Главная · Температура · Основные виды коррозии металлов. Коррозионная стойкость

Основные виды коррозии металлов. Коррозионная стойкость

Оценка коррозионной стойкости

Для характеристики коррозионных свойств материалов обычно проводят их испытания на стойкость против общей коррозии, межкристаллитной коррозии и коррозионного растрескивания .

Испытания на общую коррозию. Испытания на общую коррозию проводят на образцах с большим отношением поверхности к объему. Коррозионную среду выбирают с учетом условий эксплуатации материала. Испытания проводят в жидкости при постоянном или многократно повторяемом переменном погружении образцов, в кипящем соляном растворе, в парах или окружающей атмосфере.

Скорость коррозии металлов и сплавов характеризуется глубинным показателем коррозии h K , мм/год – табл. 2 или потерей массы g K , г/(м 2 ∙ч) – табл. 3.

Пересчет обоих показателей проводят по формуле:

h K = 8,76 g K / ρ, (1)

где h K – скорость коррозии, мм/год;

ρплотность, г/см 3 ;

g K потеря массы образца, г/(м 2 ч).

Характеристики h K и g K предполагают равномерную коррозию и обычно представляют усредненную по поверхности скорость коррозии. Вместе с тем известно, что локальные виды коррозии наиболее опасны. При сравнительно небольшой общей потере массы металла происходит сильное локальное разрушение конструкции, а это приводит к преждевременному выходу оборудования из строя.

Таблица 2

Десятибалльная шкала коррозионной стойкости металлов по глубине коррозии

Балл коррозионной стойкости Скорость коррозии h K , мм/год Группа стойкости
≤ 0,001 Совершенно стойкие
(> 0,001) – 0,005 Весьма стойкие
(> 0,005) – 0,01 Весьма стойкие
(> 0,01) – 0,05 Стойкие
(> 0,05) – 0,1 Стойкие
(> 0,1) – 0,5 Понижено стойкие
(> 0,5) – 1,0 Понижено стойкие
(> 1,0) – 5,0 Малостойкие
(> 5,0) – 10,0 Малостойкие
> 10,0 Нестойкие

Таблица 3.

Десятибалльная шкала коррозионной стойкости по скорости коррозии образца

Балл кор. стойкости Группа стойкости Потеря массы, g K , г/(м 2 ∙ч)
Черные металлы Медь и сплавы Никель и сплавы Свинец и сплавы Алюминий и сплавы Магний и сплавы
Совершенно стойкие <0,0009 <0,001 <0,001 <0,0012 <0,0003 <0,0002
Весьма стойкие 0,0009-0,0045 0,001-0,0051 0,001-0,005 0,0012-0,0065 0,0003-0,0015 0,0002-0,001
Весьма стойкие (>0,0045)-0,009 (>0,0051)-0,01 (>0,005)-0,01 (>0,0065)-0,012 (>0,0015)-0,003 (>0,001)-0,002
Стойкие 0,009-0,045 0,01-0,051 0,01-0,05 0,012-0,065 0,003-0,015 0,002-0,01
Стойкие (>0,045)-0,09 (>0,051)-0,1 (>0,05)-0,1 (>0,065)-0,12 (>0,015)-0,03 (>0,01)-0,02
Понижено стойкие (>0,09)-0,45 (>0,1)-0,5 (>0,1)-0,5 (>0,12)-0,65 (>0,03)-0,15 (>0,02)-0,1
Понижено стойкие (>0,45)-0,9 (>0,5)-1,02 (>0,5)-1,0 (>0,65)-1,2 (>0,15)-0,31 (>0,1)-0,2
Малостойкие (>0,9)-4,5 (>1,02)-5,1 (>1,0)-5,0 (>1,2)-6,5 (>0,31)-1,54 (>0,2)-1,0
Малостойкие (>4,5)-9,1 (>5,1)-10,2 (>5,0)-10,0 (>6,5)-12,0 (>1,54)-3,1 (>1,0)-2,0
Нестойкие >9,1 >10,2 >10,0 >12,0 >3,1 >2,0

Поэтому необходима проверка коррозионной стойкости материалов в конкретных условиях эксплуатации, особенно в тех случаях, когда присутствует опасность локальной коррозии.

Испытания на межкристаллитную коррозию (ГОСТ 6032-84). Основной причиной межкристаллитной коррозии коррозионностойких материалов является нагрев при обработке давлением или сварке, приводящий к электрохимической гетерогенности между приграничными участками и объемом зерен.

Температурно-временная область выделения по границам зерен коррозионностойких сталей карбидов хрома приведена на рис. 4. Внутри нее находится область сенсибилизации – повышенной чувствительности к межкристаллитной коррозии. Склонность к межкристаллитной коррозии проявляется в температурном интервале Т max –T min за минимальное время τ min , в течение которого происходит сенсибилизация.

Рис. 4. Температурно-временная область склонности

коррозионностойкой аустенитной стали к межкристаллитной коррозии (МКК), связанной с обеднением границ зерен по хрому:

Т р – температура растворения карбидов; γ – аустенит;

К – карбиды

При испытаниях на МКК хромистые стали подвергают провоцирующему нагреву при температуре 1100 °С в течение 30 ч, а хромоникелевые аустенитные – при температуре около 700 °С в течение 60 ч. После нагрева образцы выдерживают в течение длительного времени в кипящем водном растворе серной или азотной кислоты. Выбор длительности выдержки и вида коррозионной среды зависит от конкретной марки стали и ее назначения. Для контроля склонности к МКК образцы либо изгибают на оправке на угол 90°, либо подвергают травлению специальными реактивами и металлографическому исследованию. Отсутствие трещин на поверхности образца свидетельствует о его стойкости к МКК.

На рис. 5 приведены микроструктуры стали 08Х18Н10 после испытаний на межкристаллитную коррозию в разных средах.

Рис.5. Микроструктура стали 08Х18Н10

после закалки с 1050 °С в воде и отпуска при 700 °С:

а – межкристаллитная коррозия при испытании

в растворе 25 %-ной HNO 3 + 40 г/л Сr 6+ , продолжительность 200 ч;

б – то же в растворе кипящей 65 %-ной HNO 3 + Сr 6+ , × 500

Испытания на коррозионное растрескивание . Этот вид испытаний проводят при нагружении образца в коррозионной среде, соответствующей служебным условиям эксплуатации детали. Среда не должна вызывать общей коррозии и оказывать воздействие на ненагруженные образцы металла. Для аустенитных хромоникелевых сталей примером такой среды может служить кипящий раствор смеси солей MgCl 2 , NaCl и NaNO. Агрессивность сред должна быть не меньше той, в которой должны служить испытуемые материалы.

Испытания на коррозионное растрескивание могут проводиться либо в условиях, вызывающих разрушение материалов (испытания на растяжение, на вязкость разрушения и усталость), либо путем определения времени появления первой трещины. Последний вид испытаний состоит в фиксации нагруженных образцов в специальных приспособлениях или с помощью создания напряжений клином в разрезанных кольцах. Время до появления трещин характеризует стойкость материалов против коррозионного растрескивания.

Контрольные вопросы\

1. Перечислите методы защиты металлов и сплавов от коррозии.

2. Чем определяется выбор метода защиты от коррозии?

3. Что такое легирование стали?

4. Что такое биметаллы?

5. Каким методом изготавливают биметаллы?

6. Что такое ингибиторы коррозии?

7. Каков механизм защиты металлов и сплавов от коррозии с помощью анодных ингибиторов?

8. Каков механизм защиты металлов и сплавов от коррозии с помощью катодных ингибиторов?

9. Каковы преимущества использования летучих ингибиторов?

10. Какая форма изделий является предпочтительной для замедления процессов коррозии?

11. Как влияет на скорость коррозии чистота обработки деталей?

12. Чем объясняется высокая коррозионная стойкость алюминия и его сплавов?

13. Назовите наиболее коррозионностойкие черные сплавы.

14. Назовите наиболее коррозионностойкие цветные сплавы.

15. Чем определяется выбор вида коррозионной защиты?

16. Какие виды коррозии исследуют при проведении испытаний на коррозионную стойкость?

17. В какой коррозионной среде проводят испытания на общую коррозию?

18. Какими показателями характеризуется скорость коррозии металлов и сплавов?

19. Какова размерность глубинного показателя коррозии?

20. Какова размерность потери массы образца при коррозии?

21. Какой скоростью коррозии характеризуются материалы, относящиеся к совершенно стойким?

22. Какой скоростью коррозии характеризуются материалы, относящиеся к весьма стойким?

23. Какой скоростью коррозии характеризуются материалы, относящиеся к стойким?

24. Какой скоростью коррозии характеризуются материалы, относящиеся к малостойким?

25. Какой скоростью коррозии характеризуются материалы, относящиеся к нестойким?

26. Какова потеря массы образца черного сплава, имеющего балл коррозионной стойкости 3?

27. Какова потеря массы образца медного сплава, имеющего балл коррозионной стойкости 7?

28. Какова потеря массы образца никелевого сплава, имеющего балл коррозионной стойкости 4?

29. Какова потеря массы образца свинцового сплава, имеющего балл коррозионной стойкости 5?

30. Какова потеря массы образца алюминиевого сплава, имеющего балл коррозионной стойкости 9?

31. Какова потеря массы образца магниевого сплава, имеющего балл коррозионной стойкости 10?

32. Что является основной причиной межкристаллитной коррозии?

33. Расшифруйте марку сплава 08Х18Н10.

34. В какой коррозионной среде проводят испытания на коррозионное растрескивание?

35. Как проводятся испытания на коррозионное растрескивание?

Что называют коррозийной стойкостью материалов? Какие существуют способы повышения коррозионной стойкости

Разрушение изделий из различных материалов под действием физико-химических и биологических факторов получило название коррозии (от лат. слова, что означает разъедать).

Способность материалов сопротивляться коррозионному воздействию внешней среды называют коррозионной стойкостью.

В результате коррозионного разрушения машин и аппаратов, строительных конструкций, разнообразных металлических изделий около 12% выплавляемого металла безвозвратно теряется в различных отраслях народного хозяйства. Продление жизни изделий, оборудования сэкономит миллионы тонн металла и сократит при этом расходы на его производство.

Способы повышения коррозионной стойкости:

ѕ Использование коррозионностойких металлов. Наиболее распространенные из этой группы хромистые (13--30%), хромоникелевые (до 10-12%, так называемая «нержавейка»), хромоникельмолибденовые и другие стали. Эти стали сохраняют коррозионную стойкость при температуре до 300--400 °С. Применяют такие материалы во влажной атмосфере, в водопроводной и речной воде, азотной и органических кислотах. Легирование молибденом Мо, цирконием 2г, бериллием Ве, марганцем Мп также повышает коррозионную стойкость.

ѕ Применение пассивирующих материалов, у которых на поверхности образуется защитная пленка. К таким материалам относятся: титан и их сплавы.

ѕ Бронзы и латуни стойки к кавитационной коррозии (разрушение при совместном действии ударных нагрузок и электрохимического воздействия).

Использование неметаллических коррозионностойких материалов:

ѕ Силикатные материалы -- соединения кремния, получаемые методом плавления или спекания горных пород. Расплавы горных пород (базальта), кварцевое и силикатное стекло, кислоупорные керамические материалы, цементы и бетоны.

ѕ Пластические массы (полипропилен, пвх, текстолит, эпоксидная смола).

ѕ Резина (каучук).

Применение металлических покрытий:

ѕ Гальванические покрытия (цинкование, лужение, кадмирование, никелерование, серебрение, покрытие золотом).

ѕ Плакирование -- процесс защиты от коррозии основного металла или сплава другим металлом, устойчивым к агрессивной среде.

ѕ Наибольшее применение нашел способ совместной прокатки двух металлов. В качестве плакирующего материала используются нержавеющие стали, алюминий, никель, титан, тантал и др.

ѕ Металлизация распылением. Применяют для защиты от коррозии емкостей крупных габаритов: железнодорожных мостов, свай, корабельных труб. Распыляют цинк, алюминий, свинцом, вольфрамом.

Применение неметаллических покрытий:

Лакокрасочные покрытия (олифы, лаки, краски, эмали, грунты, шпаклевки, синтетические смолы). Лакокрасочные материалы наносят на поверхность изделий вальцеванием, распылением, окунанием, обливанием, с помощью кисти, электростатическим методом.

Пример: На обшивку морских судов для защиты их от обрастания раковинами морских организмов наносят специальные необрастающую краску. За один год слой обрастания в южных морях достигает 0,5 м, т.е. 100--150кг/м. Это увеличивает сопротивление движению судна, на что затрачивается до 8% мощности двигателей, повышается расход топлива. Удалить такой слой с поверхности представляет большую трудность. Поэтому подводную часть судна покрывают необрастающей краской, в состав которой входят оксид ртути, смолы, соединения мышьяка.

Покрытия полимерами (полиэтилен, полипропилен, фторопласты, полистирол, эпоксидные смолы и др.). Смолу наносят в виде расплава или суспензии кистью, окунанием, напылением. Фторопластья устойчивы к воздействию морской воды, неорганическим кислотам, кроме олеума и азотной кислоты, обладают высокими электроизоляционными свойствами.

Гуммирование -- покрытие резиной и эбонитом химических аппаратов, трубопроводов, цистерн, емкостей для перевозки и хранения химических продуктов и т.п. Мягкими резинами гуммируют аппараты, подвергающиеся ударам, колебаниям температур или содержащие суспензии, а для аппаратов, работающих при постоянной температуре и не подвергающихся механическим воздействиям, применяют твердые резины (эбониты).

Покрытия силикатными эмалями (стеклообразное вещество). Эмалированию подвергается аппаратура, работающая при повышенных температурах, давлениях и в сильно агрессивных средах.

Покрытия смазками и пастами. Антикоррозионные смазки готовят на основе минеральных масел (машинное, вазелиновое) и воскообразных веществ (парафина, мыла, жирных кислот).

Использование электрохимической защиты (катодная и анодная). К металлическим конструкциям присоединяется извне посторонний сильный анод (источник постоянного тока), который вызывает на поверхности защищаемого металла катодную поляризацию электродов, в результате чего анодные участки металла превращаются в катодные. А № означает, что разрушаться будет не металл конструкции, а присоединенный анод.

Коррозионная стойкость — способность материалов сопротивляться коррозии, определяющаяся скоростью коррозии в данных условиях.

Для оценки скорости коррозии используются как качественные, так и количественные характеристики. Изменение внешнего вида поверхности металла, изменение его микроструктуры являются примерами качественной оценки скорости коррозии.

Для количественной оценки можно использовать:

  • число коррозионных очагов, образовавшихся за определённый промежуток времени;
  • время, истекшее до появления первого коррозионного очага;
  • изменение массы металла на единице поверхности в единицу времени;
  • уменьшение толщины материала в единицу времени;
  • плотность тока, соответствующая скорости данного коррозионного процесса;
  • объём газа, выделившегося (или поглощённого) в ходе коррозии единицы поверхности за единицу времени;
  • изменение какого-либо свойства за определённое время коррозии (например, электросопротивления, отражательной способности материала, механических свойств)

Разные материалы имеют различную коррозионную стойкость, для повышения которой используются специальные методы. Повышение коррозионной стойкости возможно при помощи легирования (например, нержавеющие стали), нанесением защитных покрытий (хромирование, никелирование, алитирование, цинкование, окраска изделий), пассивацией и др. Устойчивость материалов к воздействию коррозии, характерной для морских условий, исследуется в камерах солевого тумана.

Наиболее лёгкой формой коррозионного воздействия является изменение цвета и потеря блеска, что в принципе мало заметно издалека. При помощи санации поверхности обычно можно вернуть стали прежний привлекательный вид.

Оспенная коррозия

Оспенная коррозия (питтинговая коррозия) — это вид коррозионного воздействия, вызываемого хлоридами.

Обычно сначала появляются маленькие точки тёмно-рыжего цвета и лишь в очень сложных случаях они могут разрастаться до такой степени, что коррозия переходит в новую стадию, сплошную поверхностную коррозию. Риск возникновения коррозии усиливается, если на поверхности после сваривания остаются инородные материалы (лак и т.п.), если на поверхность попадают частицы другого корродировавшего металла, если после термообработки не был удалён цвет побежалости.

Коррозионное растрескивание

Коррозионное растрескивание — это разрушение металла вследствие возникновения и развития трещин при одновременном воздействии растягивающих напряжений и коррозионной среды. Оно характеризуется почти полным отсутствием пластической деформации металла.

Такой вид коррозии появляется в средах с повышенным содержанием хлоридов, например, в бассейнах.

Щелевая коррозия

Щелевая коррозия — возникает в местах стыка, обусловленных конструктивными или эксплуатационными требованиями.

На степень коррозионного воздействия будет оказывать влияние геометрия стыка и тип соприкасающихся материалов. Наиболее опасны узкие стыки с малыми зазорами и соединение стали с пластиками. Если же избежать стыков не возможно, то рекомендуем использовать нержавеющие стали, легированные молибденом.

Межкристаллитная коррозия

Межкристаллитная коррозия — этот вид коррозии возникает в настоящее время на сталях после сенсибилизации в сочетании с использованием в кислых средах.

Во время сенсибилизации выделяются карбиды хрома, которые накапливаются по границам зёрен. Соответственно возникают области с пониженным содержанием хрома и более подверженные коррозии. Подобное происходит, например, во время сваривания в зоне теплового воздействия.

Все аустенитные стали обладают стойкостью к межкристаллитной коррозии. Их можно подвергать свариванию (лист до 6 мм, пруток до 40 мм) без риска возникновения МКК.

Биметаллическая или гальваническая коррозия

Биметаллическая коррозия — возникает при работе биметаллического коррозионного элемента, т.е. гальванического элемента, в котором электроды состоят из разных материалов.

Очень часто необходимо использовать неоднородные материалы, чьё сопряжение при определённых условиях может приводить к коррозии. При сопряжении двух металлов биметаллическая коррозия имеет гальваническое происхождение. При этом виде коррозии страдает менее легированный металл, который в обычных условиях, не находясь в контакте с более легированным металлом, не подвержен коррозии. Следствием биметаллической коррозии является как минимум изменение цвета и, например, потеря герметичности трубопроводов или отказ крепежа. В конечном итоге указанные проблемы могут приводить к резкому сокращению срока службы строения и необходимости преждевременного капитального ремонта. В случае с нержавеющими сталями биметаллической коррозии подвергается сопрягаемый с ними менее легированный металл.

Лабораторная работа №8

Цель работы: ознакомление с механизмами и скоростями коррозионного разрушения металлов.

1. Методические указания

Коррозионное разрушение металлов – это самопроизвольный переход металла в более устойчивое окисленное состояние под действием окружающей среды. В зависимости от характера окружающей среды различают химическую, электрохимическую и биокоррозию.

Электрохимическая коррозия – наиболее распространенный тип коррозии. Коррозия металлических конструкций в естественных условиях – в море, в земле, в грунтовых водах, под конденсационными или адсорбционными пленками влаги (в атмосферных условиях) носит электрохимический характер. Электрохимическая коррозия ̶ это разрушение металла, сопровождающееся появлением электрического тока в результате работы множества макро- и микрогальванических пар. Механизм электрической коррозии разделяется на два самостоятельных процесса:

1) анодный процесс - переход металла в раствор в виде гидратированных ионов с оставлением эквивалентного количества электроном в металле:

(-)A: Me + mH 2 O → 1+ + ne

2) катодный процесс ассимиляция избыточных электронов в металле какими-либо деполяризаторами (молекулами или ионами раствора, которые могут восстанавливаться на катоде). При коррозии в нейтральных средах деполяризатором обычно служит коррозии в растворенный в электролите кислород:

(+)K: O 2 + 4e +2H 2 O →4OH¯

При коррозии в кислых средах – ион водорода

(+)K: H·H 2 O + e → 1/2H 2 +H 2 O

Макрогальванические пары возникают при контакте различных металлов. При этом металл, имеющий более отрицательный электродный потенциал является анодом и подвергается окислению (коррозии).

Металл, имеющий более положительный потенциал, служит катодом. Он выполняет роль проводника электронов от металла-анода к частицам окружающей среды, способным эти электроны принимать. Согласно теории микропар, причиной электрохимической коррозии металлов является наличие на их поверхности микроскопических короткозамкнутых гальванических элементов, возникающих вследствие неоднородности металла и его контакта с окружающей средой. В отличие от специально изготовленных в технике гальванических элементов они возникают на поверхности металла самопроизвольно. В тонком слое влаги, всегда существующем на поверхности металла, растворяют О 2 ,СО 2 , SO 2 и другие газы из воздуха. Это создает условия для соприкосновения металла с электролитом.

С другой стороны, различные участки поверхности данного металла обладают разными потенциалами. Причины этого многочисленны, например, разность потенциалов между различно обработанными частями поверхности, разными структурными составляющими сплава, примесями и основным металлом.

Участки поверхности образна с более отрицательным потенциалом становятся анодами и растворяются (корродируют) (рис 1.1).

Часть освободившихся электронов перейдет с анода на катод. Поляризация электродов, однако, препятствует коррозии, так как электроны, оставшиеся на аноде, образуют с перешедшими в раствор положительными ионами двойной электрический слой, растворение металла прекращается. Следовательно, электрическая коррозия может протекать, если электроны с анодных участков постоянно отводятся на катоде, а затем удаляются, с катодных участков. Процесс отвода электронов с катодных участков называется деполяризацией, а вещества или ионы, вызывающие деполяризацию называются деполяризаторами. Если имеется контакт какого-либо металла со сплавом, сплав приобретает потенциал, соответствующий потенциалу наиболее отрицательного металла, входящего в его состав. При, контакте латуни (сплав меди с цинком) с железом корродировать станет латунь (за счет наличия в ней цинка). При перемене среды электродный потенциал у отдельных металлов может резко меняться. Хром, никель, титан, алюминий, и другие металлы нормальный электродный потенциал которых резко отрицателен, в обычных атмосферных условиях сильно пассивируется, покрываются оксидной пленкой, вследствие чего их потенциал становится положительным. В атмосферных условиях и пресной воде будет работать следующий гальванический элемент:

(-)Fe | H 2 O, O 2 | Al 2 O 3 (Al) +

(-)A: 2Fe – 4e = 2Fe 2+

(+)K: O 2 + 4e + 2H 2 O = 4OH¯

В итоге: 2Fe 2 + 4OH¯ = 2Fe(OH) 2

4Fe(OH) 2 + O 2 + 2H 2 O = 2Fe(OH) 3

Однако в кислой, щелочной среде или в нейтральной, содержащей ионы хлора (например, в морской воде), разрушающие оксидную пленку, алюминий в контакте с железом становится анодом и подвергается коррозионному процессу. В растворе NaCl и морской воде будет работать следующий гальванический элемент:

(-)Al | H 2 O, O 2 , NaCl | Fe(+)

(-)A: Al – 3e = Al 3+

(+)K: O 2 +4e + 2H 2 O = 4OH¯

4Al 3 + 12OH¯ = 4Al(OH) 3

Очень часто электрохимическая коррозия возникает в результате различной аэрации, то есть неодинакового доступа кислорода воздуха к отдельным участкам поверхности металла. На рис.1.2. изображен случай коррозии железа и каплей волы. Около краев капли, куда кислороду проникнуть легче, возникают катодные участки, а в центре, где толщина защитного слоя воды больше и кислороду проникнуть труднее анодный участок.

На возникновение коррозиционных гальванических элементов оказывает влияние различие в концентрации растворенного электролита, различие температур и освещенности и другие физические условия.

Защита от коррозии

Причины, вызывающие коррозионное разрушение металлов многочисленны. Разнообразны и методы защиты от коррозии:

обработка внешней среды;

защитные покрытия;

электрохимическая защита;

изготовление специально коррозионно-устойчивых сплавов.

Обработка внешней среды заключается в удалении или понижении активности некоторых, находящихся в ней веществ, вызывающих коррозию. Например, удаление растворенного в йоде кислорода (деаэрация) Иногда в раствор добавляют специальные замедляющее коррозию вещества, которые называются замедлителями или ИHГИБИТОРАМИ (уротропин, тиoмочевина, анилин и другие).

Детали, подвергающиеся защите в атмосферных условиях, помещаются вместе с ингибиторами в контейнер или обертываются бумагой, внутренний слои, которой пропитан ингибитором, а наружный, парафином. Ингибитор, испаряясь, адсорбируется на поверхности детали, обусловливая торможение электродных процессов.

Роль защитных покрытий сводится к изоляции металла от воздействия защитных внешней среды. Это достигается нанесением на поверхность металла лаков, красок, металлических покрытий.

Металлические покрытия делятся на анодные и катодные. В случае АНОДНОГО покрытия электродный потенциал покрывающего металла более отрицателен, чем потенциал защищенного металла. В случае КАТОДНОГО покрытия электродный потенциал покрывающего металла более положителен, чем потенциал основного металла.

Пока защитный слой полностью изолирует основной металл воздействия от окружающей среды, принципиального различия между анодным и катодный покрытием нет. При нарушении же целостности покрытия возникают новые условия. Катодное покрытие, например олово на железе, не только перестает защищать основной металл, но и усиливает своим присутствием коррозию железа (в возникшем гальваническом элементе железо является анодом).

При электрохимической защите уменьшение или полное прекращение коррозия достигается созданием на защищаемом металлическом изделии высокого электроотрицательного потенциала. Для этого защищаемое, изделие или соединяют с металлом, имеющим более отрицательный электродный потенциал, способным легче отдавать электроны (протекторная защита) или с отрицательным полюсом внешнего источника тока (катодная электрозащита).

Анодное покрытие, например цинк на железе, наоборот, при нарушении целостности покрывающего слоя будет само подвергаться разрушению, защищая тем самым основной металл от коррозии (в возникшем гальваническом элементе цинк является анодом).

Изготовление специальных коррозийно-устойчивых сплавов, нержавеющих сталей и т.д. сводится к введению в них добавок различных металлов.

Эти добавки оказывают влияние на микроструктуру сплава и способствуют возникновению в нем таких микрогальванических элементов, у которых суммарная ЭДС вследствие взаимной компенсации приближается к нулю. Такими полезными добавками, особенно для стали, являются хром, никель и другие металлы.

1. Выполнение работы

Задание 1

Проведение качественных химических, реакций позволяющих обнаружить ионы металла, перешедших при анодном процессе коррозии в раствор.

Приборы и реактивы: растворы ZnSO 4 , FeSO 4 и K 3 , набор пробирок.

Ход работы: Налить в пробирки 1-2 мл раствора солей:

а) ZnSO 4 и несколько капель K 3 ;

б) FeSO и несколько капель K 3 .

Отметить выпадающих осадков. Написать соответствующие реакции в молекулярном и ионном виде.

Задание 2

Изучение механизма коррозии металла при непосредственном контакте в нейтральной среде.

Опыт, проводится на установке, изображенной на рис. 1.7

В U-образную трубку налить 5-10 мл водного раствора NaCl. В него опускаются пластины металлов, соединенные между собой при помощи зажимов.

Пластинки металлов должны быть тщательно зачищены наждачной шкуркой, а место контакта пластинки и зажима находятся вне раствора. При выполнении опыта необходимо отметить изменение окраски раствора у катода и анода.

Написать:

1) анодные и катодные процессы коррозии

2) соответствующие реакции, при помощи которых был обнаружен ион металла в растворе

3) схему гальванического элемента.

1. опускаются пластины Zn и Fe.

В раствор, где находится цинковый электрод, добавить несколько капель K 3 , где находится железный электрод, несколько капель фенолфталеина.

2. Опускаются пластины Fe и Cu,

В раствор где находится железный электрод, добавить несколько капель K 3 , где находится медный электрод, несколько капель фенолфталeина.

Сравнить поведение железа в том и другом случае, делать соответствующие выводы.

Задание 3

Изучение механизма коррозии металлов при их непосредственном контакте в кислой среде.

Опыт произвести на установке, изображенной на рис 1.8.

В фарфоровую чашечку налить 10% раствор НСl. В раствор опустить два метала Аl и Си, и наблюдать за поведением металлов. У какого металла выделяются пузырьки водорода? Написать соответствующие реакции. Привести чти металлы в контакт друг с другом. На каком металле выделяются пузырьки водорода при контакте металлов? Составить схему гальванического элемента и электродные процессы на его электродах. Написать суммарное уравнение реакции.

3. Примеры решения задач

Пример 1

Рассмотрим коррозионный процесс при контакте железа со свинцом в растворе HCl

В растворе электролита (HCl) эта система представляет собой гальванический элемент, во внутренней цепи которого Fe является анодом (E°=­0.1260). атомы железа, передавая по два электрона свинцу переходят в раствор в виде ионов. Электроны же на свинце, восстанавливают ионы водорода, находящиеся в растворе, т.к.

HCl = H + + Cl¯

Анодный процесс Fe 0 – 2e = Fe 2+

Катодный процесс 2H + + 2e = 2H 0

Пример 2

Коррозионный процесс при контакте Fe c Ph в растворе NaCl. Так как раствор NaCl имеет нейтральную реакцию (соль, образована сильным основанием и сильной кислотой), то

Анодный процесс Fe – 2e = Fe 2+ ,

Катодный процесс O 2 + 4e + 2H 2 O = 4OH¯

Хлористый натрий (NaCl) в коррозионных процессах не участвует, он показан в схеме только как вещество, способное увеличить электропроводность раствора электролита.

Пример 3

Почему химически чистое железо является более стойким против коррозии, чем техническое железо? Составьте электронные уравнения анодного и катодного процессов, происходящих при коррозии технического железа.

Решение

Процесс коррозии технического железа ускоряется ввиду образования в нем микро и субмикрогальванических элементов. В микрогальванических парах в качестве анода, как правило, служит основной металл, т.е. железо. Катодами являются включения в металл, например, зерна графита, цемента. На анодных участках ионы металла переходят в раствор (окисление).

A: Fe – 2e = Fe 2+

На катодных участках электроны, перешедшие сюда с анодных участков, связываются либо кислородом воздуха, растворенным в воде, либо ионами водорода. В нейтральных средах происходит, кислородная деполяризация:

K: O 2 + 4e + 2H 2 O = 4OH¯

В кислых средах (высокая концентрация H – ионов) вородная деполяризация

K: 2H + + 2e = 2H 0

Пример 4

Назовите, катодным, или анодным является цинковое и покрытие на железном изделии? Какие процессы будут протекать, если целостность покрытия нарушится, и изделие будет находиться во влажном воздухе?

Решение

Электродный потенциал цинка по своей алгебраической величине ниже, чем электродный потенциал железа, поэтому покрытие является анодным. В случае нарушения целостности слоя цинка образуется коррозионная гальванопара, в которой цинк будет анодом, а железо катодом. Анодный процесс заключается в окислении цинка:

Zn 2+ + 2OH = Zn(OH) 2

Катодный процесс протекает на железе. Во влажном воздухе происходит преимущественно кислородная деполяризация.

K(Fe): O 2 + 4e + 2H 2 O = 4OH¯

Пример 5

Кадмиевая и никелевая пластины, будучи погружены в разбавленную серную кислоту, растворяются в ней с выделением водорода. Что изменится, если опустить их обе одновременно в сосуд с кислотой, соединив концы проволокой?

Решение

Если соединить концы кадмиевой и никелевой пластин проволокой, образуется кадмий, никелевый гальванический элемент, в котором кадмий, как более активный металл, является анодом. Кадмий будет окисляться:

A:Cd – 2e = Cd 2+ ,

Избыточные электроны перейдут на никелевую пластину, где будет происходить процесс восстановления ионов водорода:

K(Ni): 2H + 2e =2H 0 .

Таким образом, растворению подвергаются только кадмий, никель станет только проводником электронов и сам растворяться не будет. Водород будет выделяться только на никелевой пластине.

Пример 6

Как влияет PH среды на скорость коррозии алюминия?

Решение

Уменьшение PH среды, т.е. увеличение концентрации H-ионов резко увеличивает скорость коррозии никеля, - так как кислая среда препятствует образованию защитных пленок гидроксида никеля, в кислой среде происходит активное окисление никеля

A: Ni – 2e = Ni 2+

Снижение концентрации H-ионов, т.е. повышение концентрации OH, способствует образованию слоя гидроксида никеля:

Ni 2+ - 2OH¯ = NI(OH) 2

Гидроксид алюминия обладает амфотерными свойствами, т.е. растворяется в кислотах и щелочах:

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

Al(OH) 3 + NaOH = Na AlO 2 + 2H 2 O

Более точно эта реакция протекает так:

Al(OH) 3 + NaOH = Na

Таким образом, наименьшая скорость коррозии никеля в щелочной среде, алюминия – в нейтральной.

4. Задачи

1. Железная пластинка, погруженная в соляную кислоту, очень медленно выделяет водород, но если прикоснуться к ней цинковой проволокой, то она тотчас же покрывается пузырьками водорода. Объясните это явление. Какой металл переходит при этом в раствор?

2. В железном изделии имеются детали, изготовленные из никеля. Как это отразится на коррозии железа? Напишите соответствующие анодные и катодные процессы, если изделие находится во влажной атмосфере.

3. В какой среде скорость разрушения железа больше? Какая среда способствует анодному окислению цинка? Написать соответствующие реакции.

4. Как происходит атмосферная коррозия луженого железа и луженой меди при нарушении цельности покрытия? Составьте электронные уравнения анодного и катодного процессов.

5. Медь не вытесняет водород из разбавленных кислот. Почему? Однако, если к медной пластинке прикоснуться цинковой, то на меди начинается бурное выделение водорода. Дайте этому объяснение, составив электронные уравнения катодного и анодного процессов.

6. В раствор электролита, содержащего растворенный кислород, опустили цинковую пластинку и цинковую пластинку, частично покрытую медью. В каком случае процесс коррозии цинка происходит интенсивнее? Составьте электронные уравнения катодного и анодного процессов.

7. Что может произойти, если изделие, в котором техническое железо находится в контакте с медью, оставить и воздухе при повышенной влажности? Напишите уравнения соответствующих процессов.

8. Алюминий склепан с железом. Какой из металлов будет подвергаться коррозии? Какие процессы будут протекать, если изделие попадет в морскую воду?

9. Почему при контактировании железных изделий с алюминиевыми – железные изделия подвергаются более интенсивной коррозии, хотя алюминий имеет более отрицательный стандартный электродный потенциал?

10. Железные пластинки опущены:

а) в дистиллированную воду

б) в морскую воду

В каком случае процесс коррозии протекает интенсивнее? Ответ мотивируйте.

11. Составьте уравнения процессов, происходящих при коррозии алюминия, погруженного в раствор:

а) кислоты

б) щелочи

12. Почему технический цинк взаимодействует с кислотой более интенсивно, чем химически чистый цинк?

13. В раствор электролита опущена пластинка:

б) меди, частично покрытой оловом

в каком случае процесс коррозии протекает интенсивнее?

Ответ мотивируйте

14. Почему при никелировании железных изделий их покрывают сначала медью, а потом никелем?

Составьте электронные уравнения реакций, происходящих в процессах коррозии при повреждении никелевого покрытия.

15. Железное изделие покрыли кадмием. Какое это покрытие – анодное или катодное?

Ответ мотивируйте. Какой металл будет коррозировать при повреждении защитного слоя? Составьте электронные уравнения соответствующих процессов (среда нейтральная).

16. Какой из металлов:

б) кобальт

в) магний

может быть протектором к сплаву на основе железа. Составьте электронные уравнения соответствующих процессов (среда кислая).

17. Какие процессы будут происходить на цинковой и железной пластинах, если погрузить каждую в отдельности в раствор медного купороса? Какие процессы произойдут, если наружные концы, находящиеся в растворе пластинок, соединить проводником? Составьте электронные уравнения

18. Алюминиевая пластина опущена

а) в дистиллированную воду

б) в раствор хлористого натрия

в каком случае процесс коррозии протекает интенсивнее? Составьте уравнения анодного и катодного процессов коррозии технического алюминия в нейтральной среде.

19. Если гвоздь вбить во влажное дерево, то ржавчиной покрывается та часть, которая находится внутри дерева. Чем это объяснить? Анодом или катодом является эта часть гвоздя?

20. В последнее время кобальтом стали покрывать другие металлы для защиты от коррозии. Анодным или катодным является кобальтовое покрытие стали? Какие процессы протекают во влажном воздухе при нарушении целостности покрытия?

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11