Главная · Горло · Биомеханический контроль. клинический анализ движений

Биомеханический контроль. клинический анализ движений




Рис. 4. Определение объема движений в суставах: 1 измерение объема движений в плечевом суставе (а измерение угла отве­дения, б измерение угла сгибания); 2 измерение подвижности в локтевом суставе, 3 измерение угла приведения кисти, 4 измерение подвижности в та­зобедренном суставе, 5 измерение подвижности в тазобедренном суставе при сгибательной контрактуре, 6 измерение величины отведения бедра, 7 изме­рение угла сгибания в коленном суставе, 8 измерение подвижности стопы










Рис. 9. Расположение условной оси голеностопного сустава (а): 1 нормальное положение стопы; 2 отклонение стопы кнаружи; 3 отклонение стопы внутри. Нормальные и патофизиологические изменения стопы (черным помечены зоны контакта стопы с поверхностью) (б): 1 нормальное; 2 плоскостопие; 3 косолапость












Соотношение массы к поверхности тела ребенка в зависимости от возраста. Слайд 16 Таблица 1. Возраст Масса тела, кг Поверх­ ность тела, м 2 % к средним показателям взрослых масса телаповерхность тела Новорожденные 3,50, мес 5,00, » 7.50, год 10,00, года 15,00, лет 23,00, » -27,01, » , » * Взрослые 651,73100


Средние значения изометрической силы некоторых мышечных групп в зависимости от возраста (по Е. Азтиззеп, 1968). Слайд 17. Таблица 2. Показатель (кг) Возраст, лет 20"2535"4555 мужжен.муж.жен.муж.жен.г^жжен.мужжен. Сила кисти (±16%)* 55,937,559,938,558,838,055,635,651,632,7 Сила разгиба­ телей туловища (±16%) 81,656,6 -87,458,390,759,289,857,785,749,1 Сила сгибате­ лей туловища (±17%) 60,640,964,242,266,742,466,041,563,033,6 Сила разгиба­ телей ног сидя (±18,5%) 295" *. " * Коэффициент вариации


Рассмотрим один полуцикл ходьбы, т. к. во втором полуцикле фазы и граничные позы те же, только в их названиях правую ногу нужно заменить левой, а левую – правой: 1. - отрыв стопы правой ноги от опоры; I - подседание на левой (опорной) ноге, ееё сгибание в коленном суставе 2 – начало разгибания левой ноги; II – выпрямление левой ноги, ее разгибание в коленном суставе; 3. – момент, когда правая нога в процессе переноса начала опережать левую ногу; III – вынос правой ноги с опорой на всю стопу левой ноги; 4 - отрыв пятки левой ноги от опоры; IV – вынос правой ноги с опорой на носок левой ноги; 5 – постановка правой ноги на опору; V - двойная опора, переход опоры с левой ноги на правую; Слайд 18.


В случае, если речь идет о фазовом составе двигательного действия, имеют в виду движения всего тела. При рассмотрении фазового состава ходьбы или бега имеется в виду движения ног, что необходимо для выяснения механизмов этих локомоций, т.е. как и от чего человека двигается. В беге имеется четыре фазы (римские цифры) и четыре, отделенных друг от друга граничными позами: 1. - отрыв левой стопы от опоры; I. - разведение стоп; 2. – начало выноса левой ноги вперед; II – сведение стоп с выносом левой ноги вперед; 3. – постановка правой стопы на опору; III. – амортизация, или подседание со сгибанием правой (опорной ноги); 4. – начало разгибания правой ноги; IV. - отталкивание с выпрямлением правой ноги до отрыва от опоры. слайд 18






В настоящее время биомеханика обладает значительным арсеналом методов исследования локомоторной функции, как в статике, так и в динамике, причем изучается не только внешняя картина движения, но и механизмы управления, жизнеобеспечение организма, что дает возможность выявить целый комплекс параметров, характеризующих двигательный образ. В это понятие включаются не только внешние (механические) проявления движения и реакций окружающей среды, но и условия организации управления движениями, согласованная деятельность всех органов и систем организма. Получаемая в результате биомеханических исследований информация служит основой для определения нормы, позволяет количественно определить степень нарушения локомоторной функции при различных патологических состояниях. Биомеханические исследования достаточно широко используются не только в клинической медицине (функциональная диагностика, ортопедия, травматология, протезирование), но и в спорте, и при разработке различных антропоморфных механизмов (роботы, манипуляторы), и при решении других прикладных задач. Методическая база биомеханических исследований постоянно совершенствуется, используя новейшие достижения науки.

Методы исследования, получившие наибольшее распространение в настоящее время, в клинической биомеханике могут быть классифицированы следующим образом:

I. Соматометричские: антропометрия, фотограмметрия, рентгенография.

II. Кинезиологические: оптические, потенциометрия, электроподография, тензометрия, ихнография.

III. Клинико-физиологические: калориметрия, электромиография, электроэнцефалография и другие методы функциональной диагностики.

Соматометрия

Анропометрия

При клиническом и биомеханическом обследовании используются методы антропометрии с целью получения информации о половых и возрастных особенностях испытуемых об особенностях строения опорно-двигательного аппарата в норме и при патологии, важной информации об осанке. Обычно перед проведением специальных биомеханических исследований измеряют рост пациента стоя и сидя, длину конечностей, амплитуду движений в крупных суставах, определяют массу его тела. При помощи отвесов производят зарисовку диаграммы стояния - проекции на горизонтальную плоскость осей суставов нижних конечностей и таза. Это дает возможность составить представление об архитектонике нижних конечностей при удобном стоянии, определить величину разворота осей суставов в проекции на горизонтальную плоскость, угол разворота стоп, расстояние между внутренними поверхностями ног на различных уровнях и т.д.

Фотограмметрия

Поверхность спины при исследовании методом компьютерной топографии. А. - норма; Б. - кифосколиоз грудного отдела; В. - гиперлордоз поясничного отдела; Г. - выступающие крыловидные лопатки.

К антропометрическим методам сбора и анализа информации относится способ изучения схемы построения опорно-двигательного аппарата в виде так называемой фотограмметрии. Кратко техника фотограмметрии состоит в следующем: обследуемому предлагают принять естественную, наиболее привычную, удобную позу стояния. Перед ним устанавливают кадровую рамку с сантиметровыми делениями по горизонтальным и одной из вертикальных сторон. Через середину рамки натянута нить, служащая отвесом. Фотографируют и для графического анализа изготавливают фотоснимки, на которых измеряют расстояние в сантиметрах между передневерхними остями таза, наклон бедер по анатомическим осям относительно вертикали, расстояние между центрами коленных суставов, наклон голеней по анатомическим осям, угол физиологического вальгуса голеней, расстояние между центрами опоры стоп. Этот метод даст возможность определить возрастные особенности схемы построения опорно-двигательного аппарата в норме и при различных патологических состояниях.

Метод оптической компьютерной топографии

Стереофоторграммметрия с мнимым базисом. Геометрическая модель стереофотографии. Координаты фиксированной точки: X=90, Y=112, Z=-24 мм.

Важную информацию о геометрии тела человека, об особенностях и нарушении осанки можно получить при исследовании специальным методом компьютерной топографии. Этот современный и самый точный метод позволяет количественно с высокой точностью определить координаты любой анатомической точки поверхности тела. Продолжительность обследования составляет 1 - 2 минуты, поэтому этот метод с успехом применяется для массовых исследований.

Кинезиологические методы

Целенаправленные движения человека (локомоции) представляют собой устойчивый паттерн движения, характеризующийся определенными кинематическими, динамическими, временными и пространственными параметрами. Вся совокупность последних может рассматриваться как биомеханическое проявление двигательного образа, который складывается для каждого конкретного человека в период постнатального онтогенетического развития и претерпевает изменения в результате изменений на любом уровне двигательного анализатора в зависимости от возраста и условий функционирова¬ния жизнеобеспечивающих систем организма. Естественно, что регистрация кинезиологических параметров движения является необходимой для его характеристики, и при нарушениях функции опорно-двигательного аппарата, и при изучении локомоции спортсмена. Наиболее достоверные сведения о движении могут быть получены с помощью оптических методов, которые обеспечивают комплексную регистрацию любого количества точек тела человека и внешней обстановки относительно пространственно-временной координатной сетки и дают информацию о кинематике исследуемых точек в форме, удобной для математического анализа. Координаты же, как известно, есть тот материал, из анализа которого может быть почерпнуто максимальное количество сведений о протекании снятого движения. Циклография (от цикла… и…графия), метод изучения движений человека путём последовательного фотографирования (до сотен раз в секунду) меток или лампочек, укрепленных на движущихся частях тела. Впервые фотографирование фаз движения было предложено в 80-х гг. 19 в. французским учёным Э. Мареем. Н.А. Бернштейн в 20-х гг. 20 в. усовершенствовал и модифицировал Ц., например он предложил кимоциклографию - съёмку на передвигающуюся плёнку. На основе анализа циклограмм - циклограмметрии - для ряда движений были получены данные о траектории отдельных точек тела, о скоростях и ускорениях движущихся частей тела, что дало возможность вычислить величины сил, обусловливающих данное движение. Эти сведения легли в основу современных представлений о принципах управления движениями человека, использованы при изучении спортивных движений, двигательных нарушений и др. К Ц. близок метод киносъёмки движений с последующей обработкой кадров наподобие циклограмм. Наиболее простым и часто применяемым на практике видом киносъемки является фотограмметрия. Эта съемка представляет собой регистрацию движений человека и объектов окружающей среды в плоскости, перпендикулярной оптической оси аппарата. При этом аппарат устанавливается так, чтобы в его поле зрения находилось все, что будет подвергнуто изучению и последующему анализу. Полученные с помощью оптических методов регистрации экспериментальные данные подвергаются математической обработке. В качестве датчиков («светящихся точек») для получения кинематических характеристик движений конечностей применяют метки или электрические лампочки, которые укрепляют на исследуемых суставах. Снаряжение испытуемого почти невесомо, поэтому оно не вносит никаких изменений в структуру двигательного образа. Конвергентная стереофотограмметрическая съемка и зеркальная циклограмметрия тождественны. Действительно, зеркальная циклограмметрическая съемка под углом а (угол между главной оптической осью киноаппарата и плоскостью зеркала - угол съемки) есть не что иное, как съемка двумя аппаратами, оптические оси которых конвергируют под углом а. Вычисление пространственных координат производится по формулам математической зависимости между пространственными координатами помещения (в случае, если съемка производится в камеральных условиях) и координатами перспективных изображений. Кроме аналитических методов, в настоящее время нашли широкое распространение различные номографические приемы, основанные на известных положениях синтетической геометрии. Номограмма, с помощью которой осуществляется обработка изоинформации, представляет собой функциональную сетку и служит для получения реальных (действительных) координат любой фиксированной точки на сегменте или суставе конечности.

Электромеханические методы

В настоящее время в биомеханических исследованиях ши¬рокое распространение получили, наряду с оптическими, и электрические методы регистрации. Это можно объяснить в первую очередь тем, что информация, представленная в виде электрических сигналов, является удобной для обработки радио- и электронными приборами. Кроме того, большинство процессов, протекающих в живых организмах, сопровождается различными электрическими явлениями, что облегчает получение информации в виде электрических сигналов.

Кинематические схемы потенциометрических датчиков для измерения амплитуды движений в суставах нижних конечностей. А - в плюснефаланговом; б - в подтаранном; В-в тазобедренном, коленном и голеностопном.

При использовании электрических методов регистрации неэлектрических величин (каковыми являются кинематические и динамические составляющие движения) в практике биомеханических исследований применяют измерение и регистрацию кинематических составляющих движения осуществляются с помощью линейных потенциометрических датчиков 2 типов: с входной функцией в виде углового и линейного механического перемещения. Потенциометрические датчики преобразуют функцию механического перемещения в аналоговый электрический сигнал, который затем регистрируется в соответствующем масштабе.

Исследование динамических составляющих движения осуществляют с помощью тензоменрических методов. В качестве тензочувствительного элемента используют различные тензодатчики - датчики давления. Тензодатчики применяются для определения вертикальных составляющих реакции опоры при ходьбе (ихнография) или для регистрации стабилограмм. Подография - регистрация времени опоры отдельных участков стопы при ходьбе с целью изучения функции переката исследуется при помощи специальных датчиков, вмонтированных в подошву обуви.

Стабилограмма попеременного стояния на правой и левой ноге.

Стабилография - объективный метод регистрации положения и проекции общего центра масс на плоскость опоры - важный параметр механизма поддержания вертикальной позы. Обычно регистрируют площадь миграции общего центра масс (ОЦМ) в проекции горизонтальной плоскости, совмещенный с очерком стопы.

Клинико-физиологические методы

Информация о функциональной анатомии опорно-двигательного аппарата человека и биомеханических параметрах движения не может достаточно полно охарактеризовать весь комплекс процессов, происходящих в организме в условиях двигательной активности. С целью изучения механизма управления движениями, их энергообеспеченности в биомеханических исследованиях применяются некоторые физиологические методы. Из обширного арсенала методов современной физиологии избираются те средства функциональной оценки жизнеобеспечивающих систем организма, которые в сочетании со специальными биомеханическими методами дают возможность глубже изучить процесс формирования двигательного навыка и реакции организма па реализацию движения. В связи с этим наиболее широко в клинико-биомеханических исследованиях используются различные варианты кардиографии, электроэнцефалография, электромиография, косвенная калориметрия и другие методы функциональной диагностики.

Калориметрия.

Энергия, освобождаемая организмом в процессе жизнедеятельности, переходит непосредственно в работу механическую, электрическую, физико-химическую и т.д., при этом освобождается некоторое количество тепла. Все тепло, отдаваемое организмом, дает сумму энергетических превращений за определенный промежуток времени. Количество выделяемого тепла может быть определено непосредственно в специальной калориметрической камере, в которую помещают испытуемого. Впервые такая камера была по¬строена в 1880-1886 гг. на кафедре общей патологии Военно-медицинской академии им. С.М. Кирова В.В. Пашутиным. Однако в настоящее время применяется более простой метод непрямой калориметрии, который состоит в исследовании легоч¬ного газообмена и последующем пересчете количества потребляемого кислорода в единицы тепловой энергии. Теоретические обоснования метода непрямой калориметрии базируются на том, что вся энергия, освобождающаяся в процессе жизнедеятельности человека, есть результат распада (окисления) жиров, белков и углеводов. Экспериментально установлено среднее количество тепла, освобождающегося при окислении 1 г каждого из указанных веществ. Установлен и тепловой эквивалент кислорода при окислении этих веществ. Энергетические траты здорового человека складываются из: 1) основного обмена, 2) прироста обмена вследствие специфически-динамического действия принятой пищи, 3) прироста обмена в результате мышечной работы. Основной обмен составляет наименьшую интенсивность обмена веществ, которая необходима для обеспечения жизнеспособности. Энергетически он выражается в величинах теплопродукции в состоянии покоя. Основной обмен определяется не ранее, чем через 12-18 ч после приема пищи, в условиях полного мышечного и психического покоя, при температуре окружающего воздуха 18-20° С. Наиболее распространенным в настоящее время методом непрямой калориметрии является метод Дугласа - Холдена. Суть его заключается в том, что испытуемый дышит атмосферным воздухом, причем выдыхаемый воздух собирается в мешок из прорезиненной ткани емкостью 100-150 л. Количество выдыхаемого воздуха за данное время измеряется газовыми часами, а качественный состав исследуется в газоанализаторе Холдена.

Электромиграфия

Для изучения деятельности мышц в процессе выполнения двигательного акта используется электромиогоафия. Еще в 1884 г. Н.Е. Введенским описан опыт телефонического прослушивания потенциалов действия мышц человека, а в 1907 г. немецкий физиолог Н. Piper впервые зарегистрировал их с помощью струпного гальванометра. Однако практическую значимость электромиографические исследования приобрели лишь с 30-х годов после создания специализированных усилителей биопотенциалов и концентрических игольчатых электродов, позволивших не только исследовать функцию двигательной единицы, по и расшифровать значение компонентов электромиограммы (ЭМГ), снятой накожными электродами. Отведение электромиограммы в настоящее время осуществляется двумя способами: накожными и игольчатыми электродами, позволяющими избирательно регистрировать активность одной двигательной единицы. Применение накожного биполярного отведения с межэлектродным расстоянием 20-25 мм позволяет регистрировать суммарную активность многих двигательных единиц. Развитие электромиографии привело к появлению специальной области клинической электрофизиологии - клинической электромиографии, находящей широкое применение в нервной и хирургической клиниках, в ортопедии и протезировании, в клинической и спортивной биомеханике. В последние годы область применения метода электромиографии существенно расширилась за счет использования биопотенциалов мышц в качестве показателя в системах адаптивного регулирования мышечного тонуса.

История

История биомеханики неразрывно связана с историей техники, физики, биологии и медицины, а также с историей физической культуры и спорта. Многие достижения этих наук определяли развитие учения о движении живых существ. Современную биомеханику нельзя представить без законы механики, открытых Архимедом, Галилеем, Ньютоном, без физиологии Павлова, Сеченова, Анохина, так как и без современных компьютерных технологий.

Истоки биомеханики

Биомеханика - одна из самых старых ветвей биологии. Её истоками были работы [Аристотель|Аристотеля]], Галена, Леонардо да Винчи.

В своих естественнонаучных трудах «Части движения и перемещение животных», Аристотель заложил основу того, что в дальнейшем, спустя 2300 лет назовут наукой биомеханикой. В своих научных трактатах он свойственной ему мышлением описывает животный мир и закономерности движения животных и человека. Он писал о частях тела, необходимых для перемещения в пространстве (локомоции), о произвольных и непроизвольных движениях, о мотивации движений животных и человека, о сопротивлении окружающей среды, о цикличности ходьбы и бега, о способности живых существ приводить себя в движение…

Величайшим ученым-медиком античного времени (после Гиппократа) был Клавдий Гален (131-201 гг. н.э.). В соответствии с мировоззрением античного времени, Гален понимал целостность организма. Он писал:

«В общей совокупности частей, все находится во взаимном согласии и … все содействует деятельности каждой из них».

Изучение нервов позволило Галену сделать вывод о том, что нервы по своей функциональной особенности делятся на три группы: те, что идут к органам чувств, выполняют функцию восприятия, идущие к мышцам ведают движением, а идущие к органам охраняют их от повреждения. Основной его труд - О назначении частей человеческого тела. Гален экспериментально показал, что конечность попеременно то сгибается внутренними, то разгибается наружными мышцами. Так, описывая пятую мышцу, самую большую, по его мнению, из всех мышц тела, приводящую бедро и состоящую из большой, средней и малой мышц, прикрепляющихся к внутренним и задним частям бедренной кости и нисходящей вниз почти до коленного сочленения, он, анализируя ее функцию, писал:

«Задние волокна этой мышцы, идущие от седалищной кости, укрепляют ногу, напрягая сустав. Не менее сильно это действие производится нижней порцией волокон, идущих от лобковой кости, к чему присоединяется еще легкое вращательное движение внутрь. Выше их лежащие волокна приводят бедро внутрь точно так же, как самые верхние приводят и в то же время несколько поднимают бедро»

На развитие механики в средние века оказали существенное влияние исследования Леонардо да Винчи (1452-1519 г.) по теории механизмов, трению и другим вопросам. Изучая функции органов, он рассматривал организм как образец «природной механики». Впервые описал ряд костей и нервов, особое внимание уделял проблемам сравнительной анатомии, стремясь ввести экспериментальный метод и в биологию. Этот великий художник, математик, механик и инженер впервые высказал важнейшую для будущей биомеханики мысль:

«Наука механика потому столь благородна и полезна более всех прочих наук, что все живые тела, имеющие способность к движению, действуют по ее законам».

Его успех как великого художника также немало зависит от биомеханической направленности его картин, - в них детально прорисована техника движения. Его наблюдения, очевидные в наши дни, в средние века были революционными. Например,

«Мускулы начинаются и оканчиваются всегда в соприкасающихся костях, и никогда они не начинаются и не оканчиваются на одной и той же кости, так как они ничего не могли бы двигать, разве только самих себя»

Леонардо, безусловно, является основоположником функциональной анатомии, составной части биомеханики. Он не только описал топографию мышц, но и значение каждой мышцы для движения тела.

Русский стиль - поддержка студии Black Ice (c) 1999-2002

Глава 3. Основы биомеханического контроля

Наука начинается с тех пор, как начинают измерять.

Точное знание немыслимо без меры.

Д. И. Менделеев

От интуиции - к точному знанию!

Двигательное мастерство человека, его умение в любых условиях двигаться быстро, точно и красиво, зависит от уровня физической, технической, тактической, психологической и теоретической подготовленности. Эти пять факторов культуры движений являются ведущими и в спорте, и в физическом воспитании школьников, и при занятиях массовыми формами физкультуры. Для совершенствования двигательного мастерства и даже для сохранения его на прежнем уровне необходим контроль за каждым из на званных факторов.

Объектом биомеханического контроля служит моторика человека, т. е. двигательные (физические) качества и их проявления. Это означает, что в итоге биомеханического контроля мы получаем сведения:

1) о технике двигательных действий и тактике двигательной деятельности;

2) о выносливости, силе, быстроте, ловкости и гибкости, должный уровень которых является необходимым условием высокого технико-тактического мастерства (В англоязычной литературе по физическому воспитанию принят более широкий перечень двигательных качеств, в том числе способность выполнять упражнения на равновесие, танцевальные упражнения и т. д.).

Можно сказать еще проще: биомеханический контроль дает ответ на три вопроса:

1) Что делает человек?

2) Насколько хорошо он делает это?

3) Благодаря чему он это делает?

Процедура биомеханического контроля соответствует следующей схеме:

Измерения в биомеханике

Человек становится объектом измерения с раннего детства. У новорожденного измеряют рост, вес, температуру тела, продолжительность сна и т. д. Позже, в школьном возрасте, в число измеряемых переменных включаются знания и умения. Чем взрослее человек, чем шире круг его интересов, тем многочисленнее и разнообразнее характеризующие его показатели. И тем труднее осуществить точные измерения. Как, например, измерить техническую и тактическую подготовленность, красоту движений, геометрию масс человеческого тела, силу, гибкость и т. п.? Об этом рассказывается в настоящем разделе.

Шкалы измерений и единицы измерений

Шкалой измерения называется последовательность величин, позволяющая установить соответствие между характеристиками изучаемых объектов и числами. При биомеханическом контроле чаще всего используют шкалы наименований, отношений и порядка.

Шкала наименований - самая простая из всех. В этой шкале числа, буквы, слова или другие условные обозначения выполняют роль ярлыков и служат для обнаружения и различения изучаемых объектов. Например, при контроле за тактикой игры футбольной команды полевые номера помогают опознать каждого игрока.

Числа или слова, составляющие шкалу наименований, разрешается менять местами. И если их без ущерба для точности значения измеряемой переменной можно менять местами, то эту переменную следует измерять по шкале наименований. Например, шкала наименований используется при определении объема техники и тактики (об этом рассказывается в следующем разделе).

Шкала порядка возникает, когда составляющие шкалу числа упорядочены по рангам, но интервалы между рангами нельзя точно измерить. Например, знания по биомеханике или навыки и умения на уроках физкультуры оцениваются по шкале: “плохо” - “удовлетворительно” - “хорошо” - “отлично”. Шкала порядка дает возможность не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в качественных понятиях: “больше - меньше”, “лучше - хуже”. Однако на вопросы: “На сколько больше?”, “На сколько лучше?” - шкалы порядка ответе не дают.

С помощью шкал порядка измеряют “качественные” показатели, не имеющие строгой количественной меры (знания, способности, артистизм, красоту и выразительность движений и т. п.).

Шкала порядка бесконечна, и в ней нет нулевого уровня. Это и понятно. Какой бы неправильной ни была, например, походка или осанка человека, всегда можно встретить еще худший вариант. И с другой стороны, какими бы красивыми и выразительными не были двигательные действия гимнастки, всегда найдутся пути сделать их еще прекраснее.

Шкала отношений самая точная. В ней числа не только упорядочены по рангам, но и разделены равными интервалами - единицами измерения 1 . Особенность шкалы отношений состоит в том, что в ней определено положение нулевой точки.

По шкале отношений измеряют размеры и массу тела и его частей, положение тела в пространстве, скорость и ускорение, силу, длительность временных интервалов и многие другие биомеханические характеристики. Наглядными примерами шкалы отношений являются: шкала весов, шкала секундомера, шкала спидометра.

Шкала отношений точнее шкалы порядка. Она позволяет не только узнать, что один объект измерения (технический прием, тактический вариант и т. п.) лучше или хуже другого, но и дает ответы на вопросы, на сколько лучше и во сколько раз лучше. Поэтому в биомеханике стараются применять именно шкалы отношений и с этой целью регистрируют биомеханические характеристики.

Для точной оценки движений человека используют измерительную аппаратуру. Измерительные приборы должны соответствовать требованиям точности, стабильности, устойчивости, изоляции токоведущих частей и механической добротности.

Все измерительные системы включают в себя датчики биомеханических характеристик с усилителями и преобразователями, каналы связи и регистрирующее устройство (запоминающее и воспроизводящее).

Рис.2. Схема состава измерительной системы.

Датчик – первое звено измерительной системы, воспринимает изменения показателя. Закрепляется на теле человека или вне его.

Датчик, закрепленный на теле человека, должен иметь минимальный вес и не стеснять движения. Это, например, маркеры суставов, электромиографические электроды, датчики суставного угла или ускорения. Датчики также размещают на инвентаре, снарядах, покрытиях, на которых выполняется упражнение

Усилитель характеризуется коэффициентом усиления.

Информация от датчиков передается по телеметрическому каналу .

Зарегистрировать информацию можно (результат регистрации – график, магнитная лента):

а) индикаторы (тепловые, световые, химические);

б) счетчики (механические, электронные и др.);

в) самописцы (перьевые, струйные, тепловые);

г) осциллографы (шлейфные и электронные).

Метод тензодинамометрии (сконструирован А.Б. Абалаковым) позволяет зарегистрировать и измерить усилия, развиваемые спортсменом при выполнении различных физических упражнений. Спортсмен оказывает механическое воздействие на снаряды и покрытие, которые в результате этого деформируются. Величину деформации можно зарегистрировать с помощью тензодатчиков, наклеенных на упругий элемент.

Используют проволочные, фольговые и полупроводниковые тензодатчики. Для измерения трех составляющих усилия их наклеивают на три взаимно перпендикулярные плоскости. В качестве измерительного и регистрирующего устройства используют осциллограф. Наиболее распространены динамографическая платформа для трехкомпонентной записи опорного давления.

Метод акселерометрии позволяет зарегистрировать ускорения движения тела и его звеньев. Состоит из датчиков ускорения, наклеенных на тело человека или на снаряд, усилительной аппаратуры и регистрирующей аппаратуры (осциллограф или магнитофон). Для ориентации вектора ускорения используется синхронизированная двух- или трехплоскостная видеосъемка.

Метод электрогониометрии предназначен для измерения величины суставных углов при движении тела человека. Он предназначен для измерения подвижности и изменения углов во времени.



Гониометр состоит из двух тонких стержней, концы которых соединены шарниром. Между планками закреплен электрический преобразователь. Через проводную связь информация поступает на усилитель, преобразователь и регистратор. Запись изменения углов называется гониограммой. Запись информации от нескольких углов называется полигониометрией.

Близкими к этому методу являются ангулография (запись углов сгибания и разгибания нижних конечностей), ихнографии и подографии (запись следов при ходьбе и беге)

Рентгенографический метод позволяет определить теоретически допустимую амплитуду движения, рассчитав ее на основании рентгенологического анализа строения сустава.

Метод электромиографии – способ регистрации и анализа биологической активности мышц. Позволяет изучить активность отдельных мышц, длительность работы и согласованность в работе мышц с помощью регистрации разности потенциалов. Установка состоит из электродов, наложенных на кожу над соответствующей мышцей, усилителя биопотенциалов и регистрирующего устройства.

Метод стабилогрфии используется для определения колебания ОЦТ тела при попытке сохранения равновесия.

Электромеханический спидограф или фото- (лазеро-) электрическая установка для определения скорости одиночных движений.

Самым простым из них является электромеханический спидограф , состоящий из лентопротяжного механизма с отметчиками времени и расстояния. К ним присоединена через катушку с тормозом леска, другой конец которой крепится к поясу спортсмена. Во время бега (или плавания, гребли и т.п.) вытягивание лески приводит к замыканию контактов, и писчики отмечают на ленте время (через каждые 0,02 с) и расстояние (через 1 м).

Более предпочтительной в этом смысле является фотоэлектронная установка . Она состоит из фотоэлементов, усилителя и регистрирующего устройства (электронных часов, осциллографа, самописца и т.п.). Фотоэлектронные датчики располагаются в определенных точках дистанции (например, через каждые 3 м для бега на 30 м или через каждые 5 м для бега на 100 м); при пересечении линии датчиков изменяется их освещенность, и ВИУ срабатывает.

БИОМЕХАНИЧЕСКИЙ КОНТРОЛЬ. КЛИНИЧЕСКИЙ АНАЛИЗ ДВИЖЕНИЙ. ТЕСТЫ В БИОМЕХАНИКЕ. МЕТОДЫ ОБСЛЕДОВАНИЯ

Работа опорно-двигательного аппарата человека основана на принципах механики. Для изучения биомеханических систем чело­века используют данные биофизики, физиологии, математики и др. Известно, что человек как биомеханическая система, подчиняется законам физики и механики.

При изучении движений в биомеханике используют данные ан­тропометрии, анатомии, физиологии нервной и мышечной систем и др.; в биомеханику ОДА включают его функциональную (дина­мическую) анатомию и др.


Цель биомеханических исследований - создание спортивного инвентаря и техники (велосипеды, лодки, весла, спортивная обувь и многое другое), разработка техники движений в том или ином виде спорта, а также профилактика и лечение травм и т. д.

Асимметрия сторон тела и конечностей, разница в окружности сегментов одной конечности по сравнению с другой, в объеме сус­тавов, изменения физиологических изгибов позвоночника и другие отклонения от нормы должны быть отмечены и учтены в процессе биомеханического контроля (рис. 16.1).

Ось нормальной нижней конечности проходит от передне-верх­ней подвздошной ости через середину коленной чашки и второй палец стопы (рис. 16.2). Длинная ось верхней конечности прохо­дит через центр головки плечевой кости, головку лучевой и голов­ку локтевой костей (рис. 16.3).



Измерение длины нижней конечности осуществляется в поло­жении лежа: конечности располагают строго симметрично и изби­рают на каждой из них по две симметричные точки (рис. 16.4). Верхней точкой может служить передне-верхняя ость таза или верхушка большого вертела. Нижней точкой может быть нижний конец внутренней или наружной лодыжек (см. рис. 16.4).


Точно так же производится измерение длины верхней конечнос­ти. Верхней точкой при этом служит конец акромиального отростка лопатки или большой бугорок плечевой кости, нижней - шило­видный отросток лучевой кости или до конца III пальца (рис. 16.5).

Для измерения длины плеча или предплечья промежуточной точкой обычно служит верхушка локтевого отростка или головка лучевой кости.

После измерений больной конечности, полученные данные срав­нивают с данными измерений здоровой конечностью (рис. 16.6).


Необходимо различать анатомическое (истинное) и функцио­нальное укорочение или удлинение конечности. Анатомическая длина (укорочение или удлинение) складывается из суммы длины бедра и голени для нижней конечности и плеча и предплечья - для верхней конечности.

Измерение в первом случае производится от верхушки большо­го вертела до щели коленного сустава и от последней до наружной (внутренней) лодыжки; во втором случае - от большого бугорка плечевой кости до головки лучевой кости и от последней до ши­ловидного отростка лучевой (локтевой кости). Эти суммарные данные сравнивают с такими же данными, полученными при изме­рении здоровой конечности. Разница между ними и составляет величину анатомического укорочения (рис. 16.7).

Функциональное укорочение или удлинение конечности опреде­ляется путем указанного выше измерения ее отдельных сегментов, но верхней точкой для нижней конечности при этом служит пе­редне-верхняя подвздошная ость, а для верхней конечности - конец акромиального отростка лопатки. Функциональное укорочение


обычно зависит от наличия контрактур или анкилозов суставов в порочном положении, искривлений костей, вывихов и т. д.

Функциональное укорочение может быть измерено в положе­нии стоя (см. рис. 16.7, б). Оно равно расстоянию от подошвенной поверхности стопы больной конечности до пола при опоре на здо­ровую конечность (см. рис. 16.7, б).

Между анатомическим и функциональным укорочением может быть значительная разница. Так, например, длина бедра и голени больной и здоровой стороны может быть одинаковой, а между тем при наличии сгибательной контрактуры в коленном или тазобед­ренном суставах, вывихе, анкилозе тазобедренного сустава в по­ложении приведения функциональное укорочение может достичь 10-15 см и более (рис. 16.8).

Определение объема движения в суставах (16.9). Степень и тип движения нормального сустава зависит от формы суставных поверхностей, от ограничивающего действия связок и от функции мышц.

Различают активные и пассивные ограничения движений в суста­вах. Известен объем нормальной амплитуды движений в различных





суставах (рис. 16.10, см. стр. 454-455). Однако для практических целей гораздо более важные данные могут быть получены при срав­нении движений в суставах больной стороны и здоровой.

Движения в сагиттальной плоскости называют сгибанием и раз­гибанием (flexio et extensio), в отношении кисти принято говорить - ладонное и тыльное сгибание, в отношении стопы - тыльное и по­дошвенное сгибание.

Движения во фронтальной плоскости называют приведением (adductio) и отведением (abductio). В отношении лучезапястного сустава принято говорить - лучевое приведение и локтевое от­ведение; движение внутрь в пяточно-кубовидном суставе есть приведение, движение наружу - отведение. Движения вокруг про­дольной оси называют ротацией (rotatio) внутренней и наружной. В отношении предплечья (рис. 16.11) принято называть наружную ротацию - супинацией (supinatio), а внутреннюю ротацию - про­нацией (pronatio), так же как отклонение стопы в подтаранном суставе от оси нижней конечности внутрь принято называть супи­нацией, а кнаружи - пронацией (см. рис. 16.15).

Движения в суставах могут производиться пациентом активно или с помощью исследователя (пассивно). Измерение амплитуды движений производится с помощью угломера, бранши которого устанавливает по оси сегментов конечности, а ось угломера - по оси движения суставов (см. рис. 16.9).



Ограничение пассивной подвижности в суставе носит название контрактуры. Ограничение активной подвижности - это не кон­трактура, а состояние, связанное с болевыми ощущениями, пара­личом или парезом мышц.

Полную неподвижность в суставе называют анкилозом. Разли­чают костный анкилоз, при котором суставные концы сочленяющих­ся костей спаяны между собой костным веществом, и фиброзный ан­килоз, при котором спайка состоит из фиброзной ткани. В последнем случае возможны ничтожные, еле заметные на глаз движения.

Для определения объема ротационных движений конечностей используют ротатометры (рис. 16.12). Данные измерений запи­сывают в градусах. Пределом возможного пассивного движения является ощущение боли. Объем активных движений иногда в значительной степени зависит от состояния сухожильно-мы­шечного аппарата, а не только от изменений в суставе. В этих случаях между объемом активных и пассивных движений возни­кает значительная разница.



Движения в локтевом суставе возможны в пределах: сгибание до 40-45°, разгибание до 180°. Пронационно-супинационные дви­жения предплечья в локтевом суставе определяются в положении, изображенном на рис. 16.13, и возможно в пределах 180°.


В лучезапястном суставе движения совершаются в пределах 70-80° тыльного сгибания и 60-70° ладонного сгибания. Опре­деляются также боковые движения кисти - радиальное отведе­ние в пределах 20° и ульнарное - в пределах 30° (см. рис. 16.10).

В пальцах кисти разгибание возможно в пределах 180°, сгибание в пястно-фаланговых суставах возможно до угла 70-60°, в меж-фаланговых сочленениях - до 80-90°. Возможны и боковые дви­жения пальцев. Особенно важно определить отведение первого пальца и возможность соприкосновения между первым и пятым пальцами.

В тазобедренном суставе объем движений в норме: сгибание до 120°, разгибание 30-35° (угол между горизонтальной плоскостью и осью бедра), отведение 40-50°, приведение 25-30° (угол меж­ду вертикальной осью туловища и осью бедра) (см. рис. 16.10, б).

Физиологические движения в голеностопном суставе и стопе совершаются в пределах 20-30° тыльного сгибания (разгибание стопы) и 30-50° подошвенного сгибания (см. рис. 16.9). Приведе­ние стопы, как правило, сочетается с супинацией (вращение стопы внутрь), отведение сопровождается пронационным движением (вращение стопы наружу).

Физиологические движения в позвоночнике для удобства оп­ределяются и в градусах (что более сложно) и в максимальных дви­жениях различных отделов.

В шейном отделе сгибание в норме совершается до соприкос­новения подбородка с грудиной, разгибание - до горизонтального



положения затылка, вбок - до соприкосновения ушной раковины с надплечьем.

В грудном отделе сгибание и разгибание осуществляются в не­большом объеме. Грудные позвонки принимают большое участие в боковых движениях позвоночника, объем ротационных движе­ний 80-120°.

В поясничном отделе наибольший объем движений определя­ется в передне-заднем направлении, боковые и ротационные дви­жения умеренные.

Окружность конечностей (больной и здоровой) измеряют в сим­метричных местах на определенном расстоянии от костных опозна­вательных точек: для ноги - от передней верхней ости подвздошной кости, большого вертела бедра, суставной щели коленного сустава, головки малой берцовой кости; для рук - от акромиального отрост­ка, внутреннего надмыщелка плеча (рис. 16.14).

Измерения стоп производят как с нагрузкой, так и без нагрузки (рис. 16.15). Деформация стопы в результате статической недос­таточности складывается из а) пронации заднего отдела стопы




и компенсаторной относительной супинации ее переднего отдела; б) изгиба к тылу переднего отдела стопы по отношению к заднему отделу, устанавливающемуся в положении подошвенного сгибания (уплощение стопы); в) отведения переднего отдела стопы (абдук­ция) по отношению к ее задней части (рис. 16.16).

Ф.Р. Богданов рекомендует измерять продольный свод стопы путем построения треугольника, опознавательные точки которого легко доступны ощупыванию. Такими точками являются: головка первой плюсневой кости, пяточный бугор и вершина внутренней лодыжки (рис. 16.17). Соединив эти три точки, получают треуголь­ник, основанием которого служит расстояние от головки первой плюсневой кости до пяточного бугра. Расчет ведут по высоте сво­да и величине углов внутренней лодыжки и у пяточной кости. В норме высота свода равна 55-60 мм, угол у лодыжки составля­ет 95°, угол у пяточной кости - 60°. При плоской стопе: высота


свода меньше 55 мм, угол у лодыжки 105-120°, угол у пяточной кости 55-50°.




Для определения степени плоскостопия применяют рентгено­логический метод исследования. Расчет основан на построении треугольника, вершинами которого являются головка плюсневой кости, ладьевидная кость и бугор пяточной кости, и измерении вы­соты свода и величины угла у ладьевидной кости (рис. 16.18).

Ангулография - запись углов сгибания и разгибания в суста­вах нижней конечности: тазобедренном, коленном и других с обоз­начением межзвенных углов (B.C. Гурфинкель и А.Я. Сысин, 1956). По данным ангулограмм можно определить походку в норме и при патологии, а также до и после лечения (рис. 16.19). При приме­нении лечения (реабилитации) ангулография начинает прибли­жаться к норме.

Ихнография - метод записи следов от обеих ног при ходьбе с учетом длины шага каждой ноги, разворота стопы, ширины ша­га, угол шага (рис. 16.20).

При анализе следовых дорожек по отпечаткам стоп измеряют­ся пространственные параметры шага.

Модификация метода ихнографии - подография - использо­вание регистрации электрических сигналов при соприкосновении стопы с полом (рис. 16.21). На специальную металлизированную дорожку и металлический контакт на обуви подается слабый элек­трический ток, при касании поверхности такой обувью замыкается


Цепь и проходит ток, регистрируемый на приборе (например, на осциллографе). Помещая контакты в определенных местах подош­вы можно регистрировать фазы переноса конечности, постановки пятки на опору, переката на всю ступню, отрыва пятки и т. д.




Участие различных мышц в осуществлении двигательного акта изучают посредством электромиографии, т. е. путем исследова­ния электрической активности мышц. С этой целью отводящие электроды прикладывают к коже человека над соответствующей мышцей. Многоканальные электромиографы одновременно реги­стрируют электрическую активность нескольких мышц.

ЭМГ записывают с мышц симметричных сегментов конечностей или симметричных половин туловища, либо с мышц-антагонистов. Полученную ЭМГ оценивают по высоте осцилляции, их частоте в единицу времени и в целом всю запись. Показано, что тренировки усиливают электрическую активность мышц (рис. 16.22). Особен­но это заметно при тренировке (применение ходьбы, бега, лечеб­ной гимнастики и других средств) после перенесенной травмы.

Измерение гибкости позвоночника. Гибко­стью называется способность выполнять движе­ния с большой амплитудой. Мерой гибкости является максимум амплитуды движений. Раз­личают активную и пассивную гибкость. Ак­тивная выполняется самим испытуемым, пассив­ная - под влиянием внешней силы. Гибкость за­висит от состояния суставов, эластичности (растяжимости) связок, мышц, возраста, темпе­ратуры окружающей среды, биоритмов, време­ни суток и др.

Обычно гибкость определяется по способно­сти человека наклониться вперед, стоя на простей­шем устройстве (рис. 16.23). Перемещающаяся


планка, на которой в сантиметрах нанесены деления, показывает уро­вень гибкости.

Искривление позвоночника может наступить в трех плоско­стях: а) фронтальной (боковое искривление - сколиоз); б) сагит­тальной (круглая спина, горб - кифоз); в) горизонтальной (пово­рот позвонков - торсия).

Сколиоз - это заболевание костной и нервно-мышечной сис­темы в области позвоночника, которое вызывает прогрессирующее боковое искривление последнего с торсией, изменением формы по­звонков клиновидного характера, с развитием деформаций ребер и образованием реберных горбов, переднего и заднего, усилением поясничного лордоза, грудного кифоза и с развитием компесатор-ных дуг искривления (рис. 16.24).

Общий центр тяжести тела играет важную роль при реше­нии различных вопросов механики движений. Равновесие и ус­тойчивость тела определяется положением ОЦТ.


Общая площадь опоры - площадь, заключенная между крайни­ми точками опорных поверхностей, иными словами, площадь опор­ных поверхностей и площадь пространства между ними (рис. 16.25). Величина площади опоры при различных положениях тела очень варьирует.

Применительно к телу человека различают два вида равнове­сия: устойчивое и неустойчивое. Устойчивое равновесие - когда ОЦТ тела расположен ниже площади опоры, а неустойчивое - когда ОЦТ тела расположен выше площади опоры.

В. Брауне и О. Фишер определили положение ОЦТ тела и цент­ров тяжести его отдельных частей. Выявлено, что ЦТ головы лежит сзади от спинки турецкого седла примерно на 7 мм; ЦТ тулови­ща - спереди верхнего края первого поясничного позвонка (L,). По оси туловища его ЦТ отстоит от краниального конца примерно на 3/6 длины, а от каудального - на 2/5 длины (см. рис. 2.9). Прямую между поперечными осями, проходящими через плечевые и тазобедренные суставы, ЦТ туловища делит примерно в отно­шении 4:5. По Фишеру, изолированное бедро, голень, плечо и предплечье имеют ЦТ в том месте, отрезки от которого до прок­симального и дистального концов этих звеньев относятся примерно


как 4:5. Центр же тяжести кисти с несколько согнутыми пальцами расположен на 1 см проксимальнее головки третьей пястной кос­ти.

Зная положение ЦТ каждой из двух частей тела, сочленяю­щихся между собой (плеча и предплечья, бедра и голени и др.), нетрудно определить положение общего для них центра тяжести (см. рис. 2.9). Он находится на прямой, соединяющей ЦТ каждого из звеньев, и делит эту прямую в отношении, обратно пропорцио­нальном их массам. Посредством преобразования двухзвеньевых систем можно определить положение ОЦТ тела.

Для определения ОЦТ, а также для определения его траекто­рии В.М. Абалаков предложил прибор (рис. 16.26).

Устойчивость тела определяется величиной площади опоры, вы­сотой расположения ОЦТ тела и местом прохождения вертикали, опущенной из ОЦТ, в"нутри площади опоры (см. рис. 16.25). Чем больше площадь опоры и чем ниже расположен ОЦТ тела, тем боль­ше устойчивость тела.

Для определения центра масс J.L. Parks (1959) предложил ме­тод рассечения, который позволил определить центр каждого сег­мента, массу и положение центра масс (рис. 16.27).

Для исследования площади опоры подошвенную поверхность стопы (стоп) смазывают краской, для чего пациент становится на







ровную поверхность, покрытую тонким слоем краски, а затем осторожно переходит на лист чистой бумаги. По отпечаткам стоп можно су­дить о своде стопы и характере распределения нагрузки на стопу (см. рис. 16.20). Методом от­печатков определяют особенности и характер походки (см. рис. 16.20).

Анализ походки по следу, оставленному на бумаге, производят путем измерения угла ша­га (угол, образованный линией передвижения и осью стопы), ширины шага (расстояние меж­ду отпечатками края пятки одной и той же ноги (рис. 16.28).

Хорошая осанка создает оптимальные ус­ловия для деятельности внутренних органов, способствует повышению работоспособности и, конечно, имеет большое эстетическое значе­ние. Характеристику типов осанки можно дать


по результатам гониометрии позвоночного столба (рис. 16.29) и визуально.

Гониометрия - метод регистрации относительных движений частей тела: в качестве датчиков угловых перемещений в суставах используются электрические переменные сопротивления (потенцио­метры) или угломеры (на шарнире, или с выдвижными браншами, или дисковой). Наиболее широкое применение находит циркуль-гониометр В.А. Гамбурцева.

При помощи гониометрического метода легко осуществляется комплексное измерение кривизны и движений позвоночника, углов наклона таза, амплитуды движений суставов конечностей, дефор­мацию конечностей и др.

Характер изменения во времени суставных углов ноги в плос­кости, близкой к сагиттальной, показан на рис. 16.30.

Циклография - способ регистрации движений человека. При циклографии последовательные позы движущегося человека (или



одной из его конечностей) регистрируются на одной и той же фо­тографической пленке. Для этого исследуемый надевает костюм из черной неблестящей ткани. На местах соответствующих суста­вах и в некоторых других точках тела закрепляют небольшие элек­трические лампочки. Перемещение исследуемого оставляет след на фотопленке. При этом каждой светящейся лампочке на пленке соответствует своя световая траектория в виде линии.

Для определения скорости движений отдельных звеньев тела перед фотокамерой помещают вращающийся диск с одним или не­сколькими отверстиями. Вращаясь с равномерной скоростью перед объективом фотокамеры, диск дробит световые траектории лампо­чек на определенные точки, отстоящие друг от друга на одинако­вые интервалы времени.

Обрабатывая циклограмму по методу Н.А. Бернштейна, можно подробно анализировать движения тела человека и его отдельных звеньев в пространстве и времени. Это позволяет не только выяв­лять действительные и относительные перемещения тела и его от­дельных пунктов (сегментов), но и определять скорости и ускоре­ния этих перемещений как по продольной, так и по вертикальной составляющим.

Циклограммы позволяют видеть целостное пространственное движение тела, образующееся в результате сложения угловых дви­жений множества звеньев тела относительно друг друга.

На рис. 16.31 и рис. 16.32 приведены циклограммы идущего и бегущего человека.

Стабилография. По существу, устойчивость - это способность человека размещать общий центр масс так, чтобы его проекция на горизонтальный участок опоры попала на площадь, ограниченную сто­пами. Удержание вертикальной позы - это мышечная координация циклических движений тела. При этом тело колеблется и площадь, описываемая ОЦМ, может превышать площадь опоры. При проведе­нии пробы «устойчивость» стабилограмма снимается в течение 30 с, при этом испытуемого просят встать на платформу и постараться са­мостоятельно сохранять вертикальное положение тела (вначале 30 с с открытыми глазами, а затем 30 с - с закрытыми). На рис. 16.33 представлены статокинезиграммы.

Анализ статокинезиграмм (СКГ) предусмотрен по следующим характеристикам.

1. Математическое ожидание координат ОЦТ (ОЦМ) по ма­тематическому ожиданию положения центра давления М х ± с х,







и спектральный анализ проводятся с применением методов, изу­чаемых в основном курсе медицинской и биологической физики.

Для исследования вестибулярного аппарата проводят специ­альные координационные пробы и пробы с вращением: вращение в кресле Барани, проба Ромберга и др.

От состояния вестибулярного анализатора в большой мере зави­сит ориентирование в пространстве, а также устойчивость тела. Это особенно важно в некоторых сложных видах спорта (акробатика, гим­настика, батут, прыжки в воду, фигурное катание и др.).

Проба Ромберга (Romberg). Тест для определения изменения проприорецепции. Проба Ромберга проводится в четырех режимах (рис. 16.34) при постепенном уменьшении площади опоры. Во всех случаях руки у обследуемого подняты вперед, пальцы разведены и глаза закрыты. По секундомеру засекается время сохранения рав­новесия в течение 15 с. При этом фиксируются все изменения - пошатывание тела, дрожание рук или век (тремор).


Треморография. Тремор - гиперкинез, проявляющийся непро­извольными, стереотипными, ритмичными колебательными движе­ниями всего тела или его составных частей. Запись тремора осуще­ствляется с помощью сейсмодатчика на ЭКГ-аппарате. На палец испытуемому надевается индукционный сейсмодатчик. Механи­ческие колебания (тремор) руки и пальца, преобразованные в элек­трические сигналы, усиливаются и регистрируются на ленте электрокардиографа (рис. 16.35). Запись производится в течение 5- 10 с. Затем анализируется форма полученной кривой по ампли­туде и частоте. При утомлении и возбуждении амплитуда и часто­та тремора увеличивается. Улучшение тренированности сопрово­ждается, как правило, снижением величины тремора, а также при уменьшении или исчезновении боли.

Тест Яроцкого. Тест позволяет определить порог чувствитель­ности вестибулярного анализатора. Тест выполняется в положении стоя с закрытыми глазами, при этом спортсмен по команде начина­ет вращательные движения головой в быстром темпе. Фиксиру­ется время вращения головой до потери спортсменом равновесия. У здоровых людей время сохранения равновесия в среднем 28 с, у тренированных спортсменов - 90 с и более, особенно у тех, кто занимается акробатикой, гимнастикой, прыжками в воду и др.


Актография - это исследование двигательной активности чело­века во время сна. Запись актограмм осуществляется на электро­кимографе, где в качестве воспринимающей части применяется велосипедная камера длинной 1,5 м, давление в которой составляет 15-20 мм рт. ст. Камера соединяется резиновой трубкой с капсулой Марея. Чернильными писчиками производится запись актограммы на бумаге. При анализе актограмм учитывается продолжительность засыпания, длительность состояния полного покоя, общее время сна и другие составляющие. Чем выше показатель покоя, тем лучше сон.



Для определения поверхности тела по данным измерения длины и массы тела (рис. 16.37) существуют номограммы. Поверхность тела является в значительной степени интегрирующим признаком физического развития, имеющим высокую корреляционную связь с многими важнейшими функциональными системами организма .

Расчет величины поверхности тела (S) по Дюбо: S = 167,2 л/Л4 ■ Д, где М - масса тела в килограммах; Д - длина тела в сантиметрах.

Соотношение массы и поверхности тела ребенка в зависимо­сти от возраста приведено в табл. 16.1.

Определение толщины кожно-жировых складок у детей и подростков. Измерение по Л.С. Трофименко производят кали-пером Беста с постоянным давлением 10 г/мм 2 (рис. 16.38). Тол­щину складки измеряют в десяти точках тела: щека, подбородок, грудь I (по передней подмышечной линии на уровне подмышечной складки), задняя поверхность плеча, спина, грудь II (по передней подмышечной линии на уровне X ребра), живот над гребнем под­вздошной кости, бедро, голень. Толщину каждой складки измеряют 3 раза и полученные данные складывают.

У девочек кривая суммы складок в возрасте от 7 до 17 лет неук­лонно возрастает; у мальчиков пик нарастания кривой приходится на возраст 10- 12 лет, затем наблюдается тенденция к некоторому



ее снижению. Сопоставление полученных величин с массой тела ребенка позволяет судить о преимущественном развитии жировой ткани или костно-мышечной системы.

Исследование мышечной силы. Функциональные возможности опорно-двигательного аппарата (ОДА) в значительной степени за­висят от состояния мышц.

Для определения мышечной силы используют динамометры, то-нусометры, электромиграфию и др. (рис. 16.39).

Для определения силы кисти обычно используют динамометр Коллена. Силу разгибателей туловища измеряют с помощью ста­нового динамометра. Для измерения силы мышц плеча и плечево­го пояса, разгибателей бедра и голени, а также сгибателей туло­вища используют универсальные динамометрические установки

(рис. 16.40).

Мужчины достигают максимума изометрической силы в возрас­те около 30 лет, потом сила уменьшается. Этот процесс идет быст­рее в крупных мышцах нижних конечностей и туловища. Сила рук



сохраняется дольше. В таблице 16.2 приведены показатели силы различных мышечных групп, полученные при обследовании около 600 человек (средний рост мужчин 171 см, женщин - 167 см).

Силовые индексы получают делением показателей силы на вес и выражают в процентах (%). Средними величинами силы кисти у мужчин считается 70-75% веса, у женщин - 50-60%; для становой силы у мужчин - 200-220%, у женщин - 135- 150%. У спортсменов соответственно - 75-81 % и 260-300%; у спорт­сменок - 60-70% и 150-200%.