, т.е. долю вариации признакарезультата, сложившуюся под влиянием независимого признака. Может принимать значения в диапазоне от 0 до 1, или соответственно от 0 до 100%. Разность (100% - R) представляет собой процент дисперсии у, который нельзя объяснить этим взаимодействием.

Соотношение между ростом (измеренным в см) и систолическим артериальным давлением (САД, измеренным в мм рт. ст.) у детей. Мы провели анализ парной линейной регрессии зависимости САД от роста (рис. 6). Имеется существенное линейное соотношение между ростом и САД.

Рисунок 6. Двумерный график, показывающий соотношение между систолическим артериальным давлением и ростом. Изображена оценённая линия регрессии, систолическое артериальное давление.

Уравнение линии оценённой регрессии имеет следующий вид: САД = 46,28 + 0,48 х рост.

В этом примере свободный член не представляет интереса (рост, равный нулю, явно вне диапазона величин, наблюдаемых в исследовании). Однако мы можем интерпретировать угловой коэффициент; предсказано, что у этих детей САД увеличивается в среднем на 0,48 мм рт.ст. при увеличении роста на один сантиметр

Мы можем применить уравнение регрессии для предсказания САД, которое мы ожидаем у ребёнка при данном росте. Например, ребёнок ростом 115 см имеет предсказанное САД, равное 46,28 + (0,48 х 115)=101,48 мм рт. ст., ребёнок ростом 130 имеет предсказанное САД, 46,28 + (0,48 х 130) =

108,68 мм рт. ст.

При расчете коэффициента корреляции, установлено, что он равен 0,55, что указывает на прямую корреляционную связь средней силы. В этом случае коэффициент детерминации r 2 = 0,55 2 = 0,3 . Таким образом, можно сказать, что доля влияния роста на уровень артериального давления у детей не превышает 30%, соответственно на долю других факторов приходится 70% влияния.

Линейная (простая) регрессия ограничивается рассмотрением связи между зависимой переменной и только одной независимой переменной. Если в связи присутствует более одной независимой переменной, тогда нам необходимо обратиться к множественной регрессии. Уравнение для такой регрессии выглядит так:

y = a + bx1 +b2 x2 +.... + bn хn

Можно интересоваться результатом влияния нескольких независимых переменных х1 , х 2 , .., х n на переменную отклика у. Если мы полагаем, что эти х могут быть взаимозависимы, то не должны смотреть по отдельности на эффект изменения значения одного х на у, но должны одновременно принимать во внимание величины всех других х.

Пример Поскольку между ростом и массой тела ребёнка существует сильная

зависимость, можно поинтересоваться, изменяется ли также соотношение между ростом и систолическим артериальным давлением, если принять во внимание также и массу тела ребёнка и его пол. Множественная линейная регрессия позволяет изучить совместный эффект этих нескольких независимых переменных на у.

Уравнение множественной регрессии в этом случае может иметь такой вид:

САД=79,44 –(0,03 х рост)+ (1,18 х вес) + (4,23 х пол)*

* - (для признака пол используют значения 0 – мальчик, 1 - девочка) Согласно этому уравнению, девочка, рост которой 115 см и масса те-

ла 37 кг, будет иметь прогнозируемое САД:

САД = 79,44 – (0,03 х 115) + (1,18 х 37) + (4,23 х 1) = 123,88 мм.рт.ст.

Логистическая регрессия очень похожа на линейную; её применяют, когда есть интересующий нас бинарный исход (т.е. наличие/отсутствие симптома или субъекта, который имеет/не имеет заболевания) и ряд предикторов. Из уравнения логистической регрессии можно определить, какие предикторы влияют на исход, и, используя значения предикторов пациента, оценить вероятность того, что он/она будет иметь определённый исход. Например: возникнут или нет осложнения, будет лечение эффективным или не будет.

Начинают создания бинарной переменной, чтобы представить эти два исхода (например, «имеет болезнь»=1, «не имеет болезни»=0). Однако мы не можем применить эти два значения как зависимую переменную в анализе линейной регрессии, поскольку предположение нормальности нарушено, и мы не можем интерпретировать предсказанные величины, которые не равны нулю или единице. Фактически, вместо этого мы берём вероятность того, что субъект классифицируется в ближайшую категорию (т.е. «имеет болезнь») зависимой переменной, и чтобы преодолеть математические трудности, применяют логистическое, преобразование, в уравнении регрессии - натуральный логарифм отношения вероятности «болезни» (p) к вероятности «нет болезни» (1-p).

Интегративный процесс, называемый методом максимального правдоподобия, а не обычная регрессия (так как мы не можем применить процедуру линейной регрессии) создаёт из данных выборки оценку уравнения логистической регрессии

logit (p) = a + bx1 +b2 x2 +.... + bn хn

Logit (р) - оценка значения истинной вероятности того, что пациент с индивидуальным набором значений для х 1 ... х n имеет заболевание;

а - оценка константы (свободный член, пересечение);

b 1 , b 2 , ... ,b n - оценки коэффициентов логистической регрессии.

4. Вопросы по теме занятия:

1. Дайте определение функциональной и корреляционной связи.

2. Приведите примеры прямой и обратной корреляционной связи.

3. Укажите размеры коэффициентов корреляции при слабой, средней и сильной связи между признаками.

4. В каких случаях применяется ранговый метод вычисления коэффициента корреляции?

5. В каких случаях применяется расчет коэффициента корреляции Пирсо-

6. Каковы основные этапы вычисления коэффициента корреляции ранговым методом?

7. Дайте определение «регрессии». В чем сущность метода регрессии?

8. Охарактеризуйте формулу уравнения простой линейной регрессии.

9. Дайте определение коэффициента регрессии.

10. Какой можно сделать вывод, если коэффициент регрессии веса по росту равен 0,26кг/см?

11. Для чего используется формула уравнения регрессии?

12. Что такое коэффициент детерминации?

13. В каких случаях используется уравнение множественной регрессии.

14. Для чего применяется метод логистической регрессии?

5. Тестовые задания:

1. ТЕРМИН «КОРРЕЛЯЦИЯ» В СТАТИСТИКЕ ПОНИМАЮТ КАК

1) связь, зависимость

2) отношение, соотношение

3) функцию, уравнение

4) коэффициент

2. СВЯЗЬ МЕЖДУ ПРИЗНАКАМИ МОЖНО СЧИТАТЬ СРЕДНЕЙ ПРИ ЗНАЧЕНИИ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

1) r = 0,13

2) r = 0,45

3) r = 0,71

4) r = 1,0

3. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ R = - 0,82 ГОВОРИТ О ТОМ, ЧТО КОРРЕЛЯЦИОННАЯ СВЯЗЬ

1) прямая, средней силы

2) обратная, слабая

4) обратная, сильная

4. ПРИ ЗНАЧЕНИИ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ В ДИАПАЗОНЕ ОТ 0 ДО 0,3 СИЛА СВЯЗИ ОЦЕНИВАЕТСЯ КАК

1) слабая

2) средняя

3) сильная

4) полная

5. СВЯЗЬ МЕЖДУ ПРИЗНАКАМИ МОЖНО СЧИТАТЬ СИЛЬНОЙ ПРИ ЗНАЧЕНИИ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

1) r = - 0,25

2) r = 0,62

3) r = - 0,95

4) r = 0,55

6. ЗАВИСИМОСТЬ, ПРИ КОТОРОЙ УВЕЛИЧЕНИЕ ИЛИ УМЕНЬШЕНИЕ ЗНАЧЕНИЯ ОДНОГО ПРИЗНАКА ВЕДЕТ К УВЕЛИЧЕНИЮ ИЛИ УМЕНЬШЕНИЮ – ВТОРОГО, ХАРАКТЕРИЗУЕТ СЛЕДУЮЩИЙ ВИД СВЯЗИ

2) обратная

3) полная

4) неполная

7. ЗАВИСИМОСТЬ, ПРИ КОТОРОЙ УВЕЛИЧЕНИЕ ОДНОГО ПРИЗНАКА ДАЕТ УМЕНЬШЕНИЕ ВТОРОГО, ХАРАКТЕРИЗУЕТ СЛЕДУЮЩИЙ ВИД КОРРЕЛЯЦИОННОЙ СВЯЗИ

2) обратная

3) полная

4) неполная

8. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ ПИРСОНА ОПРЕДЕЛЯЕТ

1) статистическую значимость различий между переменными

2) степень разнообразия признака в совокупности

3) силу и направление связи между зависимой и независимой переменными

4) долю дисперсии результативного признака объясняемую влиянием независимых переменных

9. УСЛОВИЕМ ДЛЯ РАСЧЕТА КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ ПИРСОНА ЯВЛЯЕТСЯ

1) распределение переменных неизвестно

2) нормальное распределение по крайней мере, одной из двух переменных

3) по крайней мере, одна из двух переменных измеряется в ранговой шкале

4) отсутствует нормальное распределение переменных

10. РАНГОВЫЙ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ СПИРМЭНА РАССЧИТЫВАЕТСЯ, КОГДА

1) присутствует нормальное распределение переменных

2) необходимо оценить связь между качественными и количественными признаками

3) необходимо определить статистическую значимость различий между переменными

4) необходимо оценить степень разнообразия признака в совокупности

11. ЗАВИСИМОСТЬ, КОГДА КАЖДОМУ ЗНАЧЕНИЮ ОДНОГО ПРИЗНАКА СООТВЕТСТВУЕТ ТОЧНОЕ ЗНАЧЕНИЕ ДРУГОГО, НАЗЫВАЕТСЯ

1) прямой

2) обратной

3) корреляционной

4) функциональной

12. ЗАВИСИМОСТЬ, КОГДА ПРИ ИЗМЕНЕНИИ ВЕЛИЧИНЫ ОДНОГО ПРИЗНАКА ИЗМЕНЯЕТСЯ ТЕНДЕНЦИЯ (ХАРАКТЕР) РАСПРЕДЕЛЕНИЯ ЗНАЧЕНИЙ ДРУГОГО ПРИЗНАКА, НАЗЫВАЕТСЯ

1) прямой

2) обратной

3) корреляционной

4) функциональной

13. ДЛЯ ИЗОБРАЖЕНИЯ КОРРЕЛЯЦИОННОЙ ЗАВИСИМОСТИ ИСПОЛЬЗУЕТСЯ ГРАФИК

1) линейный

2) график рассеяния точек

3) радиальный

4) динамический

14. ЕСЛИ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ РАВЕН ЕДИНИЦЕ, ТО СВЯЗЬ ЯВЛЯЕТСЯ

1) сильной, прямой

2) сильной обратной

3) средней, прямой

4) полной (функциональной), прямой

15. СВЯЗЬ МЕЖДУ Y И X МОЖНО ПРИЗНАТЬ БОЛЕЕ СУЩЕСТВЕННОЙ ПРИ СЛЕДУЮЩЕМ ЗНАЧЕНИИ ЛИНЕЙНОГО КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

1) r = 0,35

2) r = 0,15

3) r = - 0,57

4) r = 0,46

16. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ ИСПОЛЬЗУЕТСЯ ДЛЯ ИЗУЧЕНИЯ

1) взаимосвязи явлений

2) развития явления во времени

3) структуры явлений

4) статистической значимости различий между явлениями

17. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ МОЖЕТ ПРИНИМАТЬ ЗНАЧЕНИЯ

1) от 0 до 1

2) от -1 до 0

3) от -1 до 1

ПОКАЗЫВАЕТ, ЧТО

1) с увеличением признака х на 1 признак у увеличивается на 0,678

2) с увеличением признака х на 1 признак у увеличивается на 0,016

3) с увеличением признака х на 1 признак у уменьшается на 0,678

4) с увеличением признака х на 1 признак у уменьшается на 0,016

22. НЕЗАВИСИМАЯ ПЕРЕМЕННАЯ В УРАВНЕНИИ РЕГРЕССИИ НАЗЫВАЕТСЯ

1) вариантой

2) уровнем

3) предиктором

4) переменной отклика Кендела

4) Чупрова

26. ДОЛЮ ВАРИАЦИИ ПРИЗНАКА-РЕЗУЛЬТАТА, СЛОЖИВШУЮСЯ ПОД ВЛИЯНИЕМ НЕЗАВИСИМОГО ПРИЗНАКА ОБЪЯСНЯЕТ КОЭФФИЦИЕНТ

1) корреляции Пирсона

2) корреляции Спирмэна

3) детерминации

4) вариации

27. ДЛЯ ИЗУЧЕНИЯ СВЯЗИ, В КОТОРОЙ ПРИСУТСТВУЕТ БОЛЕЕ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ ИСПОЛЬЗУЕТСЯ

1) линейная регрессия

2) множественная регрессия

3) ранговая корреляция Спирмэна

4) расчет темпа прироста

28. ДЛЯ РАСЧЕТА КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ СПИРМЭНА НЕОБХОДИМО

1) расположить переменные в порядке возрастания

2) расположить переменные в порядке убывания

3) возвести переменные в квадрат

4) присвоить переменным в порядке возрастания последовательные ранги (номера 1, 2, 3, .., n )

29. ЗАВИСИМОСТЬ ВЕСА ОТ РОСТА ЧЕЛОВЕКА (РОСТО-ВЕСОВОЙ ИНДЕКС) ОПИСЫВАЕТСЯ ПРИ ПОМОЩИ

1) логистической регрессии

2) множественной регрессии

3) экспоненциальной регрессии

4) линейной регрессии

30. ЗАВИСИМОСТЬ ПОЛОЖИТЕЛЬНОГО ИЛИ ОТРИЦАТЕЛЬНОГО РЕЗУЛЬТАТА ЛЕЧЕНИЯ ОТ РЯДА ФАКТОРОВ ОПИСЫВАЕТСЯ ПРИ ПОМОЩИ

1) логистической регрессии

2) множественной регрессии

3) экспоненциальной регрессии

4) линейной регрессии

31. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ ИЗМЕРЯЕТСЯ В

1) процентах

2) тех же единицах, что и изучаемый признак

3) промилле

4) не имеет единиц измерения

32. ИЗ НИЖЕПЕРЕЧИСЛЕННЫХ ВЕЛИЧИН ДЛЯ ОПРЕДЕЛЕНИЯ РАЗМЕРА ОДНОГО ПРИЗНАКА ПРИ ИЗМЕНЕНИИ ДРУГОГО НА ЕДИНИЦУ ИЗМЕРЕНИЯ ПРИМЕНЯЕТСЯ

1) среднеквадратическое отклонение

2) коэффициент корреляции

3) коэффициент регрессии

4) коэффициент вариации

6. Ситуационные задачи по теме

Задача №1

Уравнение регрессии описывает зависимость систолического давления от роста, веса и пола:

y = 79,44 – 0,03х1 + 1,18х2 + 4,23х3

где х 1 – рост; х 2 – вес; х 3 – пол.

1. Рассчитайте ожидаемое систолическое давление у мальчика ростом 130см и весом 30кг. Как называется данный вид уравнения регрессии?

2. Рассчитайте ожидаемое систолическое давление у девочки ростом 111 см и весом 17кг. Как называется данный вид уравнения регрессии?

Задача №2

В таблице ниже представлен фонд заработной платы оплата 10 команд Высшей хоккейной лиги (в миллионах) за 2 года с указанием числа побед за этот период.

1. Вычислите коэффициент корреляции Пирсона, охарактеризуйте силу и направление корреляционной связи.

2. Вычислите коэффициент корреляции Спирмэна, охарактеризуйте силу и направление корреляционной связи.

Задача №3

В таблице приведены данные роста и веса студентов 117 группы КрасГМУ. Рассчитать коэффициент корреляции Спирмэна и выяснить, существует ли корреляционная зависимость между этими данными, ее силу и направление.

Задача №4

В таблице приведены данные роста и веса студентов 118 группы КрасГМУ. Рассчитать коэффициент корреляции Спирмэна и выяснить, существует ли корреляционная зависимость между этими данными, ее силу и направление.

7. Перечень практических умений:

1. Правильно выбрать метод корреляционного анализа, исходя из характера имеющихся данных.

3. Оценить силу корреляционной связи.

5. Правильно выбрать метод регрессионного анализа, исходя из характера имеющихся данных.

6. Использовать уравнения регрессии для прогнозирования результатов исследования.

8. Примерная тематика НИРС

Теоретическая валидизация в социологическом исследовании: Методология и методы

Анализ парных связей

Описание взаимосвязей между явлениями и процессами - отдельная тема. Поэтому предлагаю поговорить о ней более подробно.

0 Нажми, если пригодилось =ъ

Согласно исследованию научных публикаций в наиболее престижных зарубежных журналах, посвященных социальным и поведенческим наукам (Ч.Теддли, М.Элайс, 2010), 77% всех социологических исследований проведены в рамках количественного подхода. Из них 71% является корреляционными исследованиями или исследованиями, посвященными изучению связей между социальными явлениями.
Самый простой вид корреляционных исследований - изучение парных взаимосвязей или совместной изменчивости двух переменных. Такого рода исследования пригодны для решения двух научных задач:

а) доказательства существования причинно-следственной связи между переменными (наличие связи является важным, но не единственным, условием причинно-следственной зависимости); б) предсказания: в случае наличия связи между переменными можно с определенным уровнем точности предсказывать значения одной переменной, если нам известно значение другой.
Связь между двумя переменными есть в том случае, когда изменение категории одной переменной ведет к изменению распределения второй:

Продуктивность труда

Удовлетворенность работой

Более удобный для анализа вид таблица примет, если мы рассчитаем процентные величины по каждому из столбцов:

Продуктивность труда

Удовлетворенность работой

Легко заметить, что в зависимости от категории переменной "Удовлетворенность работой" переменная "Продуктивность труда" меняет свое распределение. Следовательно, мы можем сделать вывод о существовании связи между переменными.
Также из этого примера видно, что каждому из значений одной переменной отвечает несколько значений другой. Такие связи называются статистическими или вероятностными. В данном случае, связь между переменными не является абсолютной. В нашем случае это означает, что кроме удовлетворенности работой есть и другие факторы, влияющие на продуктивность труда.
В случае же, когда одному значению первой переменной соответствует лишь одно значение второй, говорят о функциональных связях. Вместе с тем, даже когда есть основания говорить о функциональной связи, невозможно на все 100% продемонстрировать ее в эмпирической действительности по двум причинам: а) из-за погрешности измерительных инструментов; б) из-за невозможности контроля всех условий окружающей среды, влияющих на эту связь. И поскольку в социальных науках ученые имеют дело именно с вероятностными связями, постольку ниже речь пойдет именно о них.
Парные связи владеют тремя характеристиками: силой, направлением и формой.
Сила показывает насколько согласованна изменчивость двух переменных. Сила связи может изменяться в диапазоне от 0 до +1 (если хотя бы одна из переменных относится к номинальной шкале) или от -1 до +1 (если обе переменные относятся, по крайней мере, к порядковой шкале). При этом 0 и близкие к ней величины говорят об отсутствии связи между переменными, а величины близкие к +1 (прямая связь) или -1 (обратная связь) - о сильной связи. Один из вариантов интерпретации связи, с точки зрения ее силы, выглядит следующим образом:

Все значения в таблице приведены в модуле, т.е. должны анализироваться безотносительно к знаку. Так, например, связь -0,67 и +0,67 являются одинаковыми по силе, но разными по направлению.
Сила связи определяется с помощью коэффициентов корреляции. К коэффициентам корреляции относятся, например, фи и V-крамера (номинальные переменные, мало категорий/табличный вид), Гамма (порядковые переменные, мало категорий/табличный вид), Кендалла и Спирмена (порядковые переменные, много категорий), Пирсона (метрические переменные, много категорий).
Направление говорит о характере взаимного изменения категорий переменных. Если с увеличением значений одной переменной значения другой переменной также увеличиваются, то связь является прямой (или положительной). Если же ситуация противоположная и увеличение значений одной переменной ведет к уменьшению значений второй, то связь обратная (или отрицательная).
Направление связи может иметь место только в тех случаях, когда речи идет о порядковых и/или метрических переменных, то есть тех переменных, значения которых можно упорядочить от меньших к большим или наоборот. Таким образом, если хотя бы одна переменная относится к номинальной шкале, то можно говорить только о силе связи и ее форме, но не о направлении.

Направление связи можно определить либо с помощью таблиц сопряженности (мало категорий), либо с помощью диаграммы рассеяния (много категорий), либо с помощью знака коэффициента корреляции (количество категорий переменных не имеет значения):

Пример положительной связи

2-я перем-я

1-я перем-я

Пример отрицательной связи

2-я перем-я

1-я перем-я

Для правильной интерпретации связи с помощью таблиц необходимо их правильное оформление. Так, в нашем случае, категория А является наименьшим значением в случае обоих переменных, а категория С - наибольшим.

В данной диаграмме представлена взаимосвязь между количеством усилий, которые прикладывают студенты в процессе учебы (10-бальная порядковая шкала, ось Х), и успешностью их учебы в бакалаврате (среднее значение успешности сдачи сессий за 4 года обучения, ось Y). Поскольку нижний левый угол соответствует малым значениям обоих переменных, а верхний правый - большим, постольку диаграмма свидетельствует о положительной взаимосвязи между переменными. Думаю, вы представляете, как бы выглядела диаграмма рассеяния в случае отрицательной взаимосвязи.


В результате подсчета коэффициент корреляции равен либо положительному, либо отрицательному значению, что само по себе говорит о его направлении.
Несмотря на то, что значения коэффициента корреляции достаточно для получения основной информации про связь между переменными, его вычисление принято предварять построением таблицы или диаграммы рассеяния, которые необходимы для получения дополнительной информации, в частности - про форму связи.

Форма связи указывает на особенности совместной изменчивости двух переменных. В зависимости от того, к какой шкале относится переменная, форму связи можно проанализировать либо с помощью столбчатой диаграммы/таблицы сопряженности (если хотя бы одна переменная является номинальной), либо с помощью диаграммы рассеяния (для порядковых и метрических шкал).
Обратимся к примеру. В одном из своих исследования, единицами анализа которого выступили две кафедры разных вузов, я установил, что сила связи между переменными равна 0,83 в обоих случаях (в качестве переменных выступили тип студента и успешность сдачи последней сессии). Таким образом, сила и направление связи были одинаковы для обоих вузов. В свою очередь форма связи показала важные отличия (нажмите на график для увеличения):


Различия в форме распределения очевидны. Судя по всему, на первой кафедре значительно легче учиться, чем на второй. На это, в частности, указывает количество студентов, сдавших сессию на отлично.
Диаграммы рассеяния дают более ценную в аналитическом смысле информацию - кроме сравнения различных единиц анализа, они позволяют оценить отклонение связи от линейности. Линейность является важным условием эффективного применения коэффициентов корреляции и многих других статистических методов. Она наблюдается в том случае, когда каждое новое увеличение значений одной из переменных на единицу ведет к увеличению значений другой переменной на одинаковую или приблизительно одинаковую величину. Так, для приведенной ранее диаграммы рассеяния, увеличение значения 10-бальной шкалы на единицу ведет к увеличению успешности студента на величину близкую к 0,2.
Когда связь между переменными достаточно близка к идеальной линейной модели, коэффициенты корреляции адекватно отображают силу связи и ее направление (в случае представленной ранее диаграммы рассеяния, сила связи равна 0,93). В противном случае (т.е. в случае нелинейных связей) необходимо использовать специальные методы анализа данных. Примером диаграммы, демонстрирующей криволинейную связь, может служить следующий:


Такая форма связи может быть, например, между тревожностью студента и успешностью сдачи экзамена, когда как чрезмерно низкая, так и чрезмерно высокая тревожность приводят к снижению успешности.
Подводя итог, хочется отметить один важный момент: анализ связи с точки зрения ее силы, направления и формы - это только первый шаг анализа парных связей. После того, как мы определили что взаимосвязь представляет научный или практический интерес, необходимо проверить ее на статистическую значимость, так как наличие связи в выборке еще не означает ее наличие в генеральной совокупности. Такого рода задачи решаются с помощью методов статистического вывода, специфика которых рассмотрена .

Рис. 3.1. Различные типы связей между эффективностью деятельности и тревогой


В некоторых случаях в эксперименте можно зафиксировать не только сам факт наличия связи между зависимой и независимой переменными, но и определить их математический тип. Типы математических связей между зависимой и независимой переменными исследователи предлагают описывать с помощью следующих терминов: положительный линейная связь, отрицательный линейная связь, криволинейный связь, отсутствие связи.

Эти типы связей проиллюстрированы ниже графически на рис. 3.1 (а), (б), (в), (г) на примере изучения влияния тревоги (независимая переменная) на эффективность деятельности (зависимая переменная).

На рис. 3.2 представлен характер связи между скоростью сенсомоторной реакции и интенсивностью алкогольного опьянения (гипотетический эксперимент).

Рис. 3.2. Характер связи между скоростью сенсомоторной реакции и алкогольным опьянением. Отрицательный линейная связь

Побочные переменные

Результаты изменений, фиксируются исследователем в зависимой переменной, требуют интерпретации, основой которой является взаимосвязь между независимой и зависимой переменными. Идеально, когда варьирование показателей зависимой переменной дают возможность четко и убедительно проследить эффект влияния независимой переменной. Но, к сожалению, существует много случаев, когда установить такую взаимосвязь очень трудно и он не является однозначным. В таком случае можно подозревать, что другие факторы, чем те, которыми пытался манипулировать экспериментатор, повлияли на результат эксперимента.

Эти факторы также можно квалифицировать как переменные, так как они могут принимать более одной шкальную оценку. их называют побочными (или дополнительными) переменными.

Мы уже упоминали один источник появления дополнительных переменных, а именно ошибки с выбором испытуемых. Упоминались три типа таких возможных ошибок, вызывающих организменные факторы; отношение исследуемых к экспериментальной инструкции и факторы чисто ситуативные, которые тоже влияют на результаты эксперимента в различных группах.

Побочные переменные определенным образом конкурируют с независимой переменной. Мы не всегда можем знать, повлияла на результат именно и переменная, которой мы манипулировали, или к этому воздействию добавились другие неожиданные переменные, что и привело к тому эффекту, который мы фиксируем как зависимую переменную.

Итак, возможные побочные факторы в психологическом исследовании необходимо устранять или сводить к минимуму. Однако чтобы знать, как это делать, необходимо четко осознать, какие из них могут выступать в роли побочных. Например, это может быть фактор времени, когда проводится исследование (утром или вечером). На эффективность деятельности влияют также время года, погодные условия.

Другим источником побочных переменных может быть фактор задачи, когда различные условия требуют различных экспериментальных задач. Например, проверка гипотезы о влиянии содержания определенной информации на эффективность ее запоминания требует отбора различной информации, поскольку ее можно заучить только один раз.

Но, важнейшим источником побочных переменных является субъективный фактор, о котором мы уже упоминали. Индивидуальные особенности деятельности изысканий зависят и от пола, и от возраста и состояния здоровья, от культурных особенностей и опыта. В связи с этим известный российский исследователь М. Роговин отмечает, что основной принципиальной сложностью любого психологического эксперимента является обеспечение возможности выделить, проследить и установить закономерности в динамике именно той переменной, которую надо изучить. Иначе будут наблюдаться артефакты (нежелательные эффекты), вызванные смешением независимых и побочных переменных, когда, по Кепмбеллом , "фон влияет больше, чем стимул". Поэтому и существует необходимость изоляции независимой переменной и специфические методы предотвращения (или уменьшения) влияния дополнительных переменных, которые мы рассмотрим ниже более подробно.

Корреляционная зависимость – предполагает взаимную согласованность изменений переменных величин. Эти изменения можно измерить однократно или многократно

Кластерный анализ.

Функциональное воздействие – изменения независимой переменной сопровождаются все ускоряющимися изменениями зависимой.

Функциональная зависимость – изменение одной переменной оказывает воздействие на изменение другой переменной, которая воздействует на первую переменную. Корреляционный анализ.

26. Корреляционный анализ. Проблема ложной корреляции. Коэффициенты корреляции.

Применяется для выяснения взаимодействия и тенденций изменения характеристик изучаемого явления. Корреляция – наличие статистической взаимосвязи признаков. Корреляционный анализ выясняет функциональную зависимость между переменными величинами, которая характеризуется тем, что каждому значению одной из них соответствует вполне определенное значение другой.

Парная (характеризует тип, форму, плотность связи между 2 признаками) и множественная корреляция (между несколькими).

Зависимость чаще всего возникает там, где одно явление находится под воздействием большого числа факторов, действующих с разной силой, поэтому есть специальные меры корреляционной связи – коэффициенты корреляции. Они показывают степень зависимости одного социального явления от другого (плотность связи). Чем выше коэффициент между 2 переменными, тем точнее можно предсказать значения одной из них по значениям другой. Коэффициент не содержит информации о том, является ли данная связь причинно-следственной или сопутствующей (порожденной одной причиной). Величина коэффициента позволяет определить плотность связи как меньшую или больную. По знаку для порядковых рядов можно сказать, является ли связь обратной или прямой, для номинальных знак не несет смысловой нагрузки. Для установления корреляционной связи между 2 признаками надо доказать, что все другие переменные не оказывают воздействия на отношения 2 переменных. Иначе возникает ситуация ложной корреляции. Чтобы избежать ошибки в ситуации ложной корреляции используют анализ взаимосвязи между двумя перемен-ными с помощью контрольного фактора. Корреляц. анализ позволяет отбросить несуществующие связи.

Корреляционному анализу предшествует стадия расчет статистики Х 2 . она позволяет проверить нулевую гипотезу о наличии связи между 2 рядами признаков. Нулевая гипотеза – утверждение, отрицающее зависимость между рядами переменных. Доказательство ее ложности говорит о том, что связь есть.

таблица с данными опроса.

таблица распределения вероятностных признаков. Значение в ячейках равно отношению произведения соответствующего итогового столбца и строки к общему числу опрошенных.

полученной значение необходимо сравнить с табличным критически значением Х 2 . для этого надо определить степень свободы (df).

Df = (r – 1)(c – 1)

5. определить уровень статистической значимости. Он оказывает, насколько вероятна связь, зафиксированная между 2 признаками. = 0, 05.

6. сравнить расчетное значение хи-квадрат с табличным.

7. нулевая гипотеза отвергается, если расчетное значение хи-квадрат больше, чем табличное.

Если изучается связь между альтернативными признаками, то таблица 4-клеточная. Коэффициент Юла (Q) и коэффициент контингенции (Ф).

Коэффициент Юла

Q = ac bd / ac + bd . При Q = 0 связи между признаками нет. При Q = 0, 59 существует неустойчивая связь. При Q больше или равно 1, корреляция полная. Односторонняя связь.

Для измерения двусторонней связи коэффициент контингенции. Ф всегда меньше Q.

Ф = ac bd / √ (a + d )(b + c )(a + b )(c + d )

Коэффициент корреляции Пирсона – стандартный.

P = √ X 2 / X 2 + N . N - количество опрошенных.

Если P больше или равен 0, 37, то связь есть.

Коэффициент Чупрова.

Т = √ X 2 / N √ (C -1)(C – 1). T больше или равен 0, 5.

Коэффициенты ранговой корреляции. Ранговые шкалы. Спирмен

Р = 1 – 6 ∑ d 2 / N (N 2 – 1)

D – разность между рангами. N - количество рангов.

Цель: выявление сходства распределения ответов 2 групп опрашиваемых на один и тот же вопрос. При р= - 1 порядок распределения ответом по 2 группам прямо противоположен, а при р= +1 он совпадает. Сравнивает идентичность распределения ответов 2 групп. Также есть коэффициент ранговой корреляции Кендалла и множественный коэффициент корреляции.

  • PR - public relations (общественные связи): цели и задачи, области их использования, инструменты PR.
  • V. Виды обязательств по их содержанию, в связи с основаниями возникновения обязательств
  • VII. Министерствам и ведомствам по молодежной политике стран-участниц Международной конференции
  • Зависимая переменная не чувствительна к изменениям независимой.

    Монотонно возрастающая зависимость: увеличению значений независимой переменной соответствует изменение зависимой переменной.

    Монотонно убывающая зависимость: увеличению значений независимой переменной соответствует уменьшение уровня зависимой переменной.

    Аналитическая форма зависимости между изучаемой парой

    признаков (регрессионная функция) определяется с помощью

    следующих методов:

    1) на основе визуальной оценки характера связи. На линей$

    ном графике по оси абсцисс откладываются значения фактор$

    ного (независимого) признака x, по оси ординат - значения

    результативного признака y. На пересечении соответствую$

    щих значений отмечаются точки. Полученный точечный гра$

    фик в указанной системе координат называется корреляцион$

    ным полем. При соединении полученных точек получается

    эмпирическая линия, по виду которой можно судить не только

    о наличии, но и о форме зависимости между изучаемыми пе$

    ременными;
    3.Экономические модели и типы статистических данных, используемых в них
    К наиболее распространённым эконометрическим моделям относятся:

    модели потребительского и сберегательного потребления;
    модели взаимосвязи риска и доходности ценных бумаг;
    модели предложения труда;
    макроэкономические модели (модель роста);
    модели инвестиций;
    маркетинговые модели;
    модели валютных курсов и валютных кризисов и др.

    Статистические и математические модели экономических явлений и процессов определяются спецификой той или иной области экономических исследований. Так, в экономике качества модели, на которых основаны статистические методы сертификации и управления качеством - модели статистического приемочного контроля, статистического контроля (статистического регулирования) технологических процессов (обычно с помощью контрольных карт Шухарта или кумулятивных контрольных карт), планирования экспериментов, оценки и контроля надежности и другие - используют как технические, так и экономические характеристики, а потому относятся к эконометрике, равно как и многие модели теории массового обслуживания (теории очередей). Экономический эффект только от использования статистического контроля в промышленности США оценивается как 0,8 % валового национального продукта (20 миллиардов долларов в год), что существенно больше, чем от любого иного экономико-математического или эконометрического метода.
    Каждой области экономических исследований, связанной с анализом эмпирических данных, как правило, соответствуют свои эконометрические модели. Например, для моделирования процессов налогообложения с целью оценки результатов применения управляющих воздействий (например, изменения ставок налогов) на процессы налогообложения должен быть разработан комплекс соответствующих эконометрических моделей. Кроме системы уравнений, описывающей динамику системы налогообложения под влиянием общей экономической ситуации, управляющих воздействий и случайных отклонений, необходим блок экспертных оценок. Полезен блок статистического контроля, включающий как методы выборочного контроля правильности уплаты налогов (налогового аудита), так и блок выявления резких отклонений параметров, описывающих работу налоговых служб. Подходам к проблеме математического моделирования процессов налогообложения посвящена монография , содержащая также информацию о современных статистических (эконометрических) методах и экономико-математических моделях, в том числе имитационных.

    С помощью эконометрических методов следует оценивать различные величины и зависимости, используемые при построении имитационных моделей процессов налогообложения, в частности, функции распределения предприятий по различным параметрам налоговой базы. При анализе потоков платежей необходимо использовать эконометрические модели инфляционных процессов, поскольку без оценки индекса инфляции невозможно вычислить дисконт-функцию, а потому нельзя установить реальное соотношение авансовых и «итоговых» платежей.

    Прогнозирование сбора налогов может осуществляться с помощью системы временных рядов - на первом этапе по каждому одномерному параметру отдельно, а затем - с помощью некоторой линейной эконометрической системы уравнений, дающей возможность прогнозировать векторный параметр с учетом связей между координатами и лагов, то есть влияния значений переменных в определенные прошлые моменты времени. Возможно, более полезными окажутся имитационные модели более общего вида, основанные на интенсивном использовании современной вычислительной техники.
    4. Основные этапы эконометрического моделирования
    Выделяют семь основных этапов эконометрического моделирования:

    1) постановочный этап, в процессе осуществления которого определяются конечные цели и задачи исследования, а также совокупность включённых в модель факторных и результативных экономических переменных. При этом включение в эконометрическую модель той или иной переменной должно быть теоретически обоснованно и не должно быть слишком большим. Между факторными переменными не должно быть функциональной или тесной корреляционной связи, потому что это приводит к наличию в модели мультиколлинеарности и негативно сказывается на результатах всего процесса моделирования;

    2) априорный этап, в процессе осуществления которого проводится теоретический анализ сущности исследуемого процесса, а также формирование и формализация известной до начала моделирования (априорной) информации и исходных допущений, касающихся в частности природы исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез;

    3) этап параметризации (моделирования), в процессе осуществления которого выбирается общий вид модели и определяется состав и формы входящих в неё связей, т. е. происходит непосредственно моделирование.

    К основным задачам этапа параметризации относятся:

    а) выбор наиболее оптимальной функции зависимости результативной переменной от факторных переменных. При возникновении ситуации выбора между нелинейной и линейной функциями зависимости, предпочтение всегда отдаётся линейной функции, как наиболее простой и надёжной;

    б) задача спецификации модели, в которую входят такие подзадачи, как аппроксимация математической формой выявленных связей и соотношений между переменными, определение результативных и факторных переменных, формулировка исходных предпосылок и ограничений модели.

    4) информационный этап, в процессе осуществления которого происходит сбор необходимых статистических данных, а также анализируется качество собранной информации;

    5) этап идентификации модели, в ходе осуществления которого происходит статистический анализ модели и оцененивание неизвестных параметров. Данный этап непосредственно связан с проблемой идентифицируемостимодели, т. е. ответа на вопрос «Возможно ли восстановить значения неизвестных параметров модели по имеющимся исходным данным в соответствии с решением, принятым на этапе параметризацииβ». После положительного ответа на этот вопрос решается проблема идентификации модели, т. е. реализуется математически корректная процедура оценивания неизвестных параметров модели по имеющимся исходным данным;

    6) этап оценки качества модели, в ходе осуществления которого проверяется достоверность и адекватность модели, т. е. определяется, насколько успешно решены задачи спецификации и идентификации модели, какова точность расчётов, полученных на её основе. Построенная модель

    должна быть адекватна реальному экономическому процессу. Если качество модели является неудовлетворительным, то происходит возврат ко второму этапу моделирования;

    7) этап интерпретации результатов моделирования.

    №5 Эконометрический анализ производственного процесса

    Рассматривая эконометрическое исследование в целом, в нем можно выделить следующие этапы:

    1. Постановка проблемы, т. е. определение цели и задач исследования, выделение зависимых (уj) и независимых (xk) экономических переменных на основе качественного анализа изучаемых взаимосвязей методами экономической

    2. Сбор необходимых исходных данных.

    3. Построение эконометрической модели и оценка ее адекватности и степени соответствия исходным данным.

    4. Использование модели для целей анализа и прогнозирования параметров исследуемого явления.

    5. Качественная и количественная интерпретация полученных на основе модели результатов.

    6. Практическое использование результатов. В процессе экономической интерпретации результатов необходимо ответить на следующие вопросы: 12

    – являются ли статистически значимыми объясняющие факторы, важные с теоретической точки зрения?

    – соответствуют ли оценки параметров модели качественным представлениям?

    №6. Парный регрессионный анализ

    Регрессией в теории вероятностей и математической статистике принято называть зависимость среднего значения какой-либо величины (y) от некоторой другой величины или от нескольких величин (хi).

    Парной регрессией называется модель, выражающая зависимость среднего значения зависимой переменной y от одной независимой переменной х

    где у – зависимая переменная (результативный признак); х – независимая,

    объясняющая переменная (признак–фактор).

    Парная регрессия применяется, если имеется доминирующий фактор, обуславливающий большую долю изменения изучаемой объясняемой переменной, который и используется в качестве объясняющей переменной.

    Множественной регрессией называют модель, выражающую зависимость среднего значения зависимой переменной y от нескольких независимых переменных х1, х2, …, хp

    ŷ = f (x1,x2,...,xp).

    Классическая нормальная модель линейной множественной регрессии.

    По виду аналитической зависимости различают линейные и нелинейные регрессии.

    Линейная парная регрессия описывается уравнением: ŷ=a+bx

    Если между экономическими явлениями существуют нели­нейные соотношения, то они выражаются с помощью соответ­ствующих нелинейных функций: например, равносторонней ги­перболы , параболы второй степени и д.р.

    №7. . Линейная парная регрессия. Определение параметров уравнения регрессии

    Линейная парная регрессия описывается уравнением: ŷ=a+bx, согласно которому изменение Δy переменной y прямопропорционально изменению Δx переменной x (Δy = b·Δx). Для оценки параметров a и b уравнения регрессии (2.6) воспользуемся методом наименьших квадратов (МНК). При определенных предположениях относительно ошибки ε МНК дает наилучшие оценки параметров линейной

    модели. Модель парной линейной регрессии : y = a +b*x +u (y- зависимая переменная, a +b*x – неслучайная составляющая, х – независимая переменная, u- случайная составляющая)


    1 | | | | | | | |