Главная · Температура · Струнная вселенная. Теория струн выглядит настолько дико, что, вполне возможно, она правильна

Струнная вселенная. Теория струн выглядит настолько дико, что, вполне возможно, она правильна

Подобный вопрос здесь уже задавали:

Но попробую рассказать об этом в своем фирменном стиле;)

Разговор нам предстоит весьма долгий, но надеюсь, что тебе будет интересно, бро. В общем, слушай, в чем здесь суть. Главная идея просматривается уже в самом названии: вместо точечных элементарных частиц (как то: электроны, фотоны и т.д.) данная теория предлагает струны – этакие микроскопические вибрирующие одномерные нити энергии, которые настолько малы, что никаким современным оборудованием их обнаружить нельзя (конкретно на планковской длине они находятся, но это не суть). Не сказать, что частицы состоят из струн, они и есть струны, просто по причине несовершенства нашего оборудования мы видим их как частицы. А если наше оборудование будет способно добраться до планковской длины, то, как предполагается, там мы обнаружим струны. И так же, как струна скрипки вибрирует, производя различные ноты, квантовая струна вибрирует, производя различные свойства частиц (например, заряды или массы). В этом, в общем-то, и состоит главная идея.

Однако здесь немаловажно отметить, что у теории струн весьма большие амбиции и она ни много ни мало претендует на статус «теории всего», объединяющей гравитацию (теорию относительности) и квантовую механику (то есть макромир - мир привычных для нас больших объектов, и микромир - мир элементарных частиц). Гравитация в теории струн элегантно появляется сама по себе, и вот почему. Первоначально теория струн вообще воспринималась только как теория сильного ядерного взаимодействия (взаимодействия, благодаря которому протоны и нейтроны удерживаются вместе в ядре атома), не более, так как некоторые разновидности колеблющихся струн напоминали свойства глюонов (частиц-переносчиков сильного взаимодействия). Однако в ней, помимо глюонов, имелись другие разновидности струнных колебаний, напоминающие другие частицы-переносчики какого-то взаимодействия, к глюонам никакого отношения не имеющие. Изучив свойства этих частиц, ученые обнаружили, что колебания эти точно совпадают со свойствами гипотетической частицы – гравитона – частицы-переносчика гравитационного взаимодействия. Таким вот образом в теории струн и появилась гравитация.

Но тут опять (что ты будешь делать!) возникает проблема под названием «квантовые флуктуации». Да ты не бойся, этот термин страшен только с виду. Так вот, квантовые флуктуации связаны с постоянным рождением и уничтожением виртуальных (тех, которые нельзя увидеть непосредственно из-за их непрерывного появления и исчезновения) частиц. Самым показательным в этом смысле процессом является аннигиляция – столкновение частицы и античастицы с образованием фотона (частицы света), который впоследствии порождает другую частицу и античастицу. А гравитация – это, в сущности, что? Это плавно искривленная геометрическая ткань пространства-времени. Главное слово здесь – плавно. А в квантовом мире из-за этих самых флуктуаций пространство нифига не плавное и гладкое, там творится такой хаос, что даже страшно вообразить. Как ты уже наверняка понимаешь, плавная геометрия пространства теории относительности совершенно несовместима с квантовыми флуктуациями. Конфуз, однако физики нашли решение, заявив, что взаимодействие струн сглаживает эти флуктуации. Каким образом, спрашиваешь? А вот представь себе две закрытые струны (ибо есть еще и открытые, представляющие собой некое подобие маленькой нити с двумя открытыми концами; закрытые струны, соответственно, это некое подобие петель). Эти две закрытые струны держат курс на столкновение и в какой-то момент сталкиваются, превращаясь в одну большего размера струну. Эта струна еще движется какое-то время, после чего распадается на две более мелких струны. Теперь шаг следующий. Вообразим весь этот процесс в замеленной киносъемке: мы увидим, что этот процесс приобрел некий трехмерный объем. Этот объем называется «мировой поверхностью». Теперь представим, что ты и я смотрим на весь этот процесс под разными углами: я смотрю прямо, а ты под небольшим углом. Мы увидим, что с твоей точки зрения и с моей струны столкнутся в разных местах, так как для тебя эти струнные «петли» (назовем их так) будут двигаться слегка под углом, а для меня прямо. Однако это один и тот же процесс, одни и те же две сталкивающиеся струны, разница заключается только в двух точках зрения. Сие означает, что происходит некое «размазывание» взаимодействия струн: с позиции разных наблюдателей они взаимодействуют в разных местах. Однако, несмотря на эти разные точки зрения, процесс тем не менее один, и точка взаимодействия одна. Таким образом, разные наблюдатели зафиксируют одно и то же место взаимодействия двух точечных частиц. Вот так вот! Понимаешь, что происходит? Мы сгладили квантовые флуктуации и объединили таким образом гравитацию и квантмех! Ишь!

Ладно, едем дальше. Не устал еще? Ну, так слушай. Сейчас я расскажу о том, что в теории струн лично мне как-то не очень нравится. И называется сие «математизация». Как-то слишком сильно увлеклись теоретики математикой… а дело тут простое: вот, сколько измерений пространства тебе известно? Правильно, три: длина, ширина и высота (время – четвертое измерение). Так вот, математика теории струн очень плохо уживается с этими четырьмя измерениями. И с пятью тоже. И с десятью. Зато прекрасно уживается с одиннадцатью. И решили теоретики: что ж, раз математика требует, пусть будет одиннадцать измерений. Понимаешь, математика требует! Математика, а не реальность! (Возглас в сторону: если я не права, переубедите меня кто-нибудь! Я хочу переубедиться!) Ну, и куда, спрашивается, делись остальные семь измерений? На этот вопрос теория нам отвечает, что они «компактифицированы», свернуты в микроскопические образования на планковской длине (то есть на том масштабе, который мы наблюдать не в состоянии). Называются эти образования «многообразием Калаби-Яу» (по фамилиям двух выдающихся физиков).

Также интересно еще то, что теория струн выводит нас на Мультивселенную, то есть на идею о существовании бесконечного множества параллельных Вселенных. Здесь вся суть в том, что в теории струн существуют не только струны, но и браны (от слова «мембрана»). Браны могут быть разных размерностей, вплоть до девяти. Предполагается, что мы живем на 3-бране, но рядом с этой браной могут быть другие, и они периодически могут сталкиваться. А не видим мы их потому, что к бране двумя концами наглухо прицеплены открытые струны. Эти струны своими концами могут передвигаться по бране, однако покинуть ее (отцепиться) они не могут. А если верить теории струн, то вся материя и все мы состоим из частиц, которые на планковской длине выглядят как струны. Следовательно, раз открытые струны не могут покинуть брану, то и мы не можем никак провзаимодействовать с другой браной (читай: параллельной Вселенной) или как-то ее увидеть. Единственная частица, которой в принципе пофиг на это ограничение и которая может это сделать – это гипотетический гравитон, который является закрытой струной. Однако гравитон еще никому не удавалось обнаружить. Такая Мультивселенная именуется «бранной Мультивселенной» или же «сценарием мира на бране».

Кстати, по причине того, что в теории струн обнаружились не только струны, но и браны, теоретики стали называть ее «М-теорией», однако что означает эта «М» толком не знает никто;)

Вот так вот. Такая вот история. Надеюсь, тебе было интересно, бро. Если что-то осталось непонятным, спрашивай в комментариях - поясню.

Физики привыкли работать с частицами: теория отработана, эксперименты сходятся. Ядерные реакторы и атомные бомбы рассчитываются с помощью частиц. С одной оговоркой - во всех расчетах не учитывается гравитация.

Гравитация - это притяжение тел. Когда говорим о гравитации, представляем земное притяжение. Телефон падает из рук на асфальт под действием гравитации. В космосе Луна притягивается к Земле, Земля к Солнцу. Все в мире притягивается друг к другу, но чтобы почувствовать это, нужны очень тяжелые объекты. Мы ощущаем притяжение Земли, которая в 7,5×10 22 раз тяжелее человека, и не замечаем притяжения небоскреба, который тяжелее в 4×10 6 раз.

7,5×10 22 = 75 000 000 000 000 000 000 000

4×10 6 = 4 000 000

Гравитацию описывает общая теория относительности Эйнштейна. В теории массивные объекты искривляют пространство. Чтобы понять, выйдите в детский парк и положите на батут тяжелый камень. На резине батута появится воронка. Если положить на батут маленький шарик, то он скатится по воронке к камню. Примерно так планеты образуют воронку в пространстве, а мы, как шарики, падаем на них.

Планеты настолько массивные, что искривляют пространство

Для того чтобы описать все на уровне элементарных частиц, гравитация не нужна. По сравнению с другими силами, гравитация так мала, что ее просто выкинули из квантовых расчетов. Сила земной гравитации меньше силы, удерживающей частицы атомного ядра, в 10 38 раз. Это справедливо почти для всей вселенной.

10 38 = 100 000 000 000 000 000 000 000 000 000 000 000 000

Единственное место, где гравитация так же сильна, как и другие взаимодействия - внутри черной дыры. Это гигантская воронка, в которой гравитация сворачивает само пространство и втягивает все, что рядом. Даже свет залетает в черную дыру и обратно не возвращается.

Чтобы работать с гравитацией как с другими частицами, физики придумали квант гравитации - гравитон. Провели расчеты, но они не сошлись. Вычисления показывали, что энергия гравитона растет до бесконечности. А такого быть не должно.

Физики сначала придумывают, потом ищут. Бозон Хиггса придумали за 50 лет до открытия.

Проблемы с расходимостями в расчетах пропали, когда гравитон рассмотрели не как частицу, а как струну. Струны имеют конечную длину и энергию, поэтому энергия гравитона может расти только до определенного предела. Так у ученых появился работающий инструмент, с помощью которого они изучают черные дыры.

Успехи в изучении черных дыр помогают понять, как появилась вселенная. По теории Большого взрыва мир вырос из микроскопической точки. В первые мгновения жизни вселенная была очень плотной - в малом объеме собрались все современные звезды и планеты. Гравитация не уступала в силе другим взаимодействиям, поэтому знание эффектов гравитации важно для понимания ранней вселенной.

Успехи в описании квантовой гравитации - шаг к созданию теории, которая опишет все на свете. Такая теория объяснит, как вселенная родилась, что в ней происходит сейчас, и каким будет ее конец.

Теория суперструн, популярным языком, представляет вселенную как совокупность вибрирующих нитей энергии - струн. Они являются основой природы. Гипотеза описывает и другие элементы - браны. Все вещества в нашем мире состоят из колебаний струн и бран. Естественным следствием теории является описание гравитации. Именно поэтому ученые считают, что в ней содержится ключ к объединению силы тяжести с другими взаимодействиями.

Концепция развивается

Теория единого поля, теория суперструн, - сугубо математическая. Как и все физические концепции, она основана на уравнениях, которые могут быть определенным образом интерпретированы.

Сегодня никто не знает точно, каким будет окончательный вариант этой теории. Ученые имеют довольно смутное представление об ее общих элементах, но никто еще не придумал окончательного уравнения, охватившего бы все теории суперструн, а экспериментально до сих пор не удалось ее подтвердить (хотя и опровергнуть тоже). Физики создали упрощенные версии уравнения, но пока что оно не вполне описывает нашу вселенную.

Теория суперструн для начинающих

В основе гипотезы положены пять ключевых идей.

  1. Теория суперструн предсказывает, что все объекты нашего мира состоят из вибрирующих нитей и мембран энергии.
  2. Она пытается совместить общую теорию относительности (гравитации) с квантовой физикой.
  3. Теория суперструн позволит объединить все фундаментальные силы вселенной.
  4. Эта гипотеза предсказывает новую связь, суперсимметрию, между двумя принципиально различными типами частиц, бозонами и фермионами.
  5. Концепция описывает ряд дополнительных, обычно ненаблюдаемых измерений Вселенной.

Струны и браны

Когда теория возникла в 1970 годы, нити энергии в ней считались 1-мерными объектами - струнами. Слово «одномерный» говорит о том, что струна имеет только 1 измерение, длину, в отличие от, например, квадрата, который имеет длину и высоту.

Эти суперструны теория делит на два вида - замкнутые и открытые. Открытая струна имеет концы, которые не соприкасаются друг с другом, в то время как замкнутая струна является петлей без открытых концов. В итоге было установлено, что эти струны, называемые струнами первого типа, подвержены 5 основным типам взаимодействий.

Взаимодействия основаны на способности струны соединять и разделять свои концы. Поскольку концы открытых струн могут объединиться, чтобы образовывать замкнутые, нельзя построить теорию суперструн, не включающую закольцованные струны.

Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести.

Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы. Их можно рассматривать как листы, или браны. Струны могут крепиться к их одной или обеим сторонам.

Квантовая гравитация

Современная физика имеет два основных научных закона: общую теорию относительности (ОТО) и квантовую. Они представляют совершенно разные области науки. Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная.

Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами.

Объединение сил

Теория струн пытается объединить четыре силы - электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию - в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом.

Суперсимметрия

Все частицы во вселенной можно разделить на два типа: бозоны и фермионы. Теория струн предсказывает, что между ними существует связь, называемая суперсимметрией. При суперсимметрии для каждого бозона должен существовать фермион и для каждого фермиона - бозон. К сожалению, экспериментально существование таких частиц не подтверждено.

Суперсимметрия является математической зависимостью между элементами физических уравнений. Она была обнаружена в другой области физики, а ее применение привело к переименованию в теорию суперсимметричных струн (или теория суперструн, популярным языком) в середине 1970 годов.

Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. Без суперсимметрии уравнения приводят к физическим противоречиям, таким как бесконечные значения и воображаемые

Поскольку ученые не наблюдали частицы, предсказанные суперсимметрией, она все еще является гипотезой. Многие физики считают, что причина этого - необходимость в значительном количестве энергии, которая связана с массой известным уравнением Эйнштейна E = mc 2 . Эти частицы могли существовать в ранней вселенной, но так как она остыла, и после Большого взрыва энергия распространилась, эти частицы перешли на низкоэнергетические уровни.

Другими словами, струны, вибрировавшие как высокоэнергетические частицы, утратили энергию, что превратило их в элементы с более низкой вибрацией.

Ученые надеются, что астрономические наблюдения или эксперименты с ускорителями частиц подтвердят теорию, выявив некоторые из суперсимметричных элементов с более высокой энергией.

Дополнительные измерения

Другим математическим следствием теории струн является то, что она имеет смысл в мире, число измерений которого больше трех. В настоящее время этому существует два объяснения:

  1. Дополнительные измерения (шесть из них) свернулись, или, в терминологии теории струн, компактифицировались до невероятно малых размеров, воспринять которые никогда не удастся.
  2. Мы застряли в 3-мерной бране, а другие измерения простираются вне ее и для нас недоступны.

Важным направлением исследований среди теоретиков является математическое моделирование того, как эти дополнительные координаты могут быть связаны с нашими. Последние результаты предсказывают, что ученые в скором времени смогут обнаружить эти дополнительные измерения (если они существуют) в предстоящих экспериментах, так как они могут быть больше, чем ожидалось ранее.

Понимание цели

Цель, к которой стремятся ученые, исследуя суперструны - «теория всего», т. е. единая физическая гипотеза, которая на фундаментальном уровне описывает всю физическую реальность. В случае успеха она могла бы прояснить многие вопросы строения нашей вселенной.

Объяснение материи и массы

Одна из основных задач современных исследований - поиск решения для реальных частиц.

Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют.

Масса этих является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами:

  • короткая петля через середину тора;
  • длинная петля вокруг всей внешней окружности тора.

Короткая петля будет легкой частицей, а большая - тяжелой. При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами.

Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также.

Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей.

Определение пространства и времени

Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии.

В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют.

Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий.

Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория в качестве отправной точки использует квантование пространства и времени. Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе.

Квантование силы тяжести

Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание в ОТО не согласуется с квантовой физикой. Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий.

Унификация сил

В настоящее время физикам известны четыре фундаментальные силы: гравитация, электромагнитная, слабые и сильные ядерные взаимодействия. Из теории струн следует, что все они когда-то являлись проявлениями одной.

Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня.

Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии.

Пять вариантов

После суперструнной революции 1984 г., разработки велись с лихорадочной быстротой. В итоге вместо одной концепции получилось пять, названных тип I, IIA, IIB, HO, HE, каждая из которых почти полностью описывала наш мир, но не до конца.

Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта. Какие-то их свойства отражали физическую реальность мира, другие не соответствовали действительности.

М-теория

На конференции в 1995 году физик Эдвард Виттен предложил смелое решение проблемы пяти гипотез. Основываясь на недавно обнаруженой дуальности, все они стали частными случаями единой всеобъемлющей концепции, названной Виттеном М-теория суперструн. Одним из ключевых ее понятий стали браны (сокращение от мембраны), фундаментальные объекты, обладающие более чем 1 измерением. Хотя автор не предложил полную версию, которой нет до сих пор, М-теория суперструн кратко состоит из таких черт:

  • 11-мерность (10 пространственных плюс 1 временное измерение);
  • двойственности, которые приводят к пяти теориям, объясняющих ту же физическую реальность;
  • браны - струны, с более чем 1 измерением.

Следствия

В результате вместо одного возникло 10 500 решений. Для некоторых физиков это стало причиной кризиса, другие же приняли антропный принцип, объясняющий свойства вселенной нашим присутствием в ней. Остается ожидать, когда теоретики найдут другой способ ориентирования в теории суперструн.

Некоторые интерпретации говорят о том, что наш мир не единственный. Наиболее радикальные версии позволяют существование бесконечного числа вселенных, некоторые из которых содержат точные копии нашей.

Теория Эйнштейна предсказывает существование свернутого пространства, которое называют червоточиной или мостом Эйнштейна-Розена. В этом случае два отдаленных участка связаны коротким проходом. Теория суперструн позволяет не только это, но и соединение отдаленных точек параллельных миров. Возможен даже переход между вселенными с разными законами физики. Однако вероятен вариант, когда квантовая теория гравитации сделает их существование невозможным.

Многие физики считают, что голографический принцип, когда вся информация, содержащаяся в объеме пространства, соответствует информации, записанной на его поверхности, позволит глубже понять концепцию энергетических нитей.

Некоторые полагают, что теория суперструн позволяет множественность измерений времени, следствием чего может быть путешествие через них.

Кроме того, в рамках гипотезы существует альтернатива модели большого взрыва, согласно которой наша вселенная появилась в результате столкновения двух бран и проходит через повторяющиеся циклы создания и разрушения.

Конечная судьба мироздания всегда занимала физиков, и окончательная версия теории струн поможет определить плотность материи и космологическую константу. Зная эти значения, космологи смогут установить, будет ли вселенная сжиматься до тех пор, пока не взорвется, чтобы все началось снова.

Никто не знает, к чему может привести пока она не будет разработана и проверена. Эйнштейн, записав уравнение E=mc 2 , не предполагал, что оно приведет к появлению ядерного оружия. Создатели квантовой физики не знали, что она станет основой для создания лазера и транзистора. И хотя сейчас еще не известно, к чему приведет такая сугубо теоретическая концепция, история свидетельствует о том, что наверняка получится что-то выдающееся.

Подробнее об этой гипотезе можно прочесть в книге Эндрю Циммермана «Теория суперструн для чайников».

В данном блоге приводится отрывок из статьи одного из крупнейших специалистов в области объединения всех физических взаимодействий в рамках единой теории, лауреата Нобелевской премии Стивена Вайнберга, где он в популярной форме излагает фундаментальные проблемы современной физики высоких энергий. Примечания приводятся курсивом. Возможно наличие формул кого то введет в смуту, если такое желание возникнет просто не вникайте в них, а читайте текст.

Уровни строения мира: 1. Макроскопический уровень - вещество 2. Молекулярный уровень 3. Атомный уровень - протоны, нейтроны и электроны 4. Субатомный уровень - электрон 5. Субатомный уровень - кварки 6. Струнный уровень

Большинство физиков-теоретиков сейчас пришли к выводу, что варианты квантовой теории поля для сильного, электромагнитного и слабого взаимодействий – это всего лишь низкоэнергетическое приближение для более глубокой и совершенной теории. Имеются два указания на то, что простота законов природы сможет обнаружиться лишь при неизмеримо больших энергиях в диапазоне 10 15 – 10 19 ГэВ. Одно из них состоит в следующем. Если посмотреть, что происходит с константами взаимодействия электрослабого и сильного взаимодействий при значительно более высоких энергиях, чем те, при которых их сегодня измеряют, то мы обнаружим, что их значения сближаются и становятся равными друг другу при энергиях, примерно на пятнадцать порядков превосходящих массу протона (10 15 ГэВ). Кроме того, величина гравитационной постоянной, которая ответственна за возникновение расходимостей в теории гравитации, в физических единицах составляет (10 19 ГэВ) –2 . Все это говорит о том, что если бы мы были в состоянии ставить эксперименты при очень высоких энергиях, то мы смогли бы обнаружить по-настоящему простую картину мира, в которой все теории сливаются воедино и которая, возможно, даже вызовет у нас чувство фатальной неизбежности, обрести которое мы так стремимся.

Объединение гравитации с другими взаимодействиями до сих пор сопряжено с рядом трудностей . Причина заключается в том, что любая квантовая теория, оперирующая точечными объектами, содержит расходимости на энергиях выше масштаба Планка. Масштаб или масса Планка представляет собой энергию, на которой возникает необходимость в квантовой теории гравитации. Это происходит, когда радиус Шварцшильда :

R = 2Gm/ c 2 , (1.12а)

где m – масса тела;

G – гравитационная постоянная, и комптоновская длина волны

l= h /(mc) (1.12б)

становятся величинами одного порядка. То есть когда очень высокая плотность массы сконцентрирована в очень маленьком объеме. Разумное описание на таких масштабах можно получить, применяя как общую теорию относительности, так и квантовую теорию. Приравнивая l к R из (1.12а) и (1.12б), получим

m Р l =(hc /G) ? ? 1,2 ?10 19 Гэв,

что соответствует длине и времени Планка:

l Р l = =(h G/ c 3) ? ? 1,6?10 – 33 см; t Р l ? 5,4? 10 – 44 с.

Забегая вперед, отметим, что Алгебра сигнатур строится на несколько других исходных принципах и не разделяет беспокойств современных квантовых теорий. С точки зрения Алгебры сигнатур дифференциальная геометрия, лежащая в основании ОТО, применима не только для космических объектов и для процессов, протекаемых в планковских масштабах длины, но и ко многим другим уровням организации Естества с учетом различных модификаций абсолютных дифференциальных геометрий, адаптированных под характерные особенности описываемого масштаба протяженности. В отличие от главенствующей ныне доктрины проквантовать ОТО и подравнять ее под отработанные квантово-полевые схемы, Алсигна придерживается взглядов тех редких ныне ученых, которые не оставляют попыток уместить кантовую физику в рамки модифицированных ОТО. В данном пункте мы заняты лишь тем, что приводим мнение ведущего специалиста по современному положению дел на передовых рубежах официальной физики.

Рис. 1.17. Диаграмма, описывающая один из вкладов в процесс превращения двух частиц в три частицы

Пока у нас нет возможности подняться до таких энергий. Несмотря на это в течение нескольких последних лет физики-теоретики были крайне воодушевлены идеей, что фундаментальными составляющими природы при энергиях 10 15 – 10 19 ГэВ являются не поля или частицы, а струны. Чтобы упростить рассмотрение этого вопроса, упомянем здесь только об одном типе струн. Струна такого типа представляет собой маленькую петлю, нарушающую непрерывность пространства-времени, маленький дефект пространства-времени, свернутый в колечко. Струна обладает натяжением и может колебаться, как обычная струна. Колебания струны образуют бесконечную последовательность нормальных мод, каждой из которых отвечает определенный тип частиц. Низшей моде струны отвечает наилегчайшая частица, следующей моде отвечает более тяжелая частица и т. д. Взаимодействие между частицами выглядит так, как будто эти колечки сливаются, а затем опять расходятся. Этот процесс можно описать с помощью поверхности, поскольку при движении в пространстве-времени струна заметает двухмерную мировую поверхность (трубку). Взаимодействие между частицами представляется в виде двумерной мировой поверхности, которая может расщепляться и вновь воссоединяться, поглощая «колечки», имевшиеся в начальном состоянии, и испуская «колечки», отвечающие конечному состоянию. Например, процесс рассеяния, при котором в начальном состоянии было две частицы, а в конечном – три, будет описываться поверхностью, в которую входят две длинные трубки (описывающие частицы в начальном состоянии) и из которой выходят три длинные трубки (описывающие частицы в конечном состоянии). Сама эта поверхность может иметь довольно сложную топологию (рис. 1.17).

Поверхность можно описать, задав на ней координатную сетку. Поскольку поверхность двумерна, то положение произвольной точки на ней задается двумя координатами, которые можно обозначить как? 1 и? 2 . Теперь нужно каким-то образом указать, где находится произвольно выбранная точка струны в любой задан­ный момент времени. Для этого необходимо задать правило, которое ставит в соответствие каждой точке? = (? 1 , ? 2) на поверхности точку х m в пространстве-времени. Математически это правило записывается в виде х m = х m (? 1 ,? 2). Геометрия поверхности определяется заданной на ней метрикой. Как и в случае общей теории относительности, метрика задается с помощью метрического тензора q a b (?), элементы которого зависят от координат; поскольку мы имеет дело с двумерной поверхностью, то индексы a и b могут принимать значения, равные единице или двойке. Метрика определяет, как вычисляется расстояние между двумя бесконечно близко расположенными точками? и?+d? на поверхности:

d ? = [q a b (?) d ? a d ? b ] ? . (1.13)

Согласно принципам квантовой механики в фейнмановской интерпретации для вычисления амплитуды вероятности (это та самая величина, которую надо возвести в квадрат, чтобы получить вероятность процесса) нужно просуммировать амплитуды для всех возможных путей перехода из начального состояния в конечное. В теории струн нужно просуммировать по всем двумерным поверхностям, описывающим данный процесс. Каждая поверхность задается двумя функциями х m = х m (? ) и q a b (?), которые были определены выше. Все, что осталось сделать для вычисления вероятности, – это найти для каждой поверхности значение величины I [х, q ], а затем просуммировать е – I [х, q ], по всем поверхностям. Функционал I [х, q ] называется действием, оно функционально зависит от х m = х m (?) и q a b (?) и определяется выражением:

На самом деле здесь должен присутствовать еще один член, который нужен для того, чтобы задать относительную шкалу различных порядков теории возмущений.

Оживленный интерес к струнам обусловлен тем, что они впервые позволили построить теорию гравитации без расходимостей, которые возникали в более ранних теориях. Основы этой теории были заложены на рубеже 60-х и 70-х годов, а ее по­явление связано с попытками объяснить природу сильного взаимодействия в ядре.

Рисунок 1.18. Пересечение струн с испусканием и поглощением безмассовой частицы со спином 2.

Вскоре выяснилось, что поверхности с длинными тонкими трубками (рис.1.18) отвечают безмассовой частице со спином 2, испускаемой в виде кванта излучения в промежутке, разделяющем начальные и конечные состояния частиц. (Безмассовые частицы – это просто частицы, движущиеся со скоростью света, а их спин измеряется в тех же единицах, в которых спин электрона равен одной второй.) Появление этой частицы вызвало тогда ужасное замешательство. К тому времени уже было известно, что такими же свойствами должен обладать квант гравитационного поля – гравитон. Но, несмотря на это, в конце 60-х и 70-х годов основные усилия были направлены на исследования сильных взаимодействий, а вовсе не на гравитацию. Эти обстоятельства обусловили утрату интереса к теории струн в начале 70-х годов.

В 1974 г. Шерк и Шварц выдвинули гипотезу о том, что струнную теорию следует рассматривать в качестве теории гравитации, однако тогда никто не воспринял это всерьез. Лишь благодаря работам Грина, Гросса, Полякова, Шварца, Виттена и их коллег физики начали постепенно соглашаться с тем, что теория струн подходит на роль окончательной единой физической теории с энергетической шкалой порядка 10 15 – 10 19 ГэВ.

Теория струн имеет вполне рациональное объяснение в терминах используемых в ней симметрий. С действием (1.14) связано несколько симметрий. Так же как и в случае общей теории относительности, задание метрики порождает симметрию по отношению к преобразованиям координат. Имеется также и другая, менее очевидная симметрия, справедливая только в двухмерном случае. Эта симметрия связана с локальным изменением масштаба расстояний – так называемым преобразования Вейля, при котором метрический тензор умножается на произвольную функцию координат q a b (?) ? f(?) q a b (?). И, наконец, имеется еще одна довольно очевидная симметрия по отношению к преобразованиям Лоренца:

х m ? L m n х n + а m .

Эти две симметрии кажутся совершенно необходимыми. Без этих симметрий попытки вычислить сумму по всем поверхностям приводили бы к бессмысленным результатам. Без этих двух симметрий получаются либо отрицательные вероятности, либо полная вероятность не будет равна единице. На самом деле есть очень тонкие квантово-механические эффекты, способные нарушить эти симметрии. Квантовые аномалии будут «портить» эти симметрии до тех пор, пока не начинают использовать подходящую комбинацию обычных и спиновых координат.

Теорию, описывающую свойства двухмерных поверхностей, инвариантных по отношению к координатным преобразованиям и преобразованию Вейля, создал Бернхард Риман в начале XIX столетия. Большинство ее результатов оказались совершенно необходимыми для понимания физики струн. Например, все, что требуется для описания топологии произвольной двумерной поверхности (точнее, произвольно ориентированной замкнутой поверхности), – это указать количество ее «ручек». Если число «ручек» задано, то для описания геометрии достаточно задать конечное число параметров. Проводя суммирование по поверхностям, по этим параметрам нужно будет проинтегрировать. Число этих параметров равно нулю, если «ручек» нет, двум – если есть одна «ручка», и 6 h – 6, если число ручек h > 2.

Именно эти старые теоремы позволяют провести суммирование по всем поверхностям. Если бы не было симметрии, невозможно было бы проделать необходимые вычисления, а если бы что-нибудь и получилось, то результат, скорее всего, оказался бы бессмысленным. Вот почему симметрии представляются совершенно необходимыми. Мы вплотную подошли к самому главному: структура функционала действия (1.14) и, следовательно, сама динамика струн однозначно определяются этими симметриями.

Существует несколько различных теорий струн, которые совместимы со всеми указанными выше симметриями и различаются числом пространственно-временных координат х* и спиновых переменных. К сожалению, во всех этих теориях число пространственно-временных измерений больше четырех. Один из способов преодолеть эту трудность основан на предположении, что лишние пространственные измерения «компактифицируются», т. е. «свертываются» на очень малых расстояниях. Однако такой подход не исчерпывает всех возможностей. Более последовательные теории основаны на предположении, что число дополнительных пространственных и спиновых переменных может быть любым, а Лоренц – инвариантность относится только к четырем обычным пространственно-временным измерениям. Действие и число переменных затем определяются из требования, чтобы остальные симметрии (при преобразовании координат и преобразовании Вейля) сохранялись, несмотря на квантовые флуктуации. Исследования в этом направлении только что начались.

Теория струн использовалась еще в 60-х годах 20-го столетия для объяснения адронной физики, но в связи с успехами стандартной модели они в основном были забыты. Возрождение интереса к струнам произошло, когда Грин и Шварц показали, что калибровочная и свободная от гравитационных аномалий суперструнная теория может быть описана в десяти измерениях с помощью группы внутренней симметрии SO(32) или Е8 ? Е8. Из прежних теорий было известно, что достижение унитарности и лоренц-инвареантности для суперструнных теорий возможно только в пространствах высших размерностей.

Не существует никаких дополнительных членов, которые были бы совместимы с данными симметриями. С динамической теорией такое случилось впервые, когда задание симметрии полностью определяет характер динамики, т. е. полностью определяет изменение вектора состояния со временем. Это одна из причин воодушевления испытываемого современными физиками. Эта теория выглядит фатально неизбежной. В неё нельзя внести никаких изменений, не испортив ее, не говоря уже о способности теории струн описывать гравитационные явления.

В 20-х годах ХХ столетия Калуца и Клейн использовали идею трактовки сил как проявления искривления пространств высших размерностей для описания электромагнетизма и гравитации на чисто геометрической единой основе (теории Калуца-Клейна) . Новые теории, включающие суперсиметрию, носят название суперструных теорий. В рамках данных теорий некоторые квантово-механические возбуждения струн (обычные моды) интерпретируются как экспериментально наблюдаемые элементарные частицы. Возбуждения представляют собой вращения, вибрации или возбуждения внутренних степеней свободы. Таким образом, весь спектр элементарных частиц получается на основе единственной, фундаментальной струны. Число состояний с массами, меньшими массы Планка, соответствует числу наблюдаемых частиц. Имеется также бесконечное число возбуждений с массами выше массы Планка. Обычно эти моды не стабильны и распродаются на более легкие. Однако в рамках суперструнных теорий существуют стабильные решения с экзотическими характеристиками, такими, как магнитный заряд, экзотические значения электрического заряда. Примечательно, что во всем спектре частиц, соответствующих классическим решениям суперструнных теорий, появляется в точности один безмассовый гравитон со спином 2.

Струны возникают в двух различных топологиях: в форме открытых струн со свободными концами и в форме замкнутых петель (о которых идет речь в цитируемой здесь статье). Помимо этого они могут обладать внутренней ориентацией. Квантовые числа открытых струн расположены на их концах, тогда как в замкнутых петлях квантовые числа размазаны по струне .

Теория струн претендует на роль окончательной теории, объединяющей всю совокупность наших представлений о материальном мире. Именно по этим причинам многие современные физики испытывают воодушевление. Лучшие физические и математические умы планеты штурмуют ныне этот, казалось бы, последний бастион научного осознания материальной природы.

На данном этапе основная задача заключается в том, чтобы выяснить, смогут ли теории струн привести к стандартной модели, описывающей слабое, электромагнитное и сильное взаимодействия. Если да, то возникает второй вопрос: что теория струн сможет сказать о семнадцати параметрах, содержащихся в стандартной модели? Сможем ли мы с ее помощью непосредственно вычислить массу электрона, кварков и т. д.? Если да, то проблема будет решена.

Как считают многие из ученые, теория струн настолько изящна, что обязательно войдет в число окончательных, фундаментальных законов физики, и это самое важное, что у нас есть на данный момент.

Оптимистическая нота, на которой заканчивается выдержка из статьи С. Вайнберга, вовсе не разделяется Алгеброй сигнатур. Господствующая ныне научная парадигма сковала возможности развития наших представлений об окружающей действительности. Принципы, лежащие в основе квантовой механики, по-прежнему не допускают возможности исследования структуры элементарных и фундаментальных частиц. Все, на что способна современная квантовая физика,– это вычислять вероятности исходов тех или иных процессов и получать усредненные динамические характеристики квантовых объектов. Неискушенный человек, интересующийся основами мироздания, взяв в руки любую серьезную книгу по квантовой теории поля или теории струн, может подумать, что в ней на марсианском языке записан кладезь человеческой мудрости в отношении к природе материальности. На самом деле передовые рубежи Науки отошли далеко от истинного пути познания. Вместо того чтобы просветлять материю знанием, Наука запуталась в паутине собственных математезированных хитросплетений, от которых темнота становится еще темнее. Квантовые теории погружают сознание во мрак математического тумана, за которым не видно не только Основополагающего ТВОРЦА, но и самой материи. Сознание слепо блуждает в замкнутом пространстве бездуховной парадигмы, пытаясь зацепиться за островки целесообразности в виде законов сохранения, вариационных принципов и совпадения результатов расчетов с экспериментальными данными. Если ясные представления о сущности распространения Света (одного из Б-ЖЕСТВЕННЫХ Начал) позволили человечеству развить индустрию информационных технологий, то замутненные представления об атомных и ядерных явлениях не дали человечеству ничего, кроме оружия, несущего страшную смерть, и зловещей атомной энергетики. В этом и заключается кризис современной квантовой науки – она больше ничего не в состоянии дать миру, кроме разрушения и смерти. Утешает лишь то, что Наука молода, и только в начале пути.

Взято из книги Гаухмана «Алгебра сигнатур» (Алсигна)

Более полную версию можно найти по адресу http://ru.wikipedia.org/wiki/Теория_струн

А также видеоролики в Разделе — Медиа — Видео или по ссылке

В начале XX века были сформированы две несущие опоры современного научного знания. Одной из них является общая теория относительности Эйнштейна, объясняющая явление силы тяжести и структуру пространства-времени. Другая - квантовая механика, описывающая физические процессы сквозь призму вероятности. Объединить эти два подхода призвана теория струн. Кратко и понятно объяснить ее можно, используя аналогии в повседневной жизни.

Теория струн простым языком

Основные положения одной из наиболее известных «теорий всего» сводятся к следующему:

  1. Основу мироздания составляют протяженные объекты, которые по форме напоминают струны;
  2. Этим объектам свойственно совершать различные колебания, словно на музыкальном инструменте;
  3. В результате этих колебаний образуются различные элементарные частицы (кварки, электроны и т.д.).
  4. Масса полученного объекта прямо пропорциональна амплитуде совершенного колебания;
  5. Теория помогает по-новому взглянуть на черные дыры;
  6. Также с помощью нового учения удалось раскрыть силу тяжести во взаимодействиях между фундаментальными частицами;
  7. В отличии господствующих ныне представлений о четырехмерном мире, в новой теории вводятся дополнительные измерения;
  8. В настоящее время концепция еще не принята официально в широком научном сообществе. Не известно ни одного эксперимента, который бы подтверждал эту гармоничную и выверенную на бумаге теорию.

Историческая справка

История данной парадигмы охватывает несколько десятилетий интенсивных исследований. Благодаря совместным усилиям физиков по всему миру, была разработана стройная теория, включающая концепции конденсированных сред, космологию и теоретическую математику.

Основные этапы ее развития:

  1. 1943-1959 гг. Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки;
  2. 1959-1968 гг. Были обнаружены частицы с высокими спинами (моментами вращения). Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории (которые были названы его именем);
  3. 1968-1974 гг. Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий. Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны;
  4. 1974-1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова;
  5. 1994-2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений;
  6. 2003 - н. в. Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума .

Теория квантовых струн

Ключевыми объектами в новой научной парадигме являются тончайшие объекты , которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице.

Основные свойства струн согласно современным представлениям:

  • Длина их чрезвычайно мала - около 10 -35 метров. В подобном масштабе становятся различимы квантовые взаимодействия;
  • Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта;
  • Важной характеристикой струнного объекта является ориентация. Струны, обладающие ей, имеют пару с противоположным направлением. Существуют также неориентированные экземпляры.

Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли. Причем возможны такие превращения:

  • Отрезок или петля могут «размножиться», дав начало паре соответствующих объектов;
  • Отрезок дает начало петле, если часть его «закольцуется»;
  • Петля разрывается и становится открытой струной;
  • Два отрезка обмениваются сегментами.

Прочие фундаментальные объекты

В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций - бранов - в виде цилиндра или объемного кольца, которые имеют такие особенности:

  • Они в несколько миллиардов раз меньше атомов;
  • Могут распространяться через пространство и время, имеют массу и заряд;
  • В нашей Вселенной они представляют собой трехмерные объекты. Однако предполагают, что их форма гораздо более загадочна, поскольку значительная их часть может простираться в другие измерения;
  • Многомерное пространство, которое скрывается под бранами, является гиперпространством;
  • С этими структурами связывают существование частиц, являющихся переносчиками силы тяжести - гравитонов. Они свободно отделяются от бранов и плавно перетекают в другие измерения;
  • На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия;
  • Наиболее важной разновидностью являются D-браны. На их поверхности крепятся конечные точки открытой струны в тот момент, когда она проходит сквозь пространство.

Критические замечания

Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов.

Среди наиболее часто высказываемых замечаний:

  • Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных. По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений. Всякий эксперимент запускает большое количество различных сценариев, которые могут быть интерпретированы различными способами;
  • Отсутствует возможность подтверждения. Современный уровень развития техники не позволяет экспериментально подтвердить или опровергнуть кабинетные исследования;
  • Последние наблюдения за астрономическими объектами не волне укладываются в положения теории, что заставляет ученых пересматривать некоторые свои выводы;
  • Ряд физиков высказывают мнение, что концепция является спекулятивной и тормозит развитие других фундаментальных представлений.

Пожалуй, легче доказать теорему Ферма, чем простыми словами разъяснить положения теории струн. Математический аппарат ее столь обширен, что понять ее под силу лишь маститым ученым из крупнейших НИИ.

До сих пор не ясно, найдут ли реальное применение сделанные за последние десятки лет на кончике пера открытия. Если да, то нас ждет дивный новый мир с антигравитацией, множеством вселенных и разгадкой природы черных дыр.

Видео: теория струн кратко и доступно

В данном ролике физик Станислав Ефремов расскажет простыми словами, в чем заключается теория струн: