Главная · Горло · Чем опасен бензол и его негативное влияние на организм. Что такое бензол? Строение бензола, формула, свойства, применение

Чем опасен бензол и его негативное влияние на организм. Что такое бензол? Строение бензола, формула, свойства, применение

Бензол и его негативное влияние на организм давно стали темой для изучения среди медиков и научных сотрудников. Специалисты доказали, что, несмотря на повсеместное использование, такое вещество несет в себе отравляющий эффект. Из-за того, что пары бензола не видно, некоторые преуменьшают его опасность, но на самом деле подобное химическое соединение может привести к необратимым последствиям в любом живом организме.

Общие сведения

Перед тем как изучать последствия отравления этой жидкостью, необходимо разобраться с тем, что такое бензол в разрезе химической промышленности. Это углеводород, который относится к категории ароматических соединений. Его характерными признаками считаются:

  • бесцветность,
  • прозрачность,
  • легкоподвижность,
  • специфичный аромат;
  • быстрое испарение при условии поддержания температуры в пределах комнатной.

При этом продукт химической промышленности представляет собой жидкость, которая сильно преломляет свет. Она закипает при достижении температуры уровня 80,5 градусов, а на холоде превращается в кристаллоподобную массу, которая начинает плавиться уже при шести градусах тепла.

Соединение легко растворяется в типичных растворителях вроде хлороформа, спирта и эфира. Не относится это правило разве что к воде. Зачастую используется в качестве растворителя для жира, различных смол, либо масел. При этом его состав достаточно легко воспламеняется, сильно коптя.

Согласно исследованиям экологов, это соединение считается одним из наиболее токсичных, которое встречается человеком повсюду. Благодарить за это следует масштабные выбросы промышленных предприятий разного назначения, а также периодически накрывающий большие города смог.

Сфера использования

Современная промышленность уже не может обходиться без этого токсичного продукта химической отрасли. Заменить С 6 Н 6 (формула бензола) пока не представляется возможным во всех традиционных областях его применения, поэтому экология продолжает страдать от его влияния.

Ответить несколькими словами на вопрос того, где применяется столь опасное соединение, невозможно, так как сфера его использования расширяется ежегодно. На сегодняшний день чаще всего к его помощи прибегают специалисты таких направлений:

  • косметика,
  • парфюмерия,
  • красители,
  • синтетические материалы вроде резины, пластмассы,
  • фармацевтика,
  • легкая промышленность,
  • взрывчатка,
  • кокс,
  • парафин.

Используется продукт для создания искусственной кожи, а также усовершенствования тканей, которые получили водонепроницаемую структуру.

Кроме этого качество жидкости, предусматривающее функции растворения, сделало ее активным помощником при надобности разделить или выделить:

  • алкалоиды из различных растений;
  • жир из мясной продукции (вплоть до извлечения фосфора из костей), орехов;
  • клеи на основе каучука и прочих лакокрасочных продуктов.

Иногда бензол используется в фармацевтике, чтобы преобразовать йод в полезные для медицины растворы. А автолюбители взяли его на вооружение после того, как в мире стал пользоваться спросом метод поднятия октанового числа при производстве транспортного топлива. Также он снижает характерное для топливного ресурса самовоспламенение.

В быту соединение выступает важной частью процедуры химчистки в специализированных учреждениях. С его помощью значительно проще удалить сложные в обработке пятна практически на любой ткани.

Факторы опасности

Спасающая многие ответвления промышленности формула С 6 Н 6 настолько опасна, что ее включили в перечень сильнейших канцерогенов, которые сопутствуют образованию раковых опухолей разных органов. Медики стали бить тревогу уже давно, что вылилось в обнародование специально созданной конвенции в рамках Женевской конференции еще в 1971 году. Уже тогда люди знали о том, что помимо пользы продукт несет в себе огромную смертельную угрозу.

Главными опасностями, которые преследуют человека, имеющего дело с бензолом, числятся:

  • образование взрывчатой смеси. Так как эта жидкость испаряется практически моментально, она способна быстро смешиваться с кислородом в окружающей среде, превращаясь в угрожающий жизни и здоровью состав.
  • отравление. Вызвано тем, что пары бензола значительно тяжелее воздуха, они оседают внизу комнаты, что приводит к интоксикации людей, находящихся там же.
  • копоть и гарь. Несмотря на стереотип о том, что люди погибают на пожарах из-за открытого огня, это не совсем так. Гораздо чаще человек становится жертвой выделения побочных эффектов химического продукта при его горении.

В среднем, в солнечный день из бензобака обычного автомобиля в салон машины, где поддерживается температура хотя бы в 16 градусов тепла, попадает до 4000 мг паров бензола. Если добавить к этому пары из обшивки и прочих элементов, то получится внушительная доза токсинов. Именно поэтому специалисты рекомендуют сначала проветривать салон, а потом включать кондиционер и ехать по своим делам.

Действие на человека

Рассматривая бензол и его негативное влияние на организм, сначала следует разобраться с потенциальными группами риска. Чаще всего это те люди, которые работают в заводских условиях. Также в перечень попали все те, кто занимается его регулярными поставками, либо отвечает за его хранение, продукты переработки.

Кроме того в список попали:

  • мойщики цистерн, в которых перевозился продукт;
  • лаборанты на нефтеперерабатывающих станциях;
  • рабочие по ремонту насосов;
  • пострадавшие в пожарах, где выделилась значительное содержание продукта (зачастую это пластмассовые изделия, резиновая продукция).

Бензопропилен попадает в организм вместе с воздухом в виде паров. Именно этот способ считается наиболее частым при отравлениях таким веществом. На втором месте находится попадание через кожу.

Несмотря на его опасность, кратковременное вдыхание паров не принесет серьезного вреда. Но вот при длительном контакте с ядовитой средой или соприкосновении с концентрацией доз, превышающих нормы, это может закончиться проникновением составляющих искусственно созданного продукта в кровь. Выводится он посредством дыхания, через почки, либо в грудном молоке, если пострадавшей оказалась женщина в период лактации.

Если произошел контакт с кожей, то больной будет:

  • ощущать сухость;
  • появятся трещины;
  • пораженный участок станет красным;
  • начнется зуд;
  • проявится отечность или высыпания пузырькового типа.

Схематически отравления можно разделить на две обширных группы:

  • острое,
  • хроническое.

В первом случае поражается по большей части дыхательная система, а также мозг и надпочечники. При втором раскладе сильнее всегда страдает кроветворная система.

Если воздействие на организм производится на регулярной основе, то все может завершиться:

  • мутациями генов;
  • сбоем функционирования репродуктивных органов;
  • вредом для плода (имеется в виду влияние на беременных).

Помимо этого дополнительными побочными эффектами могут выступать периодические судороги, а также нарушение витаминного баланса группы В.

Острое отравление

Острая интоксикация бензолом встречается намного реже, чем хроническая, но это не уменьшает ее негативного влияния. Зачастую оно происходит из-за несчастного случая или техногенной аварии, что завершается попаданием в организм дозы, превышающей разрешенную в десятки раз.

Общая симптоматика выглядит следующим образом:

  • нарушение работы нервной системы, которое выражается в вялости, вертиго, головной боли, потере себя в пространстве.
  • падение температуры тела и учащение дыхания с последующим ослаблением пульса.
  • бледность кожи.

Если ничего не делать после выражения таких признаков, то у пациента могут начаться судороги, и он впадет в кому. Именно поэтому крайне важно вовремя обратиться к врачу, вызвав «скорую помощь».

Чтобы облегчить состояние больного до приезда медиков, нужно:

  • вынести его на свежий воздух;
  • если был контакт с кожей – промыть пораженный участок с раствором обычной пищевой соды;
  • в случае надобности провести непрямой массаж сердца и искусственное дыхание.

Хроническое отравление

Влияние углеводородов на организм человека чаще всего выражается в хроническом отравлении. Происходит это вследствие продолжительного контакта с небольшими дозами соединения. Заподозрить у больного ее проявления может разве что опытный эксперт на основе тщательной диагностики, которая включает изучение обстановки больного дома, на работе.

Главным ударом, который наносит бензол в таком случае, выступает отрицательное воздействие сначала на костный мозг, а потом и нервную систему. Классическими проявлениями хронического течения отравления принято называть:

  • повышенную утомляемость,
  • постоянную вялость,
  • бессонницу,
  • нервозность,
  • частые головные боли,
  • головокружение.

Завершается картина костными болями, тошнотой, рвотой. При случайном травмировании (даже при обычной чистке зубов) кровь долго не сворачивается. Картина анемии подтверждается выпадением волос, бледностью кожи, ломкостью ногтей. Человек чувствует снижение физической, а также умственной работоспособности.

Чтобы противостоять этому и более серьезным последствиям на дальнейших стадиях развития отравления, необходимо в первую очередь выяснить, где содержится бензол. После обнаружения токсичного источника проблем, нужно прекратить контакт с ним.

Среди огромного арсенала органических веществ можно выделить несколько соединений, открытие и изучение которых сопровождалось многолетними научными спорами. К ним по праву относится бензол. Строение бензола в химии было окончательно принято лишь к началу 20 столетия, тогда как элементный состав вещества определили еще в 1825 году, выделив его из каменноугольной смолы, которую получали как побочный продукт коксования угля.

Бензол вместе с толуолом, антраценом, фенолом, нафталином в настоящее время относят к ароматическим углеводородам. В нашей статье мы рассмотрим, каковы же этого углеводорода, выясним физические свойства, например, такие как растворимость, температуру кипения и плотность бензола, а также обозначим области применения соединения в промышленности и сельском хозяйстве.

Что такое арены?

Химия органических соединений классифицирует все известные вещества на несколько групп, например, такие как алканы, алкины, спирты, альдегиды и т.д. Главной отличительной чертой каждого класса веществ является наличие определенных типов связей. Молекулы предельных углеводородов содержат только сигма-связь, вещества ряда этилена - двойную, у алкинов связь тройная. К какому же классу относится бензол?

Строение бензола указывает на присутствие в его молекуле ароматического кольца, названного бензольным ядром. Все соединения органической природы, содержащие одно или несколько таких колец в составе своих молекул, относят к классу аренов (ароматических углеводородов). Кроме бензола, который мы сейчас рассматриваем, в эту группу входит большое количество очень важных веществ, каких как толуол, анилин, фенол и другие.

Как решили проблему строения молекулы ароматического углеводорода

Вначале ученые установили выразив его формулой С 6 Н 6 , согласно которой относительная молекулярная масса бензола равна 78. Затем было предложено несколько вариантов структурных формул, но ни одна из них не соответствовала реальным физическим и химическим свойствам бензола, наблюдаемым химиками в лабораторных опытах.

Прошло около сорока лет, прежде чем немецкий исследователь А. Кекуле представил свою версию структурной формулы, которую имеет молекула бензола. В ней присутствовали три двойных связи, указывающие на возможный непредельный характер химических свойств углеводорода. Это вступало в противоречие с действительно существующим характером взаимодействий соединения формулы С 6 Н 6 с другими веществами, например, с бромом, нитратной кислотой, хлором.

Только после выяснения электронной конфигурации молекулы бензола в его структурной формуле появилось обозначение бензольного ядра (кольца), а сама она до сих пор используется в курсе органической химии.

Электронная конфигурация молекулы С6Н6

Какую же пространственную структуру имеет бензол? Строение бензола окончательно было подтверждено благодаря двум реакциям: тримеризации ацетилена с образованием бензола и его восстановления водородом до циклогексана. Оказалось, что атомы углерода, соединяясь между собой, образуют плоский шестиугольник и находятся в состоянии sp 2 -гибридизации, используя на связи с другими атомами три из четырех своих валентных электронов.

Оставшиеся шесть свободных p-электронов располагаются перпендикулярно плоскости молекулы. Перекрываясь между собой, они формируют общее электронное облако, названное бензольным ядром.

Природа полуторной химической связи

Хорошо известно, что физические и химические свойства соединений зависят, прежде всего, от их внутреннего строения и типов химических связей, возникающих между атомами. Рассмотрев электронную структуру бензола, можно прийти к выводу, что его молекула не имеет ни простых, ни двойных связей, которые можно увидеть в формуле Кекуле. Наоборот, между атомами углерода все химические связи равноценны. Более того, общее π-электронное облако (всех шести атомов С) образует химический тип связи, названный полуторной, или ароматической. Именно этот факт обуславливает специфические свойства бензольного кольца и, как следствие, характер химического взаимодействия ароматических углеводородов с другими веществами.

Физические свойства

При понижении температуры жидкость переходит в твердую фазу, и бензол превращается в белую кристаллическую массу. Она легко плавится при температуре 5,5 °С. В обычных условиях вещество представляет собой бесцветную жидкость со своеобразным запахом. Его температура кипения составляет 80,1 °С.

Плотность бензола меняется в зависимости от изменения температуры. Чем температура выше, тем плотность меньше. Приведем несколько примеров. При температуре 10° плотность составляет 0,8884 г/мл, а при 20° - 0,8786 г/мл. Молекулы бензола неполярные, поэтому вещество нерастворимо в воде. Зато само соединение является хорошим например, для жиров.

Особенности химических свойств бензола

Экспериментально установлено, что ароматическое бензольное ядро устойчиво, т.е. характеризуется высокой стойкостью к разрыву. Этот факт служит объяснением склонности вещества к протеканию реакций по типу замещения, например, с хлором при обычных условиях, с бромом, с нитратной кислотой в присутствии катализатора. Нужно отметить высокую устойчивость бензола к действию окислителей, таких как перманганат калия и бромная вода. Это еще раз подтверждает факт отсутствия в молекуле арена двойных связей. Жесткое окисление, иначе называемое горением, характерно для всех ароматических углеводородов. Так как процентное содержание углерода в молекуле С 6 Н 6 велико, горение бензола сопровождается коптящим пламенем с образованием частиц сажи. В результате реакции образуется углекислый газ и вода. Интересным представляется вопрос: может ли ароматический углеводород вступать в реакции присоединения? Рассмотрим его далее более подробно.

К чему приводит разрыв бензольного ядра?

Напомним, что в молекулах аренов присутствует полуторная связь, возникшая в результате перекрывания шести р-электронов атомов карбона. Она и лежит в основе бензольного ядра. Чтобы его разрушить и провести реакцию присоединения, необходим ряд специальных условий, например, таких как световое облучение, высокие температура и давление, катализаторы. Смесь бензола и хлора вступает в реакцию присоединения под действием ультрафиолетового излучения. Продуктом такого взаимодействия будет гексахлорциклогексан - токсическое кристаллическое вещество, применяемое в сельском хозяйстве в качестве инсектицида. В молекуле гексахлорана уже нет бензольного ядра, по месту его разрыва произошло присоединение шести атомов хлора.

Области практического применения бензола

В различных отраслях промышленности вещество широко используется как растворитель, а также как сырье для дальнейшего получения лаков, пластических масс, красителей, в качестве добавки к моторному топливу. Еще больший диапазон применения имеют производные бензола и его гомологи. Например, нитробензол С 6 Н 5 NO 2 является основным реагентом для получения анилина. В результате с хлором в присутствии хлорида алюминия в качестве катализатора получают гексахлорбензол. Его применяют для предпосевной обработки семян, а также используют в деревообрабатывающей промышленности для защиты древесины от вредителей. Нитрованием гомолога бензола (толуола) получают взрывчатое вещество, известное как тротил или тол.

В данной статье мы рассмотрели такие свойства ароматического соединения, как реакции присоединения и замещения, горение бензола, а также определили области его применения в промышленности и сельском хозяйстве.


БЕНЗОЛ

Бензо́л (C6H6) - органическое химическое соединение, бесцветная жидкость с приятным сладковатым запахом. Ароматический углеводород. Бензол входит в состав бензина, широко применяется в промышленности, является исходным сырьём для производства лекарств, различных пластмасс, синтетической резины, красителей. Хотя бензол входит в состав сырой нефти, в промышленных масштабах он синтезируется из других её компонентов.

Биологическое действие

При непродолжительном вдыхании паров бензола не возникает немедленного отравления, поэтому до недавнего времени порядок работ с бензолом особо не регламентировался. В больших дозах бензол вызывает тошноту и головокружение, а в некоторых тяжёлых случаях отравление может повлечь смертельный исход. Пары бензола могут проникать через неповрежденную кожу. Если организм человека подвергается длительному воздействию бензола в малых количествах, последствия также могут быть очень серьёзными. В этом случае хроническое отравление бензолом может стать причиной лейкемии (рака крови) и анемии (недостатка гемоглобина в крови). Токсичен, cильный канцероген.


Применение

Бензол входит в десятку важнейших веществ химической промышленности.

Большую часть получаемого бензола используют для синтеза других продуктов:
  • около 50 % бензола превращают в этилбензол (алкилирование бензола этиленом);

  • около 25 % бензола превращают в кумол (алкилирование бензола пропиленом);

  • приблизительно 10-15 % бензола гидрируют в циклогексан;

  • около 10 % бензола расходуется на производство нитробензола;

  • 2-3 % бензола превращают в линейные алкилбензолы;

  • приблизительно 1 % бензола используется для синтеза хлорбензола.

В существенно меньших количествах бензол используется для синтеза некоторых других соединений. Изредка и в крайних случаях, ввиду высокой токсичности, бензол используется в качестве растворителя. Кроме того, бензол входит в состав бензина. Ввиду высокой токсичности его содержание новыми стандартами ограничено введением до 1 %.

Производные бензола


Этилбензол


Этилбензол - органическое вещество класса углеводородов.

Свойства

Бесцветная жидкость; почти нерастворим в воде, растворяется в спирте, бензоле, эфире, четыреххлористом углероде.

Получение

Этилбензол содержится в нефти и каменноугольной смоле. В промышленности получают главным образом из бензола и этилена (по реакции Фриделя - Крафтса). Второй по значимости метод - выделение из С8-фракции продуктов риформинга.

Применение

При пропускании паров этилбензола над катализаторами образуется стирол, являющийся сырьём при производстве важных промышленных продуктов - некоторых видов пластмасс (см. Полистирол) и синтетических каучуков. Этилбензол используют также в органическом синтезе, например для получения ацетофенона жидкофазным каталитическим окислением, как растворитель и компонент высокооктановых бензинов.


Стирол C8H8 (фенилэтилен, винилбензол) - бесцветная жидкость со специфическим запахом. Практически нерастворима в воде, хорошо растворима в органических растворителях, хороший растворитель полимеров.

Получение

Большую часть стирола (около 85 %) в промышленности получают дегидрированием этилбензола при температуре 600-650°С, атмосферном давлении и разбавлении перегретым водяным паром в 3 - 10 раз. Используются оксидные железо-хромовые катализаторы с добавкой карбоната калия.

Стирол применяют почти исключительно для производства полимеров. Многочисленные виды полимеров на основе стирола включают полистирол, модифицированные стиролом полиэфиры, пластики АБС (акрилонитрил-бутадиен-стирол) и САН (стирол-акрилонитрил).


Полистирол

Полистирол

Полистирол - продукт полимеризации стирола (винилбензола) относится к полимерам класса термопластов.

Имеет химическую формулу вида: [-СН2-С(С6Н5)Н-]n-

Промышленное производство полистирола основано на радикальной полимеризации стирола. Различают 3 основных способа его получения:
  • Эмульсионный (ПСЭ),

  • Суспензионный (ПСС),

  • Блочный или получаемый в массе (ПСМ).



Применение

Применение

Широкое применение полистирола (ПС) и пластиков на его основе базируется на его невысокой стоимости, простоте переработки и огромном ассортименте различных марок. Наиболее широкое применение (более 60% производства полистирольных пластиков) получили ударопрочные полистиролы, представляющие собой сополимеры стирола с бутадиеновым и бутадиен-стирольным каучуком. В настоящее время созданы и другие многочисленные модификации сополимеров стирола.

Основные методы переработки: экструзия, литьё под давлением. Диапазон температур переработки лежит в пределах 190-240 °С. Из полистиролов производят широчайшую гамму изделий, которые в первую очередь применяются в бытовой сфере деятельности человека (одноразовая посуда, упаковка, детские игрушки и т. д.), а также строительной индустрии (теплоизоляционные плиты, несъемная опалубка, сандвич панели), облицовочные и декоративные материалы (потолочный багет, потолочная декоративная плитка, полистирольные звукопоглощающие элементы, клеевые основы, полимерные концентраты), медицинское направление (части систем переливания крови, чашки Петри, вспомогательные одноразовые инструменты).

Вспенивающийся полистирол после высокотемпературной температурной обработки водой или паром может использоваться в качестве фильтрующего материала (фильтрующей насадки) в колонных фильтрах при водоподготовке и очистке сточных вод.

Высокие электротехнические показатели полистирола в области сверхвысоких частот позволяют применять его в производстве: диэлектрических антенн, опор коаксиальных кабелей. Могут быть получены тонкие пленки (до 100 мкм), а в смеси с со-полимерами (стирол-бутадиен-стирол) до 20 мкм, которые также успешно применяются в упаковочной и кондитерской индустрии, а также производстве конденсаторов.

Ударопрочный полистирол и его модификации получили широкое применение в сфере бытовой техники и электроники (корпусные элементы бытовых приборов).


Кумо́л - изопропилбензол C6H5CH(CH3)2, ароматическое органическое соединение, бесцветная горючая жидкость.

Физико-химические свойства

Бесцветная горючая жидкость, практически нерастворимая в воде (менее 0,01 %), смешивается со спиртом, эфиром, бензолом.

Способ получения

Жидкофазное (катализатор: хлорид алюминия(III)) или парофазное (катализатор: цеолиты, фосфорная кислота на кизельгуре) алкилирование бензола пропиленом.

Применение

Кумол является промежуточным продуктом при получении фенола и ацетона одним из промышленных способов.

Побочными продуктами разложения являются α-метилстирол, ацетофенон, диметилфенилкарбинол.





Ацето́н (диметилкето́н, систематическое наименование: пропано́н-2) - простейший представитель кетонов. Формула: CH3-C(O)-CH3. Бесцветная легкоподвижная летучая жидкость с характерным запахом. Он полностью смешивается с водой и большинством органических растворителей. Ацетон хорошо растворяет многие органические вещества (ацетилцеллюлозу и нитроцеллюлозу, жиры, воск, резину и др.), а также ряд солей (хлорид кальция, иодид калия). Является одним из метаболитов, производимых человеческим организмом.

Применение

Сырьё для синтеза многих важных химических продуктов: уксусного ангидрида, кетена, диацетонового спирта, окиси мезитила, метилизобутилкетона, метилметакрилата, дифенилпропана, изофорона, бифенола А и др.;

(CH3)2CO + 2 C6H5OH → (CH3)2C(C6H4OH)2 + H2O

Широко применяется при синтезе поликарбонатов, полиуретанов и эпоксидных смол.

Лабораторное применение

В органической химии в качестве полярного апротонного растворителя, в частности в реакции алкилирования

ArOH + RHal + K2CO3 → ArOR + KHal + KHCO3

для окисления спиртов в присутствии алкоголятов алюминия по Оппенауэру

RR`CHOH + CH3C(O)CH3 → RR`C=O + CH3CH(OH)CH3

Для приготовления охлаждающих бань в смеси с «сухим льдом» и жидким азотом до температуры−78 C.

Для мытья химической посуды, благодаря низкой цене, малой токсичности высокой летучести и легкой растворимости в воде.

Для быстрой сушки посуды и неорганических веществ


Фено́л (оксибензол, устар. карболовая кислота) C6H5OH - бесцветные игольчатые кристаллы, розовеющие на воздухе из-за окисления, приводящего к образованию окрашенных веществ. Обладают специфическим запахом гуаши. Растворим в воде (6 г на 100 г воды), в растворах щелоче́й, в спирте, в бензоле, в ацетоне. 5 % раствор в воде-антисептик, широко применяемый в медицине.

По данным на 2009 год мировое потребление фенола имеет следующую структуру:

    44 % фенола расходуется на производство бисфенола А, который, в свою очередь, используется для производства поликарбона и эпоксидных смол;

  • 30 % фенола расходуется на производство фенолформальдегидных смол;

  • 12 % фенола гидрированием превращается в циклогексанол, используемый для получения искусственных волокон - нейлона и капрона;

  • остальные 14 % расходуются на другие нужды, в том числе на производство антиоксидантов (ионол), неионогенных ПАВ - полиоксиэтилированных алкилфенолов (неонолы), других фенолов (крезолов), лекарственных препаратов (аспирин), антисептиков (ксероформа) и пестицидов.

  • 1,4% фенола применяется в медицине(орасепт), как обезболивающее и антисептическое средство.

Фенол и его производные обуславливают консервирующие свойства коптильного дыма.

Нитробензол

Нитробензол - токсичное органическое вещество, имеющее миндальный запах. Формула C6H5NO2. Внешний вид - ярко-желтые кристаллы или маслянистая жидкость, не растворимая в воде.

Применение

Применяется, как растворитель и мягкий окислитель. В основном используется, как полупродукт для производства анилина.

Исходное сырьё в производстве анилина, ароматических азотсодержащих соединений (бензидин, хинолин, азобензол), растворитель эфиров целлюлозы, компонент полировальных составов для металлов.


Анили́н (фениламин) - органическое соединение с формулой С6H5NH2, простейший ароматический амин. Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит.

В настоящий момент в мире основная часть (85 %) производимого анилина используется для производства метилдиизоцианатов, (MDI) используемых затем для производства полиуретанов. Анилин также используется при производстве искусственных каучуков (9 %), гербицидов (2 %) и красителей (2 %).

В России он в основном применяется в качестве полупродукта в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты), но в связи с ожидаемым ростом производства полиуретанов возможно значительное изменение картины потребителей в среднесрочной перспективе.


Лекарственные препараты

Сульфаниловая кислота HO3S-C6H4- NH2- твердое вещество, выпадающее при кристаллизации из горячей воды в виде блестящих чешуек. Важнейшее производное сульфаниловой кислоты – её амид Н2N- C6H4-SO2- NH2. Это бесцветное кристаллическое вещество, малорастворимое в холодной воде и хорошо - в горячей, является основой важного класса лекарственных веществ – сульфамидных препаратов. Их лекарственное действие открыто в начале 30-х годов. С тех пор синтезировано более шести тысяч соединений этой группы. Сульфамидные препараты широко применяют при лечении различных инфекционных заболеваний. Например, норсульфазол, сульфадимезин, этазол, стрептоцид применяют для лечения заболеваний дыхательных путей, фталазол – при лечении желудочно-кишечных инфекций.


Хлорбензол

Хлорбензол (фенилхлорид) - ароматическое органическое соединение, имеющее формулу C6H5Cl, бесцветная горючая жидкость с характерным запахом.

Получение

Хлорбензол был открыт в 1851 году как продукт реакции фенола с хлоридом фосфора(V) и так он обычно получается в лаборатории. В промышленности хлорбензол получают хлорированием бензола при 80-85 °C в реакторах колонного типа, заполненых железными кольцами:

Выделяют его ректификацией после промывки, нейтрализации и азеотропной сушки реакционной массы.

Применение

Хлорбензол является важным органическим растворителем, кроме того он применяется в органическом синтезе, например он применяется в синтезе пестицидов (например ДДТ может быть получен реакцией его с хлоралем (трихлорацетальдегидом)). Также применяется в производстве фенола:

C6H5Cl + NaOH → C6H5OH + NaCl

Хлорбензол также является полупродуктом в производстве дихлорбензолов и некоторых красителей.


Инсектициды




    Инсектици́ды (от лат. insectum - насекомое и лат. caedo - убиваю) - химические препараты для уничтожения вредных насекомых. Инсектициды различны по химическому составу: хлорорганические (ДДТ, гексахлоран и др.), фосфорорганические (тиофос, карбофос, метилмеркаптофос, дихлофос, диазинон и др.), производные карбаминовой кислоты (метилкарбамат), природные пиретрины и синтетические пиретроиды, препараты, содержащие мышьяк (арсениты кальция и натрия, арсенат кальция), препараты серы, минеральные масла, яды растительного происхождения, содержащие алкалоиды (анабазин, никотин и др.)


Ароматические углеводороды составляют важную часть циклического ряда органических соединений. Простейшим представителем таких углеводородов является бензол. Формула этого вещества не только выделила его из ряда остальных углеводородов, но и дала толчок в развитии нового направления органической химии.

Открытие ароматических углеводородов

Ароматические углеводороды были открыты в начале 19 века. В те времена наиболее распространенным топливом для уличного освещения являлся светильный газ. Из его конденсата великий английский физик Майкл Фарадей выделил в 1825 году три грамма маслянистого вещества, подробно описал его свойства и назвал так: карбюрированный водород. В 1834 году немецкий ученый, химик Митчерлих, нагревая бензойную кислоту с известью, получил бензол. Формула, по которой протекала данная реакция, представлена ниже:

C6 H5 COOH + CaO сплавление C6 H6 + CaCO3.

В то время редкую бензойную кислоту получали из смолы бензое, которую могут выделять некоторые тропические растения. В 1845 году новое соединение было обнаружено в каменноугольной смоле, которая являлась вполне доступным сырьем для получения нового вещества в промышленных масштабах. Другим источником бензола является нефть, полученная в некоторых месторождениях. Чтобы обеспечить потребность промышленных предприятий в бензоле, его получают также путем ароматизации некоторых групп ациклических углеводородов нефти.

Современный вариант названия предложил немецких ученый Либих. Корень слова «бензол» следует искать в арабских языках - там оно переводится как «ладан».

Физические свойства бензола

Бензол является бесцветной жидкостью со специфическим запахом. Это вещество кипит при температуре 80,1 о С, отвердевает при 5,5 о С и превращается при этом в белый кристаллический порошок. Бензол практически не проводит тепло и электричество, плохо растворяется в воде и хорошо - в различных маслах. Ароматические свойства бензола отражают суть структуры его внутреннего строения: относительно устойчивое бензольное ядро и неопределенный состав.

Химическая классификация бензола

Бензол и его гомологи - толуол и этилбензол - представляют собой ароматический ряд циклических углеводородов. Строение каждого из этих веществ содержит распространенную структуру, названную бензоловым кольцом. Структура каждого из вышеперечисленных веществ содержит особую циклическую группировку, созданную шестью атомами углерода. Она получила название бензольного ароматического ядра.

История открытия

Установление внутреннего строения бензола растянулось на несколько десятилетий. Основные принципы строения (кольцевая модель) были предложены в 1865 году химиком А. Кекуле. Как рассказывает легенда, немецкий ученый увидел формулу этого элемента во сне. Позднее было предложено упрощенное написание структуры вещества, называемого так: бензол. Формула этого вещества представляет собой шестиугольник. Символы углерода и водорода, которые должны быть расположены в углах шестиугольника, опускаются. Таким образом, получается простой правильный шестиугольник с чередующимися одинарными и двойными линиями на сторонах. Общая формула бензола представлена на рисунке ниже.

Ароматические углеводороды и бензол

Химическая формула этого элемента позволяет утверждать, что для бензола реакции присоединения нехарактерны. Для него, как и для других элементов ароматического ряда, типичны реакции замещения атомов водорода в бензольном кольце.

Реакция сульфирования

При обеспечения взаимодействия концентрированной серной кислоты и бензола, повышая температуру реакции, можно получить бензосульфокислоту и воду. Структурная формула бензола в этой реакции выглядит следующим образом:

Реакция галогенирования

Бром или хром в присутствии катализатора взаимодействует с бензолом. При этом получаются галогенопроизводные. А вот реакция нитрирования проходит с использованием концентрированной азотной кислоты. Конечным итогом реакции является азотистое соединение:

С помощью нитрирования получают известное всем взрывчатое вещество - тротил, или тринитотолуол. Мало кто знает, что в основе тола лежит бензол. Многие другие нитросоединения на основе бензольного кольца также могут быть использованы как взрывчатые вещества

Электронная формула бензола

Стандартная формула бензольного кольца не совсем точно отражает внутренне строение бензола. Согласно ей, бензол должен обладать тремя локализованными п-связями, каждая из которых должна взаимодействовать с двумя атомами углерода. Но, как показывает опыт, бензол не обладает обычными двойными связями. Молекулярная формула бензола позволяет увидеть, что все связи в бензольном кольце равноценны. Каждая из них имеет длину около 0,140 нм, что является промежуточным значением между длиной стандартной простой связи (0,154 нм) и двойной этиленовой связи (0,134 нм). Структурная формула бензола, изображенная с чередованием связей, несовершенна. Более правдоподобна трехмерная модель бензола, которая выглядит так, как показано на картинке ниже.

Каждый из атомов бензольного кольца находится в состоянии sp 2 -гибридизации. Он затрачивает на образование сигма-связей по три валентных электрона. Эти электроны охватывают два соседних атома углевода и один атом водорода. При этом и электроны, и связи С-С, Н-Н находятся в одной плоскости.

Четвертый валентный электрон образует облако в форме объемной восьмерки, расположенное перпендикулярно плоскости бензольного кольца. Каждое такое электронное облако перекрывается над плоскостью бензольного кольца и непосредственно под ней с облаками двух соседних атомов углерода.

Плотность облаков п-электронов этого вещества равномерно распределена между всеми углеродными связями. Таким путем образуется единое кольцевое электронное облако. В общей химии такая структура получила название ароматического электронного секстета.

Равноценность внутренних связей бензола

Именно равноценностью всех граней шестиугольника объясняется выравненность ароматических связей, обуславливающих характерные химические и физические свойства, которыми обладает бензол. Формула равномерного распределения п-электронного облака и равноценность всех его внутренних связей показана ниже.

Как видно, вместо чередующихся одинарных и двойных черт внутреннюю структуру изображают в виде окружности.

Сущность внутренней структуры бензола дает ключ к пониманию внутреннего строения циклических углеводородов и расширяет возможности практического применения этих веществ.

Применение бензола.

1. Бензол служит исходным веществом для синтеза очень многих органических соединений.

2. Реакцией нитрования получают нитробензол C 6 H 5 NO 2 , хлорированием бензола – хлорбензол С 6 Н 5 Сi (растворитель) и другие хлорпроизводные.

3. Бензол используется как исходный продукт при синтезе лекарственных и душистых веществ, разнообразных красителей, мономеров для синтеза высокомолекулярных соединений и т. д.

4. Он применяется также в качестве растворителя и как добавка к моторному топливу в целях улучшения его свойств.

5. Хлорпроизводные бензола и других углеводородов используются в сельском хозяйстве в качестве химических средств защиты растений.

6. Так, продукт замещения в бензоле атомов водорода хлором – гексахлорбензол C 6 Cl 6 применяется для сухого протравливания семян пшеницы и ржи против твердой головни.

7. Из галогенопроизводных других углеводородов можно назвать гексахлорбутадиен С 4 Сl 6 , аналогичный по строению бутадиену-1,3, необходимый для борьбы с филлоксерой на виноградниках.

8. В сельском хозяйстве используется много других ядохимикатов для борьбы с насекомыми.

9. Также бензол используется для уничтожения сорняков, защиты растений от болезней и т. д.

10. Применение ядохимикатов требует хорошего знания их свойств и строгого следования установленным правилам их использования, так как при неправильном обращении они небезопасны для человека и могут нанести большой ущерб окружающей природе.

Получение бензола.

1. Важный источник получения бензола – коксование каменного угля.

2. В процессе коксования – сильного нагревания угля без доступа воздуха – образуется много летучих продуктов, из которых наряду с другими веществами извлекается бензол.

3. Н.Д. Зелинский показал, что бензол легко образуется из циклогексана при каталитическом воздействии платины или палладия и температуре около 300 °C.

4. Было установлено также, что при соответствующих катализаторах и нагревании гексан может превращаться в бензол.

5. Реакции получения бензола из предельных углеводородов и циклопарафинов приобрели сейчас в связи с возрастающей потребностью в этом веществе большое практическое значение.

Особенности теории электронного строения.

1. Все атомы углерода в молекуле бензола находятся в состоянии sp 2 -гибридизации.

2. Три гибридных электронных облака каждого атома углерода, имеющие форму вытянутых объемных восьмерок, образуют в плоскости кольца две δ-связи с соседними атомами углерода и одну π-связь с атомом водорода; углы между этими тремя связями равны 120°. Негибридная p-орбиталь располагается перпендикулярно плоскости кольца.

30. Гомологи бензола

Строение гомологов бензола:

1) бензол, как и другие углеводороды, начинает соответствующий гомологический ряд;

2) его гомологи рассматриваются как продукты замещения одного или нескольких атомов водорода в молекуле бензола на различные углеводородные радикалы;

3) атомы углерода в формулах нумеруются и при помощи цифр, в название вещества указывается положение замещающих групп.

Химические свойства гомологов бензола:

1) при нитровании в жестких условиях в молекулу бензола и толуола С 6 Н 5 -СН 3 можно ввести три нитрогруппы;

2) толуол нитрируется несколько легче, чем бензол;

3) при этом образуется 2,4,6-тринитротолуол – взрывчатое вещество, которое называется толом или тротилом;

4) большая реакционная способность бензольного ядра в положениях 2,4,6 объясняется влиянием на него радикала – СН 3 .

Толуол можно рассматривать не только как бензол, в молекуле которого атом водорода замещен на метильную группу, но и как метан, в молекуле которого атом водорода заменен ароматическим радикалом фенилом С 6 Н 5 .

Метан очень устойчив к действию окислителей.

Если же раствор перманганата калия мы добавим к толуолу и смесь нагреем, то заметим, что фиолетовый раствор постепенно обесцвечивается. Это происходит потому, что группа – СН 3 в толуоле подвергается окислению;

5) при действии раствора перманганата калия на толуол метильная группа окисляется в карбоксильную, образуется бензойная кислота.

На опытах можно убедиться, что: а) в толуоле метильная группа влияет на бензольное ядро, облегчая течение реакций замещения (в положениях 2, 4, 6); б) бензольное ядро влияет на метильную группу, обусловливая меньшую устойчивость ее к действию окислителей.

В основе этого явления лежит влияние друг на друга электронных структур атомов;

6) повышение реакционной способности бензольного ядра в самом общем виде можно объяснить так.

Метильная группа, находясь в соединении, смещает от себя электроны связи. Смещая в толуоле электронную пару к бензольному ядру, она нарушает равномерное расположение в нем р-электронного облака;

7) в положениях 2,4,6 возрастает электронная плотность, эти места и подвергаются «атаке» реагентами;

8) они могут реагировать, например, с галогенами (по месту атомов водорода в бензольном ядре и в боковой цепи), присоединять водород и т. п.

Применение и получение гомологов бензола.

1. Гомологи бензола используются в качестве растворителей.

2. Также гомологи бензола используются для производства красителей, лекарств, взрывчатых, душистых веществ и т. д.