Главная · Температура · Магнитно-резонансная томография (ядерно-магнитная резонансная томография, мрт, ямрт, nmr, mri). Ядерный магнитный резонанс

Магнитно-резонансная томография (ядерно-магнитная резонансная томография, мрт, ямрт, nmr, mri). Ядерный магнитный резонанс

Информативный, безопасный, неинвазивный метод диагностики, позволяющий получить с высокой разрешающей способностью изображения органов и систем, сосудистых структур в различных плоскостях, с использованием трехмерных реконструкций.

ИСТОРИЯ РАЗВИТИЯ МАГНИТНО – РЕЗОНАНСНОЙ ТОМОГРАФИИ

Фундаментальным открытием в области физики было открытие Николой Тесла вращающегося магнитного поля в 1882 году в Будапеште.

В 1956 году в Мюнхене в Германии было образована международная электротехническая комиссия «Общество Тесла». Все машины МРТ откалиброваны в единицах " Тесла ". Сила магнитного поля измеряется в Тесла или в единицах Гаусс. Чем сильнее магнитное поле, тем большее количество радиосигналов, которые могут быть получены из атомов тела и, следовательно, тем выше качество изображения МРТ. 1 Тесла = 10000 Гаусс

§ Низкое поле МРТ = до 0,2 Тесла (2000 Гаусс)

§ Среднее поле МРТ = от 0,2 до 0,6 Тесла (от 2000 Гаусс до 6000 Гаусс)

§ Высокое поле МРТ = от 1,0 до 1,5 Тесла (от 10000 Гаусс до 15000 Гаусс)

В 1937 году профессор Колумбийского университета Исидор И. Раби, работая в Пупинской физической лаборатории в Колумбийском университете, Нью-Йорк, отметил квантовое явление, которое было названо ядерно-магнитным резонансом (ЯМР). Он выяснил, что атомные ядра отмечают свое присутствие за счет поглощения или излучения радиоволн при воздействии достаточно сильного магнитного поля.

Профессор Исидор И. Раби получил Нобелевскую премию за свою работу. В 1973 году Павел Лотербур, химик и исследователь ЯМР из Университета штата Нью-Йорк, получил первое ЯМР изображение.

Раймонд Дамадиан, врач и экспериментатор, работая в Даунстейтовском медицинском центре Бруклина, обнаружил, что сигнал водорода в раковой ткани отличается от здоровой ткани, потому что опухоли содержат больше воды. Чем больше воды, тем больше атомов водорода. После выключения аппарата МРТ, остаточные колебания радиоволн от раковой ткани длятся дольше, чем от здоровой ткани.

С помощью своих аспирантов, врачей Лоуренса Минкоффа и Майкла Голдсмита, доктор Дамадиан создал переносные катушки для мониторинга излучения водорода, и через некоторое время первый МРТ аппарат был сконструирован. 3 июля 1977 в течение почти пяти часов было проведено первое сканирование человеческого тела с помощью МРТ, а первые сканы пациента с раком груди были проведены в 1978 году.

ПРИНЦИП РАБОТЫ МРТ

Магнитно-резонансная томография является медицинским диагностическим методом, который создает изображения тканей и органов человеческого тела с использованием принципа ядерного магнитного резонанса. МРТ может генерировать изображение тонкого среза ткани любой части человеческого тела - под любым углом и направлением. МРТ позволяет получить изображение человеческих органов и тканей с помощью электромагнитного поля.


МРТ создает сильное магнитное поле, а в организме человека есть своеобразные маленькие биологические " магниты ", состоящие из намагниченных протонов, входящих в состав атомов водорода. Протоны является основным элементом магнитных свойств тканей организма.

Во-первых, МРТ создает устойчивое состояние магнетизма в человеческом теле, когда тело помещено в постоянное магнитное поле. Во-вторых, МРТ стимулирует организм с помощью радиоволн, что меняет стационарную ориентацию протонов. В-третьих, аппарат останавливает радиоволны и регистрирует электромагнитную трансмиссию организма. В-четвертых, передаваемый сигнал используются для построения внутренних изображений тела с помощью обработки информации на компьютере.

МРТ изображение не является фотографическим. Это, на самом деле, компьютеризированная карта или изображение радиосигналов, излучаемых человеческим телом. МРТ превосходит по своим возможностям компьютерную томографию, так как не используется ионизирующее излучение как при КТ, а принцип работы основан на использовании безвредных электромагнитных волн.

Магнитно-резонансный томограф по своему внешнему виду похож на компьютерный. Исследование проходит так же, как и компьютерная томография. Стол постепенно продвигается вдоль сканера. МРТ требует больше времени, чем КТ, и обычно занимает не менее 1 часа.

МОЩНОСТЬ МАГНИТНОГО ПОЛЯ

Магнитно-резонансная томография (МРТ) является многоплоскостным методом визуализации, основанном на взаимодействии между

радиочастотным электромагнитным полем и некоторыми атомными ядрами в теле человека (обычно водорода), после помещения тела в сильное магнитное поле. Этот метод визуализации особенно качественно визуализирует мягкие ткани. Качество МРТ зависит не только от напряженности поля (выше 1 Тл считается высоким полем), но и от выбора катушки, использования контраста, параметров исследования, опыта специалиста, оценивающего полученное изображение и способного определить наличие патологии. Введение внутривенно контраста (гадолиния) часто используется при МРТ исследованиях. В настоящее время в МРТ аппаратах используется поле мощностью от 0.1 до 3.0 Т. В последние годы появились также томографы мощностью 7 Т, но их применение в клинике пока находится в стадии испытаний.

В клинической практике для аппаратов применяют следующую градацию аппаратов по мощности:

§ Низкопольные от 0.1 до 0.5 Т

§ Среднепольные от 0.5 до 0.9 Т

§ Высокопольные выше 1 Т

§ Сверх высокопольные 3.0 и 7.0 Т

Также подразделяют аппараты на открытого типа и закрытого (туннельного типа).

До последнего времени аппараты открытого типа были представлены только низкопольными аппаратами, но в настоящее время уже выпускаются и активно используются аппараты МРТ открытого типа с высоким полем (1 Т и более). Кроме того, появились аппараты для проведения исследований пациента в вертикальном положении или сидя. Разнообразие различных видов аппаратов МРТ позволяет очень широко использовать этот метод диагностики для определения морфологических изменений или функциональных нарушений при различных патологических состояниях.

Все аппараты можно условно разделить на низкопольные и высокопольные или открытого или туннельного типа.

НЕРЕДКО ПАЦИЕНТУ ТРУДНО СДЕЛАТЬ ВЫБОР МЕЖДУ ПРОВЕДЕНИЕМ ИССЛЕДОВАНИЯ НА НИЗКОПОЛЬНОМ ИЛИ ВЫСОКОПОЛЬНОМ АППАРАТАХ. НО МЕЖДУ НИЗКОПОЛЬНЫМИ И ВЫСОКОПОЛЬНЫМИ АППАРАТАМИ СУЩЕСТВУЕТ ЗНАЧИТЕЛЬНАЯ РАЗНИЦА.

Открытые (низкопольные) сканеры дают низкое качество изображений, и некоторые исследования для уточнения диагноза приходится повторять после низкопольных аппаратов на высокопольных аппаратах. Высокопольные МРТ аппараты с напряженностью магнитного поля (1 - 1,5-3.0 Тесла) обеспечивают высокое разрешение, которое позволяет визуализировать более детально структуру органов и тканей. Низкопольные аппараты МРТ обычно имеют мощность магнитного поля от 0.23 до 0.5 Тесла. Чем выше напряженность магнитного поля, тем лучше визуализация и более быстрее происходит сканирование. Существует прямая пропорция между увеличением мощности магнитного поля и качеством визуализации тканей.

МР аппараты сканируют тело слоями (срезами). Чем выше магнитное поле, тем срезы тоньше, что позволяет получить более детальную морфологическую картину тканей и, таким образом, более точно поставить диагноз.

Высокопольные МРТ требуют меньше времени на проведение исследования, благодаря более высокому магнитному полю. Высокопольные МРТ сканируют тело в полтора-два раза быстрее, чем аппараты низкопольные (открытого типа). Это очень важно, так как при длительном исследовании вероятность движения пациента и появления артефактов изображения увеличивается.

Высокопольные МРТ аппараты обеспечивают самые передовые методы визуализации, некоторые из которых не могут быть выполнены на аппаратах с низким магнитным полем.

Высокопольные аппараты МРТ постоянно совершенствуются для обеспечения большего комфорта для пациента и уменьшение беспокойства пациента во время проведения исследования. В последние годы были разработаны новые МРТ сканеры с существенно более короткой трубкой, что позволяет голове пациента быть снаружи отверстия магнита при выполнении ряда исследований. Отверстие магнита расширено в конце трубки, что уменьшает у пациента чувство замкнутого пространства, потому что голова пациента находится на пути к расширенному концу. Кроме того, отверстие имеет большую ширину, чем у более ранее сконструированных сканеров, что обеспечивает больше пространства вокруг пациента во время проведения исследования.

Тем не менее, у высокопольных аппаратов есть несколько минусов:

1. Клаустрофобия. Небольшой процент пациентов боятся замкнутого пространства и не могут находиться внутри высокопольного аппарата. Подавляющему большинству этих пациентов бывает достаточно принять легкое седативное до проведения исследования.Но при наличии выраженной клаустрофобии проведение исследования на аппаратах туннельного типа таким пациентам бывает весьма затруднительно.

2. Размер. МРТ-аппараты высокопольные имеют ограниченное пространство, и некоторые пациенты из-за больших размеров тела могут быть слишком велики, чтобы уместиться в туннеле МРТ аппарата. Некоторые высокопольные МРТ имеют также ограничения по весу.

3. Боль. Если у пациента имеется сильный болевой синдром в спине, в шее или другие симптомы то это затрудняет возможность пациента лежать неподвижно в течение длительного периода.

Поэтому, низкопольные (открытого типа) аппараты МРТ могут быть более подходящим для некоторых пациентов, например, с истинной клаустрофобией или с большими размерами тела.

Современная медицинская диагностика базируется на двух видах исследований: прикладных (биологических, химических и т.п.) и визуализационных. Если первый вид исследований появился с незапамятных времен, когда человек определял наличие болезни, как говорится, «по запаху и на язык», то визуализация внутренних органов без повреждения организма стала возможной только с открытием свойства радиоактивных материалов производить проникающее излучение, известное сейчас как «рентгеновское».

Открытия физиков в мире элементарных частиц подарили медицине еще один способ получения изображений всех тканей и органов человеческого тела без прямого внедрения. Магнитно-резонансная томография (МРТ) является одним из самых передовых и продолжающих развиваться видов получения информации о состоянии живых организмов.

В диагностике заболеваний позвоночника МРТ является ведущим типом визуализации, т.к. конструкция позвоночного столба включает множество элементов из мягких тканей (межпозвоночные диски, связки, сумки фасеточных суставов), для которых магнитно-резонансная томография является наилучшим способом «неразрушающего контроля».

Что такое МРТ?

В основе визуализационного метода исследований, названного «Магнитно-резонансная томография», лежит одно из открытий квантовой физики и физики элементарных частиц, что ядра определенных элементов способны излучать излишки энергии, поглощенной под воздействием ориентированных магнитных полей и радиочастотных излучений.

Явление «ядерного магнитного резонанса», на котором базируется магнитно-резонансное исследование предметов (живых и неодушевленных), было открыто в 1922 году в ходе эксперимента по определению «спиновой квантизации» в электронах. Именно тогда ученые-физики поняли, что понятие квантовой физики «спин» (момент импульса частицы) имеет физическое выражение.

В ходе исследований по воздействию радиочастотных (РЧ) излучений на частицы, находящиеся в сильном магнитном поле, в 1937 году было выявлено, что ядра образцов поглощают РЧ-энергию определенной частоты и излучают после отключения внешнего импульса. Такое действие могут производить только частицы, ядра которых обладают электрическим зарядом и спином. Такие свойства присущи элементам, в ядре которых присутствует один «лишний» протон (т.е. количество протонов превышает количество электронов). Современная МР томография использует в исследованиях свойства нескольких «органических» элементов, самым популярным из которых является водород Н(1).

Находясь в сильном однородном магнитном поле ядро водорода, состоящее из одного протона, под воздействием радиоимпульса, излученного на определенной частоте (Ларморовская частота резонанса), способно «возбудиться»: энергия поглощенного РЧ-импульса переводит атом водорода на более высокий энергетический уровень. Но это нестабильное состояние неспособно сохраняться без внешнего воздействия, и когда импульсы прекращаются, происходит возврат к стабильному состоянию (релаксация). В процессе этого «остывания» ядро излучает электромагнитную волну, которую можно зафиксировать. Дальнейшее – дело сложных математических пространственных вычислений, в ходе которых сигнал определенного атома превращается в «пиксель» с определенными координатами.

Что заставляет ядро водорода поглощать энергию РЧ-импульса? Именно взаимодействие собственного магнитного поля ядра и наведенного вокруг «объекта исследований», большого, постоянного и ориентированного в определенном направлении магнитного поля, созданного сильными электромагнитами. Каждое ядро атома водорода является единичной магнитной системой, обладающей уникальной направленностью магнитного момента. Магнитные моменты всех протонов принудительно ориентируются в том направлении, в каком направлен вектор магнитной индукции внешнего поля. Энергия РЧ-импульса, излученного на частоте, совпадающей с частотой вращения протонов, поглощается, изменяя положение оси, ориентированной вдоль общего направления магнитного поля (поворачивается на 90 (Т1) и 180 градусов (Т2)). Возврат в нормальное, т.е. «невозбужденное», состояние с разворотом оси вращения в первоначальном направлении сопровождается излучением электромагнитной волны с той же частотой, на которой произошло поглощение энергии. В положениях Т1 и Т2 ядра водорода «запасают» разное количество энергии, и соответственно мощность излучения различается (первое состояние дает меньший импульс, нежели второе).

Это самое простое объяснение сути ядерно-магнитного резонанса в единичной системе, какой является атом водорода, но в плотном веществе для получения результатов требуется более сложное приложение магнитных полей. Для этого введены дополнительные магнитные поля, названные «градиентные». С их помощью можно менять направленность общего магнитного поля в трех измерениях, что позволяет получать изображения в любой проекции (плоскости) и формировать трехмерные изображения с помощью компьютерной обработки (как в компьютерной рентгеновской томографии).

По справедливости томографию следовало бы называть «ядерно-магнитной», т.к. используется именно излучение ядер атомов. Но после аварии, повлекшей разрушение атомного реактора на Чернобыльской АЭС и заражение прилежащих территорий радиоактивными выбросами, любое название, содержащее слово «ядерный», воспринимается со значительной долей нездорового скептицизма. Сокращение было принято для сохранения спокойствия населения, не знакомого с квантовой физикой.

История изобретения, устройство и принцип действия

Современные магнитно-резонансные томографы выпускаются в нескольких технически продвинутых странах, из которых на долю США приходится до 40% общего объема производства. Это не случайно, т.к. большинство основных технологических открытий, касающихся МР томографии, было сделано в американских научных центрах:

  • 1937 год – профессор Колумбийского университета (Нью-Йорк, США) Исидор Раби провел первый эксперимент по исследованию ядерно-магнитного резонанса в молекулярных лучах;
  • 1945 год – в двух университетах (Стэнфорде и Гарварде) проводились фундаментальные исследования ЯМР в твердых объектах (Ф. Блох и Э. Парселл);
  • 1949 год – Э.Ф. Рамсей (Колумбийский университет) сформулировал теорию химического сдвига, легшую в основание МР спектроскопии, обеспечившей химические лаборатории самой точной аналитической аппаратурой;
  • 1971-1977 годы – физик Раймонд Ваган Дамадиан с группой коллег (Бруклинский медицинский центр) создал первый МР-сканер и получил изображение внутренних органов живых объектов (и в том числе человека). В ходе исследований медики выявили, что изображения опухолей сильно отличаются от здоровых тканей. На проектирование и проведение работ потребовалось около 7 лет;
  • 1972 год – химик Пол Лаутербур (Госуниверситет г. Нью-Йорк) получил первое двумерное изображение, используя собственные разработки по применению переменных градиентных магнитных полей.

В 1975 году швейцарский физикохимик Рихард Эрнст предложил методы увеличения чувствительности МРТ (использование преобразований Фурье, фазовое и частотное кодирование), значительно увеличившие качество двумерных изображений.

В 1977 году Р. Дамадиан представил научному миру первое изображение среза грудной клетки человека, сделанное на первом МР-сканере. В дальнейшем техника только совершенствовалась. Особенно большой вклад в развитие МРТ внесло развитие компьютерной техники и программирования, позволившее программно управлять сложным комплексом электромагнитного оборудования и обрабатывать полученное излучение для получения пространственного изображения или двумерных «срезов» в любой плоскости.

На текущий момент существует 4 типа МР-томографов:

  1. На постоянных магнитах (небольшие, переносные, со слабым магнитным полем до 0,35 Тл). Позволяют производить «полевые» исследования во время операций. Наибольшее применение получают постоянные неодимовые магниты.
  2. На резистивных электромагнитах (до 0,6 Тл). Достаточно громоздкие стационарные аппараты с мощной системой охлаждения.
  3. Гибридные системы (на постоянных и резистивных магнитах);
  4. На сверхпроводящих электромагнитах (мощные стационарные системы с криогенной системой охлаждения).

Самое высокое качество изображения, четкое и контрастное, ученые получают на криогенных МР-томографах с сильными магнитными полями до 9,4 Тл (в среднем – 1,5 -3 Тл). Но практика показывает, что для получения качественного изображения требуется не столько мощное поле, но в большей мере быстрая обработка сигналов и хорошая контрастность. С развитием программного обеспечения мощность магнитов стандартных медицинских МР-сканеров снижена до 1-1,5 Тл. Самые мощные томографы изготавливаются для научных медицинских исследований.

Стандартный МР-томограф состоит из нескольких блоков:

  1. Система из нескольких магнитов:
  • большой торовидный магнит, создающий постоянное поле;
  • градиентные магнитные катушки, с помощью которых производится изменение направления вектора магнитной индукции («смещаются полюсы») в трех измерениях. Для смещения градиента изобретены катушки разных форм и размеров (8-образные, седловидные, парные (Гельмготца), Максвелла, Голея). Контролируемая компьютером работа одиночных и парных катушек способна направить моменты ядер в любую сторону или даже развернуть относительно первоначально заданного большим магнитом направления;
  • шиммирующие катушки, необходимые для стабилизации общего поля. Малые магнитные поля этих катушек компенсируют посторонние наводки или возможную неоднородность поля, созданного большим и градиентными магнитами;
  • РЧ-катушка. Радиочастотные катушки создают магнитное поле, пульсирующее с частотой резонанса. Разработаны и применяются три вида катушек: передающие, принимающие и комбинированные (передающе-принимающие). РЧ-излучатель одновременно является и детектором, т.к. при наведении на катушку внешнего излучения, созданного «релаксирующими» протонами, в ее контуре возникают индукционные токи, фиксируемые как РЧ-сигналы. Конструкции детекторов – катушек делятся на два типа: поверхностные и объемные, т.е. окружающие объект. Формы зависят от способов улавливания сигналов, при которых учитываются мощность и направленность излучений. Например, объемная катушка «птичья клетка» служит для получения более качественных изображений головы и конечностей. На томографе установлено несколько парных и одиночных РЧ-катушек для всех видов и направлений РЧ-сигналов.

Самое мощное поле создается сверхпроводящими магнитами. Большой кольцевой магнит, создающий постоянное поле, погружен в герметичный сосуд, наполненный сжиженным гелием (t= -269 о С). Этот сосуд замкнут в другом, большем герметичном сосуде. В пространстве между двумя стенками создан вакуум, что не позволяет гелию нагреться ни на долю градуса (количество вложенных вакуумных сосудов может быть больше двух). Чем меньше сопротивление в проводе катушки, тем выше мощность магнитного поля. Именно этим свойством обосновано применение сверхпроводников, сопротивление в которых близко к 0 Ом.

Система управления томографом состоит из устройств:

  • компьютер;
  • программатор градиентных импульсов (формирует направление магнитного поля с помощью изменения амплитуды и вида градиентных полей);
  • градиентный усилитель (управляет мощностью градиентных импульсов через изменение выходной мощности катушек);
  • источник и программатор РЧ-импульсов формируют амплитуду резонансного излучения;
  • РЧ-усилитель изменяет мощность импульсов до необходимого уровня.

Компьютер управляет блоками формирования полей и импульсов, принимает данные из детекторов и обрабатывает, трансформируя поток аналоговых сигналов в цифровую «картину», которую выводят на монитор и печать.

МР-сканер (т.е. магнитная система) в обязательном порядке окружается системой экранирования от внешних «наводок» электромагнитного и радиоизлучения, которые могут исходить от источников радиосигналов и любых металлических предметов, попавших в сильное магнитное поле. Металлическая сетка или сплошное листовое покрытие стен комнаты создают электрически проводящий экран типа «клетка Фарадея».

МРТ в медицинской диагностике

Магнитно-резонансная томография полностью отличается от рентгеновского просвечивания, т.к. это буквально не «аналоговый» (т.е. фотографический) способ получения изображения, а построение образа с помощью оцифрованных данных. То есть картинка, которую человек видит на экране, является продуктом дешифровки множества микроскопически малых сигналов, которые улавливает детектор томографа (РЧ-катушка). Каждый из этих электромагнитных импульсов обладает определенной мощностью и пространственными координатами внутри тела. Обработка и построение изображения на основании полученных импульсов «релаксации протонов» производится мощным компьютером по специальным программам.

В МРТ используется набор последовательностей РЧ-импульсов, которые создают определенные режимы «возбуждения» протонов водорода в тканях организма с уникальной интенсивностью поглощения и соответствующего возврата энергии. Фактически последовательности являются компьютерными программами, согласно которым производится излучение РЧ-сигналов с определенной амплитудой и мощностью и управление градиентами магнитных полей.

Водород является самым распространенным элементом в теле, т.к. не только присутствует во всех органических молекулах, но и, как компонент воды, содержится в большинстве тканей. Именно поэтому (а также потому, что в ядре только один протон, что позволяет легче вызвать резонанс) томография лучше отображает мягкие ткани, в которых концентрация воды значительно выше. На МРТ-изображении кости, содержащие крайне мало свободных молекул воды, выглядят как непроглядно черные области.

Многочисленные эксперименты показали, насколько различным может быть время релаксации протона, если атом, в котором находится эта элементарная частица, находится в определенном виде ткани. Причем если эта ткань здорова, время «отклика» будет значительно отличаться. Именно по времени релаксации, т.е. скорости возврата РЧ-импульса, компьютером определяется яркость объекта.

В медицинской диагностике с помощью МРТ обследуют не только плотные ткани, но и жидкости: МР-ангиография позволяет определять места образования тромбов, выявлять турбулентности и направление тока крови, измерять просвет сосудов. В исследованиях жидкой среды помогают специальные вещества, изменяющие время отклика протонов в составе жидкости. Контрастные вещества содержат соединения элемента «гадолиний», у которого имеются уникальные магнитные свойства ядер атомов, за которые его называют «парамагнетик».

Также с помощью МРТ измеряется внутренняя температура в любой точке тела. Бесконтактная термометрия основана на измерении резонансных частот тканей (температура измеряется на основании отклонений частоты релаксации в ядах водорода в атомах воды).

В основе построения изображений лежит фиксация трех базовых параметров, которыми обладают протоны:

  • время релаксации Т1 (спин-решеточная, поворот оси вращения протона на 90 о);
  • время релаксации Т2 (спин-спиновая, поворот оси вращения протона на 180 о);
  • протонная плотность (концентрация атомов в ткани).

Другими двумя условиями, влияющими на контрастность и яркость изображения, являются время повторения последовательности и время появления эхо-сигнала.

Используя в последовательностях РЧ-импульсы с определенной мощностью и амплитудой и измеряя время отклика Т1 и Т2, исследователи получают изображения одних и тех же точек тела (тканей) с разной контрастностью и яркостью. Например, короткое время Т1 дает мощный РЧ-сигнал релаксации, что при построении образа выглядит ярким пятном. По комбинации световых характеристик ткани в разных последовательностях выявляются увеличение концентрации воды, жира или конкретное изменение характеристик ткани, говорящее о наличии опухоли или уплотнения.

Для полноты информации о магнитно-резонансной томографии нужно сказать, что управление магнитными полями и радиочастотными импульсами не обходится без «казусов», необычно выглядящих изображений. Их называют «артефактами». Это любая точка, область или черта, присутствующие на изображении, но отсутствующие в организме в виде изменения ткани. Причиной появления таких артефактов могут быть:

  • случайные наводки от неизвестных металлических предметов, попавших в магнитное поле;
  • неисправности аппаратуры;
  • физиологические особенности организма («фантомы», пятна, вызванные движением внутренних органов при дыхании или сердцебиении);
  • неверные действия оператора.

Для устранения «артефактов» проводится внеочередная калибровка и тестирование аппаратуры, пациент и помещение проверяются на наличие инородных предметов, производится повторное обследование в нескольких режимах.

Использование МРТ в диагностике заболеваний позвоночника

Позвоночник – самая подвижная часть опорно-двигательного аппарата. Именно мягкие ткани обеспечивают и подвижность, и целостность позвоночной системы. Если подсчитать все известные и распространенные заболевания позвоночника, на долю повреждений мягких тканей придется до 90% от всех учтенных болезней. А если включить неврологические болезни спинного мозга и спинномозговых нервов и различные виды опухолей, то статистика возрастет до 95-97%. Иначе говоря, болезни, повреждающие костные ткани позвонков, встречаются более чем редко по сравнению с болезнями мягких тканей: межпозвоночных дисков, суставных сумок, связок и мышц спины.

Если сравнивать симптомы различных нарушений целостности мягких тканей, сходство будет исключительным:

  • боли (локальные и распространенные в определенной области);
  • «корешковый синдром» (нарушения целостности спинномозговых нервов и связанные с ними искажения сенсорных сигналов и ответных реакций);
  • различные по силе параличи (плегии), парезы и потери чувствительности.

Именно поэтому результаты магнитно-резонансной томографии имеют высокий статус «решающего слова» в визуализационной диагностике заболеваний позвоночника. Иной раз качественный снимок пораженного участка – это единственный способ окончательно утвердить диагноз, сделанный на основании предварительного осмотра, неврологических тестов и анализов.

Показанием для проведения обследования в МРТ считается наличие воспалительных процессов в области позвоночного столба, сопровождающихся активной иммунной реакцией (повышение температуры тела, отекание тканей, покраснение кожного покрова). Анализы подтверждают наличие иммунной реакции, но не способны указать точное положение места инфицирования и воспаления. МР томограмма с точностью до 1 мм устанавливает координаты очага, ареал распространения воспалительного процесса. МР ангиограммы укажут границы тромбирования сосудов и отека тканей. В исследовании хронических заболеваний (остеохондроз во всех стадиях, спондилоартроз и т.п.) МРТ показывает исключительную полезность.

Также прямым показанием для применения МРТ являются симптомы, указывающие на возможное образование абсцессов в эпидуральной области: сильные локализованные боли, «корешковый синдром», прогрессирующая потеря чувствительности и парализация конечностей и внутренних органов.

Инфекционные заболевания, способные повредить все типы тканей (туберкулез, остеомиелит), требуют комплексного исследования с помощью МРТ и компьютерной томографии (КТ). На МР томограммах выявляются поражения нервных тканей, хрящевых межпозвоночных дисков, суставных сумок. КТ дополняет общую картину данными о разрушениях костных тканей тел позвонков и отростков.

Повреждения спинного мозга и близких к ним тканей (кровеносных сосудов, оболочек мозга, внутренней надкостницы спинномозгового канала) требуют многосторонних и кропотливых исследований на МРТ, т.к. большая часть нарушений нервных тканей связана с образованием опухолей (доброкачественных и раковых), изредка – абсцессов (эпидуральных и субдуральных). Исследования магнитно-резонансной томографии первоначально были нацелены на выявление именно опухолевых образований в ЦНС. Многолетние наблюдения и систематизация накопленного опыта позволяют исследователям определять появляющиеся новообразования на первой стадии, «в зачаточном состоянии».

Развитие сканерной техники направлено на повышение детализации, контрастности и яркости изображения объектов любого размера, а также на максимально быстрое получение данных после излучения РЧ-импульса. Современный МР-томограф способен «показывать» происходящие процессы в реальном времени: сердцебиение, движение жидкостей, дыхание, сокращение мышц, образование тромба. Малые открытые МР-сканеры на постоянных магнитах позволяют производить операции с минимальным уровнем повреждений поверхностных тканей (интервенционная МРТ).

Компьютерное программирование позволяет построить по данным, полученным со сканера, объемное изображение на экране монитора или с помощью лазерной техники.

Развивается направление МРТ исследований позвоночника в вертикальном положении. Подвижная установка оборудована столом, меняющим положение на 90 о, что позволяет снять в реальном времени изменения в позвоночном столбе при увеличении вертикальных нагрузок. Особенно ценны такие данные при изучении травм (переломов разных типов) и спондилолистеза.

По отзывам проходивших обследование, они не испытывают никаких болезненных ощущений. Самое большое впечатление на них производит шум, который создает аппаратура: «сильный стук в стенках тоннеля, как будто поблизости работает перфоратор». Это вращается подвижная деталь постоянного магнита.


Противопоказания

Однозначным препятствием проведению МРТ обследования является наличие в теле пациента имплантатов и устройств, содержащих металлы, в любой степени обладающие свойствами ферромагнетиков. Для информации: только чистый титан, применяющийся для создания вертебральных систем фиксации, не обладает магнитными свойствами.

Наличие в теле пациента кардиостимулятора, кохлеарного имплантата с электронным оборудованием и металлическими деталями сразу вызовет в магнитном поле возмущения, которые на томограмме создадут «артефакт». Кроме того, электронный аппарат выйдет из строя, причинив владельцу максимальный ущерб. К такому же результату приведет наличие в теле искусственных суставов, штифтов, скоб или даже осколков металла, оставшихся после ранения. Некоторые химические соединения, входящие в состав красок для татуажа, также обладают ферромагнитными свойствами (в частности, микроскопические частицы способны нагреваться в сильном магнитном поле, что приводит к ожогам глубоких слоев эпидермиса).

Во время обследования от пациента требуется максимальная неподвижность во время достаточно продолжительного времени. Препятствием к проведению МРТ может быть психическая нестабильность, определенные фобии (клаустрофобия, например), которые вызовут у обследуемого шоковое состояние, истерику, непроизвольную подвижность.

Для повышения качества изображения могут применяться контрастные вещества (соединения гадолиния), свойства которых еще не до конца изучены. Например, как они могут подействовать на развитие плода во время первых трех месяцев беременности. Поэтому не рекомендуется проводить обследования беременных женщин, требующие применения контрастных веществ. Кроме того, у людей, имеющих индивидуальную физиологическую непереносимость, эти препараты могут вызвать непредвиденную анафилактическую реакцию.

Совершенствование техники, использующей явление ядерно-магнитного резонанса, дает медикам, химикам и биологам мощный инструмент для исследования текущих процессов в живом организме и поиска патологий на самых ранних стадиях развития.

Статьи по теме

Буквально три-четыре столетия назад докторам приходилось ставить диагноз, не имея ничего точнее рентгенологического исследования. Даже тогда было диковинкой, о которой мало кто что-либо слышал. Сейчас столько точных исследований, которые помогают дать четкое представление о той или иной патологии, ее размерах, форме и опасности. Среди таких диагностических процедур . В чем же ее принцип?

За принцип этой диагностической процедуры взят феномен ЯМР (), при помощи которого можно получить послойное изображение органов и тканей организма.

Ядерно-магнитный резонанс – это физическое явление, которое заключается в особенных свойствах ядер атомов. При помощи импульса радиочастотной природы в электромагнитном поле в виде особого сигнала излучается энергия. Компьютер отображает и запечатлевает эту энергию.

ЯМР дает возможность все знать об организме человека из-за насыщенности последнего атомами водорода и магнитных свойств тканей организма. Установить, где находится тот или иной атом водорода, можно благодаря векторному направлению протонных параметров, которые делятся на две расположенные по разные стороны фазы, а также их зависимости от магнитного момента.

Принцип работы МРТ

При помещении ядра атома во внешнее магнитное поле, момент магнитной природы направится в противоположную сторону от магнитного момента поля. Когда на определенный участок организма воздействует с той или иной частотой, некоторые протоны изменяют свое направление, но затем все снова возвращается на круги своя. На этом этапе при помощи специальной системы в компьютере производится сбор данных, полученных с томографа, регистрируются несколько «расслабленных» ядер атома.

Что такое магнитно-резонансная томография?

МРТ — на сегодняшний день единственный метод лучевой диагностики, который может дать наиболее точные данные о состоянии организма человека, метаболизме, строении и физиологических процессах в тканях и органах.

Во время исследования создаются снимки отдельных участков организма. Органы и ткани отображаются в разных проекциях, что дает возможность увидеть их в разрезе. После врачебной оценки таких снимков можно сделать достаточно точные выводы об их состоянии.

Принято считать, что МРТ была основана в 1973 году. Но первые томографы существенно отличались от современных. Качество их изображения было низким, хотя они и были , чем томографы сегодняшнего дня. Прежде чем появились томографы, имеющие вид современных и работающие также качественно и точно, над их усовершенствованием трудились величайшие умы мира.

Современный магнитно-резонансный томограф – это высотехнологичное устройство, работающее благодаря взаимодействию магнитного поля и радиоволн. Прибор выглядит как тоннельная труба с выдвижным столом, на котором и размещают пациента. Работа этого стола устроена так, что может перемещаться в зависимости от томографического магнита.

Пример современного аппарата МРТ

Обследуемый участок окружают радиочастотные датчики, считывающие сигналы и передающие их на компьютер. Полученные данные обрабатываются на компьютере, вследствие чего и получается точное изображение. Эти снимки записывают на пленку либо на диск.

В результате получается не снимок , а точное изображение необходимого участка в нескольких плоскостях. Можно посмотреть мягкие ткани в различных разрезах, при этом костная ткань не отображается, а значит – и мешать не будет.

При помощи этой методики можно визуализировать сосудистое русло, органы, различные ткани тела, нервные волокна, связочный аппарата и мышцы. Можно оценить , измерить температуру любого органа.

МРТ бывает или без него. Контраст делает аппаратуру более чувствительной.

Сам совершенно безболезненен. в свой организм никак не ощущается. Зато ощущается множество различных специфических для данной процедуры звуков: различных сигналов, постукиваний, разных шумов. В некоторых клиниках выдают специальные беруши, чтобы пациента не раздражали эти звуки.

Нужно учесть один немаловажный нюанс. Во время процедуры пациента , который представляет собой тоннелеобразный магнит. Есть люди, которые боятся закрытых пространств. Страх этот может быть различной интенсивности – от небольшого беспокойства до паники. В некоторых лечебных учреждениях есть для таких категорий пациентов. Если же такого томографа нет, то нужно рассказать о своих проблемах доктору, он назначит успокоительное перед исследованием.

Для каких исследований больше всего подходит?

Без магнитно-резонансной томографии не обойтись при диагностике таких состояний:

  • многие недуги воспалительного характера, например, ;
  • нарушения головного и спинного мозга ( , );
  • опухоли, как доброкачественные, так и злокачественные. Этот единственный метод, который предоставляет самые точные данные о метастазах, позволяет видеть даже самые мелкие, которые при других исследованиях незаметны. Помогает выяснить, уменьшаются ли они после проведенной терапии или, наоборот, увеличиваются;
  • (сосудистые нарушения, пороки сердца);
  • травмы органов и ;
  • для определения эффективности проведенного оперативного лечения, химиотерапии и лучей;
  • инфекционные процессы в суставах и костях.

Преимущества и недостатки МРТ

У каждой методики есть свои положительные стороны и свои минусы. Среди плюсов этого исследования отмечают:

  • методика не вызывает боли или каких-нибудь неприятных ощущений, кроме звуков, которые издает аппарат при работе;
  • нет никакого вредного радиоактивного излучения, которое присутствует, к примеру, при рентгенологических методах;
  • после процедуры получаются изображения высокого качества, контрастные вещества не причиняют таких побочных эффектов, как при рентгеновском исследовании;
  • не нужна никакая ;
  • исследование является самым информативным и точным среди других, известных ныне.

Исследование дает возможность получить точные и достоверные данные о строении, размерах, форме тканей и органов. Иногда МРТ является единственной возможностью выявить серьезный недуг в начальной стадии, к сожалению, эффективность процедуры недостаточно высока при диагностике костной ткани и нарушениях функции суставов. Но светила медицины смогли и здесь найти выход: если (компьютерной томографии), можно получить вполне достоверные и информативные данные.

Как у каждой методики, у МРТ есть свои противопоказания. Они могут быть относительными и абсолютными. К абсолютным противопоказаниям относят:

  • если у пациента есть вживленный кардиостимулятор;
  • электромагнитные имплантанты в среднем ухе;
  • различные имплантанты металлического или ферромагнитного происхождения.

К относительным противопоказаниям относят:

  • заболевания сердца, печени и почек в стадии декомпенсации;
  • почечная недостаточность;
  • клаустрофобия, беспокойство в ;
  • в первом триместре.

Насколько эффективно пройдет та или иная процедура зависит от многих обстоятельств. Не стоит при малейших подозрениях на наличие той или иной патологии незамедлительно бежать на МРТ. Не смотря на всю точность этого метода, могут быть некоторые нюансы, которые способен выявить только специалист. Например, проводить исследование с контрастом или без него, или делать МРТ параллельно с КТ, или другим исследованием, лабораторными анализами.

Интернет, безусловно, очень полезная и нужная вещь, как, впрочем, и советы знакомых. Но все это не может заменить объективного врачебного исследования и опроса. Только специалист может правильно подойти к вопросу . Поэтому перед тем как идти на эту процедуру нужно зайти к своему терапевту и взять направление, где будет указан предположительный диагноз и какой именно орган или участок нужно исследовать.

После исследования, с полученными данными также лучше пойти к специалисту. Возможно, он решит назначить еще какие-то дополнительные исследования, чтобы прояснить ситуацию и назначить, если нужно, лечение.

Сегодня уже стало привычным направлять пациента не на рентгенографию, не на электрокардиограмму, а на ЯМР-томографию. Для того чтобы разобраться, что стоит за этими словами, следует начать издалека, а именно с понимания того, что такое магнетизм атомного ядра. Но еще до этого нам надо ввести важные понятия, которые отсутствуют в основном курсе школьной физики.

Магнитный момент

Магнитные свойства маленького плоского контура с током, помещенного в магнитное поле, определяются магнитным моментом этого тока, равным

где I - ток, S - площадь контура, - вектор нормали к контуру, построенный по правилу буравчика (рис. 1).

В частности, энергия контура в магнитном поле с индукцией равна

(ось z направлена вдоль ).

Для поворота контура с изменением проекции вектора от μ z до –μ z надо совершить работу А = 2μ z B.

Атомный электрон, движущийся по орбите вокруг атомного ядра, можно считать эквивалентным круговому току и приписать ему магнитный момент. Наличие такого «орбитального» магнитного момента у электрона проявляется в изменении его энергии при помещении атома в магнитное поле (формула для W ).

При тщательном анализе экспериментальных данных оказалось, что свойства атома во внешнем магнитном поле определяются не только движением электрона вокруг ядра, но и наличием у электрона скрытого «внутреннего вращения», которое назвали спином. Спин есть у всех элементарных частиц (у некоторых спин равен нулю). Интенсивность «вращения» описывается спиновым числом s , которое может быть только целым или полуцелым. Для электрона, протона, нейтрона s = 1/2. «Внутреннее вращение», аналогично орбитальному, приводит к появлению у частицы спинового магнитного момента. Проекция спинового магнитного момента на ось z (направление магнитного поля) принимает значения

μ z = γm s ћ ,

где ћ = h /(2π) - постоянная Планка, m s принимает (2s + 1) значений: –s , –s + 1, ..., s – 1, s , а γ называют гиромагнитным фактором. Сам вектор имеет модуль больше, чем его максимальная проекция: , т. е. во всех стационарных состояниях расположен под углом к оси z и быстро вращается вокруг этой оси: μ z = const, μ x и μ y быстро меняются (рис. 2). Для электрона, протона, нейтрона m s принимает всего два значения: . Для электрона , для протона . Спиновый магнитный момент есть даже у нейтрона, несмотря на то что он в целом электронейтрален. (Это свидетельствует о том, что нейтрон должен иметь внутреннюю структуру. Как и протон, он состоит из заряженных кварков.) Для нейтрона .

Видно, что магнитный момент протона и нейтрона на три порядка (–10 3) меньше, чем магнитный момент электрона (их масса примерно в 2000 раз больше). Примерно такой же по порядку величины магнитный момент должен быть у всех остальных атомных ядер, состоящих из протонов и нейтронов. Магнитные моменты всех ядер измерены с большой точностью. Именно наличие у ядер этих маленьких (в сравнении с атомными) магнитных моментов, значения которых различны для разных ядер, и лежит в основе явления ЯМР - ядерного магнитного резонанса, а также ЯМР-томографии. Мы в основном будем говорить о ядрах водорода - протонах, которые имеют наиболее широкое распространение в природе. Изотопом водорода является дейтерий, чье ядро также обладает магнитным моментом.

Что такое ядерный магнитный резонанс

Рассмотрим ядро атома водорода (протон) во внешнем магнитном поле . Протон может находиться только в двух стационарных квантовых состояниях: в одном из них проекция магнитного момента на направление магнитного поля положительна и равна

А в другом - такая же по модулю, но отрицательная. В первом состоянии энергия ядра в магнитном поле равна –μ z B , во втором + μ z B. Изначально все ядра находятся в первом состоянии, а для перехода во второе состояние ядру надо сообщить энергию

ΔE = 2μ z B .

Нетрудно понять, что заставить ядро изменить направление своего магнитного момента можно, подействовав на него электромагнитным излучением с частотой ω, соответствующей переходу между этими состояниями:

ћ ω = 2μ z B .

Подставляя сюда магнитный момент протона, получим

откуда для B = 1 Тл находим частоту волны: ν ≈ 4·10 7 Гц и соответствующую длину волны: λ = с/ ν ≈ 7 м - типичные частота и длина волны радиовещательного диапазона. Фотоны именно этой длины волны поглощаются ядрами с переворотом магнитных моментов по отношению к направлению поля. При этом их энергия в поле повышается как раз на величину, соответствующую энергии такого кванта.

Отметим, что в экспериментах по ЯМР, т. е. для типичных частот среднего радио-вещательного диапазона, электромагнитные волны используются вовсе не в том виде, к которому мы привыкли при обсуждении распространения света или поглощения и излучения света атомами. В простейшем случае мы имеем дело с катушкой, по которой протекает созданный генератором переменный ток радиочастоты. Образец, содержащий исследуемые ядра, которые мы хотим подвергнуть воздействию электромагнитного поля, помещается на оси катушки. Ось катушки, в свою очередь, направлена перпендикулярно статическому магнитному полю B 0 (последнее создается с помощью электромагнита или сверхпроводящего соленоида). При протекании по катушке переменного тока на ее оси индуцируется переменное магнитное поле B 1 , амплитуда которого выбирается гораздо меньшей величины B 0 (обычно в 10000 раз). Это поле осциллирует с той же частотой, что и ток, т. е. с радиочастотой генератора.

Если частота генератора близка к вычисленной частоте, то происходит интенсивное поглощение ядрами водорода квантов света с переходом ядер в состояние с отрицательной проекцией μ z (поворот ядер). Если же частота генератора отличается от вычисленной, то поглощения квантов не происходит. Именно в связи с резкой (резонансной) зависимостью от частоты переменного магнитного поля интенсивности процесса передачи энергии от этого поля ядрам атомов, сопровождаемое поворотом их магнитных моментов, явление получило название ядерного магнитного резонанса (ЯМР).

Как же можно заметить такие перевороты ядерных моментов по отношению к статическому магнитному полю? Будучи вооруженными современной техникой ЯМР, это оказывается совсем нетрудно: выключив создающий поле B 1 генератор радиочастоты, следует одновременно включить приемник, использующий ту же катушку в качестве антенны. При этом он будет регистрировать радиоволны, излучаемые ядрами по мере их возвращения к первоначальной ориентации вдоль поля B 0 . Этот сигнал индуцируется в той же катушке, посредством которой ранее возбуждались магнитные моменты. Его временная зависимость обрабатывается компьютером и представляется в виде соответствующего спектрального распределения.

Из этого описания вы можете представить, что ЯМР-спектрометр весьма существенно отличается от привычных спектрометров, проводящих измерения в диапазоне видимого света.

До сих пор мы рассматривали упрощенную картину: поведение в магнитном поле изолированного ядра. В то же время понятно, что в твердых телах или жидкостях ядра совсем изолированными не являются. Они могут взаимодействовать между собой, а также и со всеми другими возбуждениями, распределение по энергиям которых определяется температурой и статистическими свойствами системы. Взаимодействия возбуждений различной природы, их происхождение и динамика являются предметом изучения современной физики конденсированного состояния.

Как был открыт ЯМР

Первые сигналы, соответствующие ядерному магнитному резонансу, были получены более шестидесяти лет назад группами Феликса Блоха в Оксфорде и Эдварда Парселла в Гарварде. В те времена экспериментальные трудности были огромны. Все оборудование изготавливалось самими учеными прямо в лабораториях. Вид аппаратов того времени несопоставим с сегодняшними (использующими мощные сверхпроводящие соленоиды) приборами ЯМР, которые можно увидеть в больницах или поликлиниках. Достаточно сказать, что магнит в экспериментах Парселла был создан с использованием утиля, найденного на задворках Бостонской трамвайной компании. При этом он был калиброван настолько плохо, что магнитное поле в действительности имело величину большую, чем требовалось для переворота ядерных моментов при облучении радиоволнами с частотой ν = 30 МГц (частота радиогенератора) .

Парселл со своими молодыми сотрудниками тщетно искали подтверждения того, что явление ядерного магнитного резонанса имело место в его экспериментах. После многих дней бесплодных попыток разочарованный и грустный Парселл решает, что ожидаемое им явление ЯМР не наблюдаемо, и дает указание выключить питающий электромагнит ток. Пока магнитное поле уменьшалось, разочарованные экспериментаторы продолжали глядеть на экран осциллографа, где все это время надеялись увидеть желанные сигналы. В некоторый момент магнитное поле достигло необходимой для резонанса величины, и на экране неожиданно появился соответствующий ЯМР сигнал. Если бы не счастливый случай, возможно прошли бы еще многие годы, прежде чем существование этого замечательного явления было бы подтверждено экспериментально.

С этого момента техника ЯМР стала бурно развиваться. Она получила широкое применение в научных исследованиях в областях физики конденсированного состояния, химии, биологии, метрологии и медицины. Наиболее известным применением стало получение с помощью ЯМР изображения внутренних органов.

Как осуществляется визуализация внутренних органов посредством ЯМР

До сих пор мы неявно предполагали, что, в пренебрежении влиянием слабых электронных токов в катушках, магнитное поле, в которое помещаются ядра, однородно, т. е. имеет одну и ту же величину во всех точках. В 1973 году Пол Латербур предложил проводить ЯМР-исследования, помещая образец в магнитное поле, меняющееся от точки к точке. Понятно, что в этом случае и резонансная частота для исследуемых ядер изменяется от точки к точке, что позволяет судить об их пространственном расположении. А поскольку интенсивность сигнала от определенной области пространства пропорциональна числу атомов водорода в этой области, мы получаем информацию о распределении плотности вещества по пространству. Собственно, в этом и заключается принцип техники ЯМР-исследования. Как видите, принцип прост, хотя для получения реальных изображений внутренних органов на практике следовало получить в распоряжение мощные компьютеры для управления радиочастотными импульсами и еще долго совершенствовать методологию создания необходимых профилей магнитного поля и обработки сигналов ЯМР, получаемых с катушек.

Представим себе, что вдоль оси х расположены маленькие заполненные водой сферы (рис. 3). Если магнитное поле не зависит от х, то возникает одиночный сигнал (см. рис. 3, а ). Далее предположим, что посредством дополнительных катушек (по отношению к той, которая создает основное, направленное по оси z, магнитное поле) мы создаем дополнительное, меняющееся вдоль оси х, магнитное поле B 0 , причем его величина возрастает слева направо. При этом понятно, что для сфер с различными координатами сигнал ЯМР теперь будет соответствовать различным частотам и измеряемый спектр будет содержать в себе пять характерных пиков (см. рис. 3, б ). Высота этих пиков будет пропорциональна количеству сфер (т. е. массе воды), имеющих соответствующую координату, и, таким образом, в рассматриваемом случае интенсивности пиков будут относиться как 3:1:3:1:1. Зная величину градиента магнитного поля (т. е. скорость его изменения вдоль оси х ), можно представить измеряемый частотный спектр в виде зависимости плотности атомов водорода от координаты х . При этом можно будет сказать, что там где пики выше, число атомов водорода больше: в нашем примере числа атомов водорода, соответствующих положениям сфер, действительно соотносятся как 3:1:3:1:1.

Расположим теперь в постоянном магнитном поле B 0 некоторую более сложную конфигурацию маленьких заполненных водой сфер и наложим дополнительное магнитное поле, изменяющееся вдоль всех трех осей координат. Измеряя радиочастотные спектры ЯМР и зная величины градиентов магнитного поля вдоль координат, можно создать трехмерную карту распределения сфер (а следовательно, и плотности водорода) в исследуемой конфигурации. Сделать это гораздо сложнее, чем в рассмотренном выше одномерном случае, однако интуитивно понятно, в чем этот процесс заключается.

Техника восстановления образов, сходная с той, которую мы описали, и осуществляется при ЯМР-томографии. Закончив накопление данных, компьютер посредством весьма быстрых алгоритмов начинает «обработку» сигналов и устанавливает связь между интенсивностью измеренных сигналов при определенной частоте и плотностью резонирующих атомов в данной точке тела. В конце этой процедуры компьютер визуализирует на своем экране двумерное (или даже трехмерное) «изображение» определенного органа или части тела пациента.

Поразительные «образы»

Чтобы полностью оценить результаты ЯМР-исследования внутренних органов человека (например, различных сечений головного мозга, которые физик-медик сегодня может получить не дотрагиваясь до черепа!), следует прежде всего понимать, что речь идет о компьютерном воссоздании именно «образов», а не о реальных тенях, возникающих на фоточувствительной пленке при поглощении рентгеновских лучей в процессе получения рентгеновского снимка.

Человеческий глаз является чувствительным датчиком электромагнитного излучения в видимом диапазоне. К счастью или несчастью, излучения, происходящие от внутренних органов, до наших глаз не доходят - мы видим человеческие тела только извне. В то же время, как мы только что обсуждали, в определенных условиях ядра атомов внутренних органов человеческого тела могут излучать электромагнитные волны в диапазоне радиочастот (т. е. частот, гораздо меньших, чем для видимого света), причем частота слегка меняется в зависимости от точки излучения. Глазом его не увидеть, поэтому такое излучение регистрируется с помощью сложной аппаратуры, а затем собирается в единое изображение с помощью специальной компьютерной обработки. И тем не менее, речь идет о совершенно реальном видении внутренней части предмета или человеческого тела.

К такому поразительному успеху человечество пришло благодаря ряду фундаментальных достижений научной мысли: это и квантовая механика с ее теорией магнитного момента, и теория взаимодействия излучения с веществом, и цифровая электроника, и математические алгоритмы преобразования сигналов, и компьютерная техника.

Преимущества ЯМР-томографии по сравнению с другими диагностическими методами многочисленны и значительны. Оператор может легко выбирать, какие сечения тела пациента просканировать, а также может подвергать исследованию одновременно несколько сечений выбранного органа. В частности, выбирая соответствующим образом градиенты магнитного поля, можно получить вертикальные сечения изображения внутренностей нашего черепа. Это может быть центральное сечение или сечения, смещенные вправо или влево. (Такие исследования практически невозможны в рамках рентгеновской радиографии.) Оператор может «сужать» поле наблюдения, визуализируя сигналы ЯМР, происходящие только от одного выбранного органа или только от одной из его частей, увеличивая таким образом разрешение изображения. Важным преимуществом ЯМР-томографии является также и возможность прямого измерения локальной вязкости и направления течения крови, лимфы и других жидкостей внутри человеческого тела. Подбирая необходимое соотношение между соответствующими параметрами, например длительностью и частотой импульсов, для каждой патологии оператор может достигать оптимальных характеристик получаемого изображения, скажем, повышать его контрастность (рис. 4).

Суммируя, можно сказать, что для каждой точки изображения (пикселя), соответствующей крошечному объему исследуемого объекта, оказывается возможным извлечь различную полезную информацию, в некоторых случаях включая и распределение концентрации тех или иных химических элементов в организме. Для повышения чувствительности измерений, т. е. увеличения отношения интенсивности сигнала к шуму, следует накапливать и суммировать большое число сигналов. В этом случае удается получить качественное изображение, адекватно передающее реальность. Именно поэтому времена проведения ЯМР-томографии оказываются довольно большими - пациент должен относительно неподвижно пребывать в камере несколько десятков минут.

В 1977 году английский физик Питер Мэнсфилд придумал такую комбинацию градиентов магнитного поля, которая, не давая особенно хорошего качества изображения, тем не менее позволяет получать его чрезвычайно быстро: для соответствующего построения хватает единственного сигнала (на практике это занимает приблизительно 50 миллисекунд). С помощью такой техники - ее называют планарным эхом - сегодня можно следить за пульсациями сердца в реальном времени: в таком фильме на экране чередуются его сокращения и расширения.

Можно ли было представить себе на заре создания квантовой механики, что через сто лет развитие науки приведет к возможности таких чудес?

Нельзя не отметить, что в 2003 году Пол Лотербур и Питер Мэнсфилд были удостоены Нобелевской премии в области медицины «за изобретение метода магнитно-резонансной томографии».

Магниторезонансная томография (МРТ) − способ получения томографических медицинских изображений для исследования внутренних органов и тканей с использованием явления ядерного магнитного резонанса. За изобретение метода МРТ Питер Мэнсфилд и Пол Лотербур получили в 2003 году Нобелевскую премию в области медицины.
Вначале этот метод назывался ядерно-магнитно резонансная томография (ЯМР-томография). Но потом, чтобы не пугать зомбированную радиофобией публику, убрали упоминание о "ядерном" происхождении метода, тем более, что ионизирующие излучения в этом методе не используются.

Ядерный магнитный резонанс

Ядерный магнитный резонанс реализуется на ядрах с ненулевыми спинами. Наиболее интересными для медицины являются ядра водорода (1 H), углерода (13 C), натрия (23 Na) и фосфора (31 P), так как все они присутствуют в теле человека. В нем больше всего (63%) атомов водорода, которые содержатся в жире и воде, которых больше всего в человеческом теле. По этим причинам современные МР-томографы чаще всего «настроены» на ядра водорода − протоны.

При отсутствии внешнего поля спины и магнитные моменты протонов ориентированы хаотически (рис. 8а). Если поместить протон во внешнее магнитное поле, то его магнитный момент будет либо сонаправлен, либо противоположно направлен магнитному полю (рис. 8б), причём во втором случае его энергия будет выше.

Частица со спином, помещенная в магнитное поле, напряженностью В, может поглощать фотон, с частотой ν, которая зависит от ее гиромагнитного отношения γ.

Для водорода, γ = 42.58 MГц/Тл.
Частица может подвергаться переходу между двумя энергетическими состояниями, поглощая фотон. Частица на нижнем энергетическом уровне поглощает фотон и оказывается на верхнем энергетическом уровне. Энергия данного фотона должна точно соответствовать разнице между этими двумя состояниями. Энергия протона, Е, связана с его частотой, ν, через постоянную Планка (h = 6.626·10 -34 Дж·с).

В ЯМР величина ν называется резонансной или частотой Лармора. ν = γB и E = hν, поэтому, для того, чтобы вызвать переход между двумя спиновыми состояниями, фотон должен обладать энергией

Когда энергия фотона соответствует разнице между двумя состояниями спина, происходит поглощение энергии. Напряженность постоянного магнитного поля и частота радиочастотного магнитного поля должны строго соответствовать друг другу (резонанс). В ЯМР экспериментах частота фотона соответствует радиочастотному (РЧ) диапазону. В клинической МРТ, для отображения водорода, ν как правило находится между 15 и 80 MГц.
При комнатной температуре количество протонов со спинами на нижнем энергетическом уровне незначительно превосходит их количество на верхнем уровне. Сигнал в ЯМР-спектроскопии пропорционален разности в заселенностях уровней. Число избыточных протонов пропорционально B 0 . Эта разница в поле 0.5 Tл, составляет всего лишь 3 протона на миллион, в поле 1.5 Tл – 9 протонов на миллион. Однако общее количество избыточных протонов в 0.02 мл воды в поле 1.5 Tл – 6.02·10 15 . Чем больше напряженность магнитного поля, тем лучше изображение.

В состоянии равновесия, вектор суммарной намагниченности параллелен направлению примененного магнитного поля B 0 и называется равновесной намагниченностью M 0 . В этом состоянии, Z-составляющая намагниченности M Z равна M 0 . Еще M Z называется продольной намагниченностью. В данном случае, поперечной (M X или M Y) намагниченности нет. Посылая РЧ импульс с ларморовской частотой, можно вращать вектор суммарной намагниченности в плоскости, перпендикулярной оси Z, в данном случае плоскости X-Y.

T1 Релаксация
После прекращения действия РЧ импульса, суммарный вектор намагниченности будет восстанавливаться по Z-оси, излучая радиочастотные волны. Временная константа, описывающая, как M Z возвращается к равновесному значению, называется временем спин-решеточной релаксации (T 1 ).

M Z = M 0 (1 - e -t/T 1 )

T1 релаксация происходит в объеме, содержащем протоны. Однако связи протонов в молекулах неодинаковые. Эти связи различны для каждой ткани. Один атом 1 H может быть связан очень сильно, как в жировой ткани, в то время как другой атом может иметь более слабую связь, например в воде. Сильно связанные протоны выделяют энергию намного быстрее, чем протоны со слабой связью. Каждая ткань выделяет энергию с различной скоростью, и именно поэтому МРТ имеет такое хорошее контрастное разрешение.

T2 Релаксация
T1 релаксация описывает процессы, происходящие в Z направлении, в то время как T2 релаксация описывает процессы в плоскости X-Y.
Сразу после воздействия РЧ импульсом суммарный вектор намагниченности (теперь называемый поперечной намагниченностью) начинает вращаться в плоскости X-Y вокруг оси Z . Все векторы имеют одно и то же направление, потому что они находятся в фазе. Однако они не сохраняют это состояние. Вектор суммарной намагниченности начинает сдвигаться по фазе (расфазировываться) из-за того, что каждый спиновый пакет испытывает магнитное поле, немного отличающееся от магнитного поля, испытываемого другими пакетами, и вращается со своей собственной частотой Лармора. Сначала количество дефазированных векторов будет небольшим, но быстро увеличивающимся до момента, когда фазовая когерентность исчезнет: не будет ни одного вектора, совпадающего по направлению с другим. Суммарная намагниченность в плоскости XY стремится к нулю, и затем продольная намагниченность возрастает до тех пор пока M 0 не будет вдоль Z.


Рис. 9. Спад магнитной индукции

Временная константа, описывающая поведение поперечной намагниченности, M XY , называется спин-спиновым временем релаксации, T 2 . T2 релаксация называется спин-спиновой релаксацией, потому что она описывает взаимодействия между протонами в их непосредственной среде (молекулах). T2 релаксация – затухающий процесс, означающий высокую фазовую когерентность в начале процесса, но быстро уменьшающуюся до полного исчезновения когерентности в конце. Cигнал в начале сильный, но быстро ослабевает за счет T2 релаксации. Сигнал называется спадом магнитной индукции (FID - Free Induction Decay) (рис. 9).

M XY =M XYo e -t/T 2

T 2 всегда меньше чем T 1 .
Скорость смещения по фазе различна для каждой ткани. Дефазирование в жировой ткани происходит быстрее по сравнению с водой. Еще одно замечание относительно T2 релаксации: она протекает гораздо быстрее T1 релаксации. T2 релаксация происходит за десятки миллисекунд, в то время как T1 релаксация может достигать секунд.
Для иллюстрации в таблице 1 приведены значения времен T 1 и T 2 для различных тканей.

Таблица 1

Ткани T 1 (мс), 1.5 T T 2 (мс)
МОЗГ
Серое вещество 921 101
Белое вещество 787 92
Опухоли 1073 121
Отек 1090 113
ГРУДЬ
Фиброзная ткань 868 49
Жировая ткань 259 84
Опухоли 976 80
Карцинома 923 94
ПЕЧЕНЬ
Нормальная ткань 493 43
Опухоли 905 84
Цирроз печени 438 45
МЫШЦА
Нормальная ткань 868 47
Опухоли 1083 87
Карцинома 1046 82
Отек 1488 67

Устройство магнитно-резонансного томографа


Рис. 10. Схема МРТ

Схема магнитнорезонансного томографа показана на рис. 10. В состав МРТ входят магнит, градиентные катушки и радиочастотные катушки.

Постоянный магнит
МРТ сканеры используют мощные магниты. От величины напряженности поля зависит качество и скорость получения изображения. В современных МР-томографах используются либо постоянные, либо сверхпроводящие магниты. Постоянные магниты дёшевы и просты в эксплуатации, но не позволяют создавать магнитные поля с напряженностью большей 0.7 Тл. Большинство магнитно-резонансных томографов это модели со сверхпроводящими магнитами (0.5 – 1.5 Тл). Томографы со сверхсильным полем (выше 3.0 Тл) очень дороги в эксплуатации. На МР-томографах с полем ниже 1 Тл нельзя качественно сделать томографию внутренних органов, так как мощность таких аппаратов слишком низкая, чтобы получать снимки высокого разрешения. На томографах с напряженностью магнитного поля < 1 Тл можно проводить только исследования головы, позвоночника и суставов.


Рис. 11.

Градиентные катушки
Внутри магнита расположены градиентные катушки. Градиентные катушки позволяют создавать дополнительные магнитные поля, накладывающиеся на основное магнитное поле B 0 . Имеются 3 набора катушек. Каждый набор может создавать магнитное поле в определенном направлении: Z, X или Y. Например, когда ток поступает в Z градиент, в Z направлении (вдоль длинной оси тела)создается однородное линейное изменение поля. В центре магнита поле имеет напряженность B 0 , а резонансная частота равняется ν 0 , но на расстоянии ΔZ поле меняется на величину ΔB, а соответственно меняется и резонансная частота (рис. 11). За счет добавления к общему однородному магнитному полю градиентного магнитного возмущения, обеспечивается локализация ЯМР-сигнала. Действие градиента, обеспечивающего выбор среза, обеспечивает селективное возбуждение протонов именно в нужной области. От мощности и скорости действия катушек зависит быстродействие, отношение сигнал/шум, разрешающая способность томографа.

РЧ катушки
РЧ катушки создают поле B 1 , которое поворачивает суммарную намагниченность в импульсной последовательности. Они также регистрируют поперечную намагниченность, в то время как она прецессирует в плоскости XY. РЧ катушки бывают трех основных категорий: передающие и принимающие, только принимающие, только передающие. РЧ катушки служат излучателями полей B 1 и приемниками РЧ энергии от исследуемого объекта.

Кодирование сигнала

Когда пациент находится в однородном магнитном поле B 0 , все протоны от головы до пальцев ног выравниваются вдоль B 0 . Все они вращаются с Ларморовой частотой. Если сгенерировать РЧ импульс возбуждения для перевода вектора намагниченности в плоскость X-Y, все протоны реагируют и возникает ответный сигнал, но локализации источника сигнала нет.

Срез-кодирующий градиент
При включенном Z-градиенте, в этом направлении генерируется дополнительное магнитное поле G Z , накладывающееся на B 0 . Более сильное поле означает более высокую Ларморову частоту. Вдоль всего наклона градиента поле B различно и, следовательно, протоны вращаются с разными частотами. Теперь, если сгенерировать РЧ импульс с частотой ν + Δν, прореагируют только протоны в тонком срезе, потому что они - единственные, вращающиеся с этой же самой частотой. Ответный сигнал будет только от протонов из этого среза. Таким образом локализуется источник сигнала по оси Z. Протоны в этом срезе вращаются с одной частотой и имеют одинаковую фазу. В срезе находится огромное количество протонов, и неизвестна локализация источников по осям X и Y. Поэтому для точного определения непосредственного источника сигнала требуется дальнейшее кодирование.


Рис. 12.

Фазо-кодирующий градиент
Для дальнейшего кодирования протонов на очень короткое время включается градиент G Y . В течение этого времени в направлении по оси Y создается дополнительное магнитное поле градиента. В этом случае протоны будут иметь немного различающиеся скорости вращения. Они больше не вращаются в фазе. Разность фаз будет накапливаться. Когда градиент G Y выключен, протоны в срезе будут вращаться с одинаковой частотой, но иметь различную фазу. Это называется кодированием фазы.

Частотно-кодирующий градиент
Для кодирования левого-правого направления включается третий градиент G X . Протоны с левой стороны вращаются с более низкой частотой, чем с правой. Они накапливают дополнительный сдвиг фазы из-за различий в частотах, но уже приобретенная разность фаз, полученная при кодировании фазы градиента на предыдущем шаге, сохраняется.

Таким образом для локализации источника сигналов, которые принимаются катушкой, используются градиенты магнитного поля.

  1. G Z градиент выбирает аксиальный срез.
  2. G Y градиент создает строки с разными фазами.
  3. G X градиент формирует столбцы с разными частотами.

За один шаг кодирование фазы выполняется только для одной строки. Для сканирования целого среза полный процесс кодирования среза, фазы и частоты должен быть повторен несколько раз.
Таким образом созданы маленькие объемы (вокселы). Каждый воксел имеет уникальную комбинацию частоты и фазы (рис. 12). Количество протонов в каждом вокселе определяет амплитуду РЧ волны. Полученный сигнал, поступающий из различных областей тела, содержит сложное сочетание частот, фаз и амплитуд.

Импульсные последовательности

На рис. 13 показана диаграмма простейшей последовательности. Вначале включается срезо-селективный градиент (1) (Gss). Одновременно c ним генерируется 90 0 РЧ импульс выбора среза (2), который "переворачивает" суммарную намагниченность в плоскость X-Y. Затем включается фазо-кодирующий градиент (3) (Gpe) для выполнения первого шага кодирования фазы. После этого подается частотно-кодирующий или считывающий градиент (4) (Gro), в течение которого регистрируется сигнал спада свободной индукции (5) (FID). Последовательность импульсов обычно повторяется 128 или 256 раз для сбора всех необходимых данных для построения изображения. Время между повторениями последовательности называется временем повторения (repetition time, TR). С каждым поторением последовательности меняется величина фазо-кодирующего градиента. Однако в этом случае сигнал (FID) был крайне слабый, поэтому результирующее изображение было плохим. Для повышения величины сигнала применяется последовательность спин-эхо.

Последовательность спин-эхо
После применения 90 0 импульса возбуждения суммарная намагниченность находится в плоскости X-Y. Сразу же начинается смещение фаз вследствие T2 релаксации. Именно из-за этого дефазирования сигнал резко снижается. В идеале, необходимо сохранить фазовую когерентность, обеспечивающую лучший сигнал. Для этого через короткое время после 90 0 РЧ импульса применяется 180 0 импульс. 180 0 импульс вызывает перефазирование спинов. Когда все спины восстановлены по фазе, сигнал снова становится высоким и качество изображения значительно выше.
На рис. 14 показана диаграмма импульсной последовательности спин-эхо.


Рис. 14. Диаграмма импульсной последовательности спин-эхо

Сначала включается срезо-селективный градиент (1) (G SS ). Одновременно c ним применяется 90º РЧ импульс. Затем включается фазо-кодирующий градиент (3) (Gре) для выполнения первого шага кодирования фазы. Gss (4) снова включается во время 180º перефазирующего импульса (5), таким образом, воздействие оказывается на те же протоны, которые были возбуждены 90º импульсом. После этого подается частотно-кодирующий или считывающий градиент (6) (Gro), в течение которого принимается сигнал (7).
TR (Время повторения). Полный процесс должен повторяться неоднократно. TR время между двумя 90ºимпульсами возбуждения. TE (Время эхо). Это время между 90ºимпульсом возбуждения и эхо.

Контраст изображения

При ЯМР сканировании одновременно происходят два процесса релаксации T1 и T2. Причем
T1 >> T2. Контраст изображения сильно зависит от этих процессов и от того, насколько полно каждый из них проявляется при выбранных временных параметрах сканирования TR и TE. Рассмотрим получение контрастного изображения на примере сканирования мозга.

T1 контраст


Рис. 15. а) спин-спиновая релаксация и б) спин-решеточная релаксация в различных тканях мозга

Выберем следующие параметры сканирования: TR = 600 мс и TE = 10 мс. То есть T1 релаксация протекает за 600 мс, а T2 релаксация – только за
5 мс (TE/2). Как видно из рис. 15а через 5 мс смещение фаз невелико и оно не сильно отличается у разных тканей. Контраст изображения, поэтому, очень слабо зависит от T2 релаксации. Что касается Т1 релаксации, то через 600 мс жир практически полностью релаксировал, но для CSF необходимо еще некоторое время
(рис. 15б). Это означает, что вклад от CSF в общий сигнал будет незначительным. Контраст изображения становится зависимым от процесса релаксации Т1. Изображение "взвешено по T1" потому, что контраст больше зависит от процесса релаксации Т1. В результирующем изображении CSF будет темной, жировая ткань будет яркой, а интенсивность серого вещества будет чем-то средним между ними.

T2 контраст


Рис. 16. а) спин-спиновая релаксация и б) спин-решеточная релаксация в различных тканях мозга

Теперь зададим следующие параметры: TR = 3000 мс и TE = 120 мс, то есть T2 релаксации протекать за 60 мс. Как следует из рис. 16б, практически все ткани подверглись полной T1 релаксации. Здесь TE является доминирующим фактором для контраста изображения. Изображение "взвешено по T2". На изображении CSF будет яркой, в то время как другие ткани будут обладать различными оттенками серого.

Контраст протонной плотности

Существует еще один тип контраста изображения, называемый протонной плотностью (PD).
Зададим следующие параметры: TR = 2000 мс и TE 10 мс. Таким образом, как и в первом случае T2 релаксация вносит незначительный вклад в контраст изображения. С TR = 2000 мс, суммарная намагниченность большинства тканей восстановится вдоль Z-оси. Контраст изображения в PD изображениях не зависит ни от T2, ни от T1 релаксации. Полученный сигнал полностью зависит от количества протонов в ткани: небольшое количество протонов означает низкий сигнал и темное изображение, в то время как большое их количество производит сильный сигнал и яркое изображение.


Рис. 17.

Все изображения имеют сочетания T1 и T2 контрастов. Контраст зависит только от того, за сколько времени позволено протекать T2 релаксации. В спин-эхо (SE) последовательностях наиболее важны для контраста изображения времена TR и TE.
На рис. 17 схематически показано, как TR и TE связаны в терминах контраста изображения в SE последовательности. Короткое TR и короткое TE дают контраст, взвешенный по T1. Длинное TR и короткое TE дают контраст PD. Длинное TR и длинное TE приводят к контрасту, взвешенному по T2.


Рис. 18. Изображения с разными контрастами: взвешенный по T1, протонная плотность и взвешенный по T2. Отметьте различия в интенсивности сигнала тканей. CSF темная на T1, серая на PD и яркая на T2.


Рис. 19. Магниторезонансный томограф

МРТ хорошо отображает мягкие ткани, тогда как КТ лучше визуализирует костные структуры. Нервы, мышцы, связки и сухожилия наблюдаются гораздо более четко в МРТ, чем в КТ. Кроме того, магнитно-резонансный метод незаменим при обследовании головного и спинного мозга. В головном мозге МРТ может различать белое и серое вещества. Благодаря высокой точности и четкости полученных изображений магнитно-резонансная томография успешно используется в диагностике воспалительных, инфекционных, онкологических заболеваний, при исследовании суставов, всех отделов позвоночника, молочных желез, сердца, органов брюшной полости, малого таза, сосудов. Современные методики МРТ делают возможным исследовать функцию органов – измерять скорость кровотока, тока спинномозговой жидкости, наблюдать структуру и активацию различных участков коры головного мозга.