Главная · Горло · Это интересно: как появилась паровая турбина. Удивительная паровая турбина

Это интересно: как появилась паровая турбина. Удивительная паровая турбина

— это тепловой двигатель, тепловая энергия пара в котором преобразуется в механическую работу. Вместе с гидротурбинами огромное значение для развития мировой энергетики имело изобретение и широкое применение паровых турбин, которые являются основным двигателем тепловых (ТЭС) и атомных электростанций (АЭС). Принцип действия паровых турбин схож с гидравлическими, разница лишь в том, что в первом случае турбину приводила в действие струя разогретого пара, во втором — струя воды. Паровая турбина оказалась проще, экономичнее и удобнее, чем паровая машина Уатта. Изобретатели давно пытались создать машину (паровую турбину), где струя пара напрямую бы вращала рабочее колесо. При этом, скорость вращения колеса должна быть очень высокой за счет большой скорости струи пара.

В 1883 году Лавалю удалось создать первую паровую машину, которая представляла легкое колесо с лопатками. Через поставленные под углом сопла на лопатки направляли пар, который давил на них и раскручивал колесо. В 1889 году Лаваль усовершенствовал конструкцию, применив сопло, которое расширялось на выходе. Благодаря этому увеличилась скорость пара и, соответственно, скорость вращения ротора. Полученная струя направлялась на один ряд лопаток, которые были насажены на диск. Давление пара и число сопел определяли мощность турбины, работающей по активному принципу. Если отработанный пар не попадал в воздух, а направлялся в конденсатор, где при пониженном давлении сжижался, то мощность турбины оказывалась наивысшей. Турбина Лаваля получила всеобщее признание, она давала большие выгоды при соединении с машинами, имеющими высокую скорость (сепараторы, пилы, центробежные насосы). Использовали ее и в качестве привода для электрогенератора, правда, только через редуктор (из-за ее высокой скорости).

В 1884 году английский изобретатель Парсонс запатентовал многоступенчатую реактивную турбину, специально созданную им для приведения в действие электрогенератора. При меньшей скорости вращения энергия пара здесь использовалась максимально благодаря тому, что пар, проходя через 15 ступеней, расширялся постепенно. Каждая ступень имела пару венцов лопаток. Неподвижным был один венец с направляющими лопатками, которые крепились на корпусе турбины. Второй — подвижный с рабочими лопатками на диске, который был насажен на вращающийся вал. Лопатки венцов (неподвижных и подвижных) сориентированы в противоположных направлениях. Это была первая паровая турбина, которая начала с успехом применяться в промышленности.

В 1889 году уже 300 турбин применяли для получения электроэнергии, в 1899 году появилась первая электростанция с турбинами Парсонса. В 1894 году был спущен на воду первый пароход «Turbinia» с приводом от паровой турбины. Вскоре паровые турбины начали устанавливать на быстроходных судах. Французский ученый Рато вывел комплексную теорию турбомашин на основе имевшегося опыта. Со временем турбина Парсонса уступила место компактным активно-реактивным турбинам. Хотя и сегодня паровые турбины в основном сохранили черты турбины Парсонса.

Турбина представляет собой двигатель, в котором энергия воды, пара и газа преобразовывается в механическую работу посредством вращающего движения ротора. В турбине струя воды или пара воздействует на специальные элементы — лопатки, и приводит их в движение. Лопатки располагаются по всей длине окружности ротора.

В зависимости от направления потока воды, пара или газа через турбину они подразделяются на осевые — когда поток движется параллельно оси турбины, и радиальные — поток движется перпендикулярно оси.

Турбина используется на наземном, воздушном и морском транспорте в качестве составной части двигателя, которая увеличивает его мощность. Также турбина может применяться и на электростанциях, где она служит в качестве привода электрического генератора.

С давних пор проводились неоднократные попытки создания различных вариантов турбин. До наших дней даже дошло описание паровой турбины, сконструированной Героном Александрийским в 1 веке нашей эры. Но только в конце 19 века, когда уровень термодинамики, металлургии и машиностроения достиг необходимых высот, Чарлз Парсонс и Густаф Лаваль независимо друг от друга изобрели первые паровые турбины, пригодные для производства.

Ниже в хронологическом порядке представлена краткая история создания различных типов турбин.

I век нашей эры — самое раннее дошедшее до наших дней документальное свидетельство создания паровой турбины Героном Александрийским. К сожалению, данное изобретение долго рассматривалось в качестве игрушки и полный потенциал данной турбины так и не был изучен до конца.

1500 — Леонардо да Винчи рассматривал в своих чертежах так называемый «дымовой зонт», принцип работы которого заключался в следующем: огонь нагревал воздух, который затем поднимался через соединенные друг с другом лопасти. Эти лопасти вращали обычный вертел для жарки.

1551 — Таги-аль-Дин сконструировал паровую турбину, использовавшуюся в качестве источника питания самовращающегося вертела.

1629 — итальянский инженер Джованни Бранк создал мельницу, которая работала за счет того, что сильная струя пара вращала турбину и вращательное движение передавалось от турбины к шестеренке — ведомому механизму.

1678 — фламандский ученый Фердинанд Вербист разработал первое самоходное транспортное средство на основе паровой машины. Однако нет никаких доказательств, подтверждающих, что оно было построено на самом деле.

1791 — англичанин Джон Барбер разработал настоящую газовую турбину для приведения в движение безлошадной повозки и получил патент на свое изобретение.

1872 — венгерский изобретатель Франц Столц создал первый газотурбинный двигатель.

1890 — шведский инженер и изобретатель Густаф де Лаваль изобрёл сопло, которое предназначалось для подачи пара в турбину. Впоследствии оно получило его имя и используется по сей день в том же назначении.

1894 — англичанин Чарльз Парсонс получил патент на идею корабля — парохода, который приводится в движение паровой турбиной. Этот принцип тяги широко используется и в наши дни.

1895 — на электростанции в Кембридже были установлены три четырёхтонных генератора радиального потока Парсонса мощностью 100 кВт, которые использовались для электрического освещения городских улиц.

1903 — норвежец Эджидиус Эллинг построил первую газовую турбину, способную вырабатывать ещё больше энергии, чем было необходимо для её работы. В то время это рассматривалось как серьезное достижение, ведь о термодинамике тогда ещё не имели никакого представления. Такая газовая турбина вырабатывала 11 л.с. с использованием вращающихся компрессоров.

1913 — Никола Тесла получил патент на свою турбину Тесла, основанную на эффекте пограничного слоя.

1918 — компания General Electric, являющаяся в настоящее время одним из ведущих производителей турбин, запустила собственное производство для дальнейших продаж газовых турбин.

1920 — английский инженер Алан Арнольд Гриффит изменил теорию протекания газового потока в теорию течения газа по аэродинамической поверхности, которая была более формализована и применима к турбинам.

1930 — английский инженер-конструктор Фрэнк Уиттл получил патент на универсальную газовую турбину, предназначенную для реактивного движения. Двигатель с такой турбиной впервые был использован в апреле 1937 г.

1934 — аргентинский инженер Рауль Патерас Пескара запатентовал новое изобретение — поршневой двигатель, являющийся генератором для газовой турбины.

1936 — немецкие конструкторы Макс Хан и Ханс фон Охайн разработали и запатентовали в Германии собственный новый двигатель с реактивной турбиной. Они разрабатывали его в то же время, что и Фрэнк Уиттл в Великобритании.

У. Гаррет Скейф

W. Garrett Scaife, Trinity Colledge, Dublin

К концу прошлого столетия промышленная революция достигла поворотной точки своего развития. За полтора века до этого паровые двигатели значительно усовершенствовались - они могли работать от любых видов горючего и приводить в движение самые разнообразные механизмы. Большое влияние на улучшение конструкции паровых машин оказало такое техническое достижение, как изобретение динамо-машины, которая позволяла получать электроэнергию в больших количествах. По мере того как росли потребности человека в энергии, увеличивались и размеры паровых машин, пока их габариты не стали сдерживаться ограничениями на механическую прочность. Для дальнейшего развития промышленности требовался новый способ получения механической энергии.

Такой способ появился в 1884 г., когда англичанин Чарлз Алджернон Парсонс (1854-1931) изобрел первый пригодный для промышленного применения турбогенератор. Десятью годами позже Парсонс занялся изучением возможности применения своего изобретения для средств передвижения. Несколько лет упорного труда увенчались успехом: оснащенный турбиной пароход "Turbinia" развивал скорость 35 узлов - больше, чем любой корабль Королевского флота. По сравнению с поршневыми паровыми машинами, использующими возвратно-поступательное движение поршня, турбины более компактны и проще устроены. Поэтому со временем, когда мощность и к.п.д. турбин значительно увеличи

лись, они вытеснили двигатели прежних конструкций. В настоящее время во всем мире паровые турбины используются на тепловых электростанциях в качестве приводов генераторов электрического тока. Что же касается использования паровых турбин в качестве двигателей для пассажирских судов, то здесь безраздельному их господству был положен конец в первой половине нашего столетия, когда широкое распространение получили дизели. Современная паровая турбина унаследовала многие особенности первой машины, изобретенной Парсонсом.

Реактивныи и активный принципы, лежащие в основе действия паровой турбины. Первый из них был использован в устройстве "эолипила" (а) , придуманного Героном Александрийским: сфера, в которой находится пар, вращается за счет действия сил реакции, возникающих при выходе пара из пустотелых трубок. Во втором случае (b ) струя пара, направленная на лопатки, отклоняется и благодаря этому колесо вращается. Лопатки турбины (с ) также отклоняют струю пара; кроме того, проходя между лопатками, пар расширяется и ускоряется, и возникающие при этом силы реакции толкают лопатки.

В основе действия паровой турбины лежат два принципа создания окружного усилия на роторе, известных с давних времен, - реактивный и активный. Еще в 130 г. до н.э. Герон Александрийский изобрел устройство под названием "эолипил". Оно представляло собой наполнявшуюся паром полую сферу с двумя Г-образными соплами, расположенными с противоположных сторон и направленными в разные стороны. Пар вытекал из сопел с большой скоростью, и за счет возникающих сил реакции сфера начинала вращаться.

Второй принцип основан на преобразовании потенциальной энергии пара в кинетическую, которая совершает полезную работу. Его можно проиллюстрировать на примере машины Джованни Бранки, построенной в 1629 г. В этой машине струя пара приводила в движение колесо с лопатками, напоминающее колесо водяной мельницы.

В паровой турбине используются оба указанных принципа. Струя пара под высоким давлением направляется на криволинейные лопатки (подобные лопастям вентилятора), насаженные на диск. При обтекании лопаток струя отклоняется, и диск с лопатками начинает вращаться. Между лопатками пар расширяется и ускоряет свое движение: в результате энергия давления пара переходит в кинетическую энергию.

Первые турбины, подобные машине Бранки, не могли развивать достаточной мощности, поскольку паровые котлы не способны были создавать высокого давления. Первые действующие паровые машины Томаса Сейвери, Томаса Ньюкомена и других не нуждались в паре высокого давления. Пар низкого давления вытеснял воздух под поршнем и конденсировался, создавая разрежение. Поршень под действием атмосферного давления опускался, производя полезную работу. Опыт в постройке и использовании паровых котлов для этих так называемых атмосферных двигателей постепенно побудил инженеров сконструировать котлы, способные создавать и выдерживать давление, намного превосходящее атмосферное.

С появлением возможности получать пар высокого давления изобретатели вновь обратились к турбине. Были испробованы различные конструктивные варианты. В 1815 г. инженер Ричард Тревитик попытался установить два сопла на ободе колеса двигателя для паровоза и пропускать через них пар из котла. Затея Тревитика провалилась. На сходном принципе было основано устройство лесопильной машины, построенной в 1837 г. Уильямом Эйвери в Сиракьюсе (шт. Нью-Йорк). В одной лишь Англии за 100 лет, с 1784 по 1884 г., было запатентовано 200 изобретений, так или иначе относящихся к турбинам, причем больше половины этих изобретений было зарегистрировано в двадцатилетний период - с 1864 по 1884 г.

Ни одна из этих попыток не завершилась созданием промышленно пригодной машины. Частично эти неудачи объяснялись незнанием физических законов, описывающих расширение пара. Плотность пара намного меньше плотности воды, а его "упругость" намного больше, поэтому скорость струи пара в паровых турбинах гораздо больше, чем скорость воды в водяных турбинах, с которыми приходилось иметь дело изобретателям. Было установлено, что к.п.д. турбины становится максимальным тогда, когда скорость лопаток примерно равна половине скорости пара; поэтому первые турбины имели очень высокие скорости вращения.

Большое число оборотов было причиной ряда нежелательных эффектов, среди которых не последнюю роль играла опасность разрушения вращающихся частей под действием центробежных сил. Скорость вращения турбины можно было бы уменьшить, увеличив диаметр диска, на котором крепились лопатки. Однако это было невозможно. Расход пара в ранних устройствах не мог быть большим, а значит, не могло быть велико и поперечное сечение выходного отверстия. Вследствие этой причины первые опытные турбины имели небольшой диаметр и короткие лопатки.

Другая проблема, связанная со свойствами пара, доставляла еще больше трудностей. Скорость пара, проходящего через сопло, изменяется пропорционально отношению давления на входе к давлению на выходе. Максимальное значение скорости в суживающемся сопле достигается, однако, при отношении давлений, приблизительно равном двум; дальнейшее повышение перепада давления уже не влияет на увеличение скорости струи. Таким образом, конструкторы не могли в полной мере использовать возможности пара с высоким давлением: существовал предел для количества запасенной паром высокого давления энергии, которая могла быть превращена в кинетическую энергию и передана лопаткам. В 1889 г. шведский инженер Карл Густав де Лаваль применил сопло, расширяющееся на выходе. Такое сопло позволило получить гораздо большие скорости пара, и вследствие этого скорость вращения ротора в турбине Лаваля существенно увеличилась.

Парсонс создал принципиально новую конструкцию турбины. Она отличалась меньшей скоростью вращения, и в то же время в ней максимально использовалась энергия пара. Это достигалось за счет того, что в турбине Парсонса пар расширялся постепенно по мере прохождения через 15 ступеней, каждая из которых представляла собой пару венцов лопаток: один - неподвижный (с направляющими лопатками, закрепленными на корпусе турбины), другой - подвижный (с рабочими лопатками на диске, насаженном на вращающийся вал). Лопатки неподвижных и подвижных венцов были ориентированы в противоположных направлениях, т.е. так, что если бы оба венца были подвижными, то пар заставлял бы их вращаться в разные стороны.

Венцы лопаток турбины представляли собой медные кольца с лопатками, закрепленными в прорезях под углом 45°. Подвижные венцы закреплялись на валу, неподвижные состояли из двух половинок, жестко связанных с корпусом (верхняя половина корпуса снята).

Чередующиеся подвижные и неподвижные венцы лопаток (а ) задавали направление движения пара. Проходя между неподвижными лопатками, пар расширялся, ускорялся и направлялся на подвижные лопатки. Здесь пар также расширялся, создавая силу, которая толкала лопатки. Направление движения пара показано на одной из 15 пар венцов (b ).

Пар, направляемый на неподвижные лопатки, расширялся в междулопаточных каналах, скорость его увеличивалась, и он отклонялся так, что попадал на подвижные лопатки и заставлял их вращаться. В междулопаточных каналах подвижных лопаток пар также расширялся, на выходе создавалась ускоренная струя, и возникающая реактивная сила толкала лопатки.

При наличии многих подвижных и неподвижных венцов лопаток высокая скорость вращения стала ненужной. На каждом из 30 венцов многоступенчатой турбины Парсонса пар расширялся незначительно, теряя некоторую долю своей кинетической энергии. На каждой ступени (паре венцов) давление падало лишь на 10%, и максимальная скорость пара в результате оказывалась равной 1/5 скорости струи в турбине с одной ступенью. Парсонс полагал, что при столь малых перепадах давления пар можно рассматривать как малосжимаемую жидкость, подобную воде. Это предположение дало ему возможность с высокой степенью точности сделать расчеты скорости пара, к.п.д. турбины и формы лопаток. Идея поступенчатого расширения пара, которая лежит в основе конструкций современных турбин, была лишь одним из многих оригинальных замыслов, воплощенных Парсонсом.

Турбиной называют вращающееся устройство, которое приводится в действие потоком жидкости или газа.

Самый простой пример турбины – водяное колесо.

Представим себе вертикально поставленное колесо, на ободе которого закреплены черпаки или лопасти. На эти лопасти сверху льётся поток воды. Под действием воды колесо вращается. А вращением колеса можно приводить в действие другие механизмы. Так, в водяной мельнице колесо вращало жернова. А они мололи муку. На гидроэлектростанциях турбины вращают генераторы, которые вырабатывают электрическую энергию. На тепловых электростанциях лопасти турбин приводятся в движение тепловой энергией, которая освобождается при сжигании топлива (газа, угля и т.п.). Ветровые генераторы заставляет вращаться энергия ветра.

С точки зрения физики турбины – это устройства, которые преобразовывают энергию пара, ветра, воды в полезную работу.

В зависимости от того, какой вид энергии преобразуется в турбинах, различают паровые турбины и газовые.

Паровая турбина

Эолипил Герона

В паровой турбине тепловая энергия пара преобразовывается в механическую работу.

Ещё в 130 г. до нашей эры греческий математик и механик Герон Александрийский изобрёл примитивную паровую турбину, которую назвали «эолипил». Прибор представлял собой наглухо запаянный котёл, из которого были выведены две трубки. На эти трубки установили полый шар с двумя соплами Г-образной формы. В котёл заливалась вода, и он ставился на огонь. Пар поступал по трубкам в шар и под давлением вырывался из сопел. Шар начинал вращаться. Это был прообраз реактивного двигателя, в котором реактивная сила, которая вращала шар, создавалась паром.

Во времена Герона к его изобретению отнеслись, как к игрушке. Практического применения оно не нашло.

В 1629 г. итальянский инженер и архитектор Джованни Бранки создал паровую турбину, в которой колесо с лопатками приводилось в движение струёй пара.

Английский инженер Ричард Трейсвик в 1815 г. на ободе паровозного колеса установил два сопла и пустил по ним пар.

С 1864 г. по 1884 г. инженерами были запатентованы сотни изобретений, относящихся к турбинам.

И только в 1889г. шведский инженер Густаф Лаваль создал паровую турбину, которую можно было использовать в промышленности. В турбине Лаваля струя пара, выходящая из сопел неподвижного статора, давила на лопатки, закреплённые на ободе колеса. Колесо под давлением пара вращалось. Такая турбина называлась активной.

В турбине Лаваля сопло расширялось на выходе. Это увеличивало скорость выходящего пара и, как следствие скорость вращения турбины. Сопло Лаваля стало прообразом современных ракетных сопел.

Немного раньше, независимо от Лаваля, в 1884 г. английский инженер и промышленник Чарлз Алджернон Парсонс изобрёл многоступенчатую реактивную паровую турбину. В такой турбине имелось несколько рядов рабочих лопаток, которые назывались ступенями. Парсон запатентовал идею корабля, который приводился в действие этой турбиной.

Газовая турбина

Джон Барбер

Газовая турбина отличается от паровой тем, что в движение её приводит не пар из котла, а газ, который образуется при сгорании топлива. А все основные принципы устройства паровых и газовых турбин одинаковы.

Первый патент на газовую турбину был получен в 1791 г. англичанином Джоном Барбером. Барбер разработал свою турбину для движения безлошадной повозки. А элементы турбины Барбера присутствуют в современных газовых турбинах.

В 1903 г. норвежец Эджидиус Эллинг изобрёл газовую турбину, производящую больше энергии, чем затрачивалось на её работу. Принцип её работы был использован английским инженером-конструктором сэром Фрэнком Уиттлом, который в 1930 г. запатентовал газовую турбину для реактивного движения.

Турбина Тесла

Турбина Тесла

В 1913 г. инженер, физик и изобретатель Никола Тесла запатентовал турбину, устройство которой принципиально отличалось от устройства традиционной турбины. В турбине Тесла не было лопастей, которые приводились в движение энергией пара или газа.

Вращающаяся часть турбины - ротор, представляла собой набор тонких металлических дисков, закреплённых на валу и разделённых шайбами. Поток газа или рабочей жидкости поступал с внешнего края дисков и проходил к центру по зазорам, закручиваясь. Известно, что если поток жидкости или газа направить по плоской поверхности, то поток начинает увлекать за собой эту поверхность. Диски в турбине Паскаля увлекались потоком газа, вызывая вращение.

Паровая турбина – основной силовой технологический узел электрической станции, в котором внутренняя энергия пара, запасенная при его генерировании, преобразуются в механическую энергию вращения ротора. В отличие от паровой машины, совершающей непосредственное преобразование внутренней энергии пара в работу движущегося поршня с использованием сил упругости пара, паровая турбина при помощи сопловых лопаток вначале преобразует внутреннюю энергию пара в кинетическую энергию потока рабочего тела, а затем уже последнюю – в механическую энергию вращающегося ротора. Термин «турбина» происходит от французского слова «turbine», возникшего из латинского «turbo» – вихрь, вращение с большой скоростью, впервые использованного Героном Александрийским при описании принципа движения «эолипила».

Создание паровой турбины требовало глубокого знания физических свойств пара и законов его истечения. Необходимо было завершить формулировку законов термодинамики и найти новые инженерные решения для производства работы с использованием тепловых свойств воды и водяного пара. Изготовление турбины стало возможным при достаточно высоком уровне развития технологий работы с металлами, поскольку необходимая точность получения отдельных частей и прочность элементов должны были быть существенно более высокими, чем в случае паровой машины.

Словацкий инженер и ученый-теплотехник Аурель Стодола отметил целый ряд преимуществ паровой турбины перед двигателями внутреннего сгорания и паровыми машинами. К этим преимуществам относятся: малое число движущихся деталей, отсутствие каких бы то ни было контактных уплотнений и трудностей, связанных с обеспечением их надежной работы (системы смазки, проблемы, связанные с истиранием и т.п.), малый объем производственных помещений, необходимых для размещения оборудования, преимущества в регулировании, относительно малые затраты на ремонт. Сегодня стало очевидным еще одно неоспоримое преимущество – огромная, достигающая сегодня полутора миллионов киловатт, единичная мощность, которая попросту недостижима ни в двигателях внутреннего сгорания, ни в паровых машинах.

Аурель Стодола (1859–1942) в 1878 году окончил Будапештский политехнический институт, в 1881 году – Высшую техническую школу в Цюрихе. С 1892 по 1929 гг. – профессор кафедры машиностроения в этом учебном заведении. Его основные работы посвящены автоматическому регулированию, конструированию и расчетам на прочность деталей паровых и газовых турбин. Очень интересную характеристику дал Стодоле Альберт Эйнштейн: «Если бы Стодола родился в эпоху Ренессанса, он был бы великим художником или скульптором, потому что главным свойством его личности являются мощь фантазии и созидания. В XIX столетии подобные натуры чаще всего обращались к технике. Здесь, в технике, нашла свое выражение созидательная мощь века, здесь страстная жажда прекрасного находила пути воплощения, превосходящего все, что мог бы предложить человек, не знакомый с этой областью. Могучий порыв Стодолы не остывал в течение многих лет преподавательской деятельности и перешел к ученикам – их глаза светятся, когда речь идет об учителе. Другая сильная сторона Стодолы – неугомонная любознательность и редкая ясность научного мышления». Патент на первый паротурбинный двигатель получил американский морской инженер, адмирал Бенжамин Франклин Изервуд (1822–1915) в 1857 году. После выполненных в 1870 году инженерных разработок несколько таких паротурбинных установок на базе одноступенчатой турбины были помещены на военных фрегатах и позволили обеспечить их относительно высокую скорость (до 33 км/ч). Однако эти ПТУ оказались слишком сложными в изготовлении и не более эффективными (к.п.д. 6–8%), чем паровые машины. В 1883– 1885 гг. впервые примитивные паровые турбины были использованы и на лесопилках в восточной части США для привода дисковых пил.

Создание современных паровых турбин связано с именами выдающихся инженеров XIX века: шведом Г. Лавалем и англичанином Ч. Парсонсом.

Главная заслуга Лаваля состоит в том, что он сумел создать основные элементы турбины, довести их до совершенства и соединить в работоспособную конструкцию, которая во многих отношениях на десятилетия опережала свое время. Если сравнить современную одноступенчатую активную турбину с ее прабабушкой, созданной Лавалем (рис. 3.2), то поразит их сходство. Оказывается, что за более чем 100-летний период совершенствования в одной из самых динамичных областей техники формы сопел, лопаток, диска турбины претерпели в общем незначительные изменения. Это, наверное, беспрецедентный случай в истории техники. Причем показатель, связанный с прочностью конструкции.

Карл Густав Патрик де Лаваль Интересной особенностью творчества Лаваля (1845–1913) можно считать его «голый эмпиризм»: он создавал вполне работоспособные конструкции, теорию которых позднее разрабатывали другие. Так, теорией гибкого вала впоследствии глубоко занимался словацкий ученый А. Стодола. Он же систематизировал основные вопросы расчета на прочность турбинных дисков равного сопротивления. Именно отсутствие хорошей теории паровых турбин не позволило Лавалю добиться больших успехов, к тому же он был человеком увлекающимся и легко переключался с одной темы на другую. Пренебрегая финансовой стороной дела, этот талантливый экспериментатор, не успев реализовать очередное изобретение, быстро охладевал к нему, увлекшись новой идеей.

Иного рода человеком был английский инженер Чарльз Алджернон Парсонс (1854–1931). В его многоступенчатой реактивной турбине (рис. 3.3) расширение пара происходило в нескольких ступенях сопловых (неподвижных) и рабочих (вращающихся) решеток. Благодаря этому стала возможна работа машины со значительно меньшими, чем в турбине Лаваля, скоростями пара на выходе из сопловых решеток и с меньшими окружными скоростями рабочих лопаток.

Эта турбина предназначалась для работы совместно с электрическим генератором. Таким образом, уже с первого шага Парсонс правильно предугадал одну из наиболее перспективных областей применения паровых турбин и в дальнейшем ему не пришлось разыскивать потребителей для своего изобретения. С целью уравновешивания осевого усилия пар подводился к средней части вала турбины, а затем протекал к его концам. Первая паровая турбина Парсонса имела мощность всего 6 л.с. (около 4,4 кВт) и была подвергнута разнообразным испытаниям. Основные затруднения представляла разработка рациональной конструкции лопаток и способов их крепления в роторе, а также обеспечение уплотнений. Уже в конструкции 1887 года Парсонс применил лабиринтные уплотнения, что позволило перейти к турбинам с однонаправленным потоком пара. К 1889 г. число построенных турбин превысило 300 единиц и применялись они преимущественно для привода электрических генераторов. В турбине, изготовленной в 1896 году, мощность достигла уже 400 кВт, а удельный расход пара доходил до 9,2 кг/кВт.

Энергетическое турбостроение развивалось преимущественно в направлении применения пара высокого давления. Для электростанции в Мангейме завод «Броун–Бовери» изготовил турбину мощностью 7000 кВт при давлении пара 15,7 МПа и температуре 430°С. У паровой турбины, построенной для электростанции в Лангербрюгге, параметры пара были выбраны еще более высокими: давление 22 МПа и температура 450°С.

В США фирма GE («Дженерал электрик») в Скенектеди, ограничив давление 84 ат (8,2 МПа), стала энергично наращивать мощность единичной установки. В начале ХХ века были разработаны и изготовлены турбины мощностью 500, 1000, 2500 и 10000 кВт. Первоначально эти турбины изготавливались в вертикальном исполнении. Однако опыт эксплуатации вынудил фирму отказаться от вертикальной и перейти к горизонтальной компоновке турбины. Длительное время фирма выпускала турбины для работы в конденсационном режиме мощностью до 14000 кВт, а с противодавлением – до 8000 кВт.

Чарльз Алджернон Парсонс. Благодаря работам Чарльза Парсонса и его сотрудников Англия по использованию паровых турбин оказалась впереди всей планеты: если в других странах к паровым турбинам только присматривались, то в Соединенном Королевстве общая мощность всех построенных в 1896 году паровых турбин превысила 40000 л.с. (29420 кВт). В 1899 году было решено применить на строящейся Эльберфельдской электростанции (Германия) две турбины Парсонса по 1000 кВт. Результаты испытаний турбин, опубликованные в 1900 году, свидетельствовали о неоспоримых преимуществах примененных установок по сравнению с традиционными «паровиками». Вскоре одна из лучших в то время электротехнических фирм «Броун–Бовери» в Бадене (Швейцария) приобрела лицензию на производство турбин Парсонса. Далее предложения о покупке лицензий стали нарастать подобно снежному кому: помимо немцев, интерес к турбинам проявили итальянцы и американцы (в частности, компания «Вестингауз»). Турбины стали изготавливать в Швейцарии, Франции, Австро-Венгрии. Если в 1903 году наибольшая мощность турбины составляла 6500 кВт, то в 1909 году появились агрегаты мощностью 10000 кВт, в 1915 году – 20000 кВт, а в 1917 году – 30000 кВт. В компании «отцов-основателей» турбостроения появились имена француза О. Рато и американца Ч. Кертиса. Но Парсонс вошел в историю техники турбостроения как звезда первой величины: помимо чисто «турбинных» проблем, он взвалил на себя (и успешно решил) еще и задачу внедрения нового двигателя на флоте.

Кириллов Иван Иванович (1902–1993) – один из величайших ученых-турбинистов, чье имя по праву вписано золотыми буквами в историю мировой турбинной науки рядом с именами Л. Эйлера, А. Стодолы и Г. Флюгеля. Он родился в 1902 году в СанктПетербурге в семье военного медика. После окончания в 1924 году Ленинградского технологического института Кириллов уже в тридцатые годы заявил о себе как серьезный специалист в области расчетов и проектирования паровых турбин, а к началу второй мировой войны – это сложившийся ученый, хорошо известный в среде коллег-турбинистов. В 1945–1950 гг., а затем в 1961–1980 гг. заведует кафедрой паровых турбин и машин Ленинградского политехнического института. В 1951–1961 гг. организует кафедру турбиностроения в Брянском институте транспортного машиностроения и является ее заведующим. И.И. Кириллов – автор 25 монографий, учебников и учебных пособий, более 350 статей в отечественных и зарубежных журналах, 80 изобретений.

Вторая североамериканская энергомашиностроительная фирма «Вестингауз» («Westinghoyse») в 20-е годы ХХ века также приступила к выпуску паровых турбин единичной мощностью 30, 45 и 60 тыс. кВт.

В начале тридцатых годов ХХ века в США вошли в строй огромные энергетические паротурбинные установки единичной мощностью 160 и даже 208 МВт. Европейцы ограничились существенно меньшими значениями единичной мощности промышленных паровых турбин. Одной из наибольших считалась установка в Витковицах (Чехия), оборудованная двумя турбинами мощностью 30 и 18 МВт. Частота вращения этих агрегатов была выбрана равной 3000 об/мин, что обусловливалось принятой в Европе частотой переменного тока (50 Гц). Следует отметить, что в США паровые турбины имели частоту вращения 1800 или 3600 об/мин в связи с «американской» частотой переменного тока, равной 60 Гц.

Жирицкий Георгий Сергеевич (1893– 1966) – известный ученый-турбинист, который не только создал фундаментальные основы инженерного образования по турбомашинам, но и подготовил многочисленных инженеров, молодых ученых и педагогов. В 1911 году с золотой медалью окончил Киевскую первую гимназию, а в 1915 году – механический факультет Киевского политехнического института. Г.С. Жирицкий в 1918 году становится преподавателем Киевского политехнического института и совмещает работу инженера с педагогической деятельностью. Уже в 1925 году его утверждают в звании профессора по курсу паровых двигателей. Выходит из печати монография Жирицкого «Паровые машины», выдержавшая пять изданий. В 1926 году его назначают деканом механического факультета и заведующим кафедрой паровых машин Киевского политехнического института. В 1929 году заведует кафедрой паровых турбин в Высшем техническом училище имени Н.Э.Баумана, издает двухтомный учебник по паровым турбинам с систематическим изложением теории и конструкции паровых турбин. Под его руководством в 1930–1932 гг. организована кафедра паровых турбин и создан теплоэнергетический факультет в Московском энергетическом институте. В 1947 году Георгий Сергеевич создает и бессменно возглавляет до 1965 года кафедру лопаточных машин в Казанском авиационном институте.

Щегляев Андрей Владимирович (1902– 1970) – крупнейший инженер и ученыйтеплоэнергетик, член-корреспондент Академии наук СССР. В 1921 году Щегляев А.В. поступил учиться в МВТУ на механический факультет, а в 1926 году окончил институт и, получив звание инженера-механика, продолжал работать во ВТИ, совмещая инженерную деятельность с педагогической в МВТУ, а с 1930 года в МЭИ. Инженерная и научная деятельность Андрея Владимировича Щегляева была неразрывно связана с развитием и совершенствованием новых тепловых электростанций СССР, с созданием современных мощных турбинных установок на сверхкритические параметры пара, повышением надежности и экономичности турбин, с их автоматизацией. С 1937 года он бессменно возглавлял кафедру паровых и газовых турбин в МЭИ, которая под его руководством выросла в крупный учебный и научный центр. Он создал научную школу турбинистов, многие представители которой работают на турбостроительных заводах, в энергетических системах, в научных учреждениях России и за рубежом. А.В. Щегляев – автор более 100 работ по вопросам теории, проектирования турбинного оборудования тепловых электростанций. Его книги «Регулирование паровых турбин» и «Паровые турбины» (переведена на болгарский, китайский, грузинский, чешский, венгерский, японский, испанский языки) – популярные учебники для студентов-турбинистов.

Шубенко-Шубин Леонид Александрович (1907–1994) – известный инженер, педагог, ученый-теплоэнергетик, академик НАН Украины, создатель научной школы по разрешению вопросов оптимизации процессов и конструкций турбомашин, инициатор создания Центрального конструкторско-исследовательского бюро при Харьковском турбинном заводе, руководитель создания уникальных отечественных турбоагрегатов. Он выполнил глубокую теоретическую проработку вопросов создания мощных паровых, газовых и специальных турбин, автор более 200 печатных научных трудов. бостроениием занимались фирмы Лаваля (Швеция), «Броун–Бовери компании» (Швейцария), AEG (Берлин, Германия), «Бергман» (Берлин, Германия), «Эшер-Вис» (Цюрих, Швейцария), «Рато» (Франция), «Шкода» (Чехия), «Парсонс» (Англия), «МетрополитенВикерс» (Англия), позже фирмы СЕМ и «GЕС–Альстом» (Франция). В настоящее время в мире паротурбостроениием занимаются широко известные японские фирмы «Мицубиси», «Тошиба», «Хитачи», китайские фирмы в Харбине и Нанкине, немецкая фирма «Сименс» и французская фирма «Альстом».

В СССР первая паровая турбина была построена в 1924 г. на Ленинградском металлическом заводе (ЛМЗ). Она была рассчитана на начальные параметры пара 1,1 МПа, 300°С и имела мощность 2 МВт. В 1926 г. уже была выпущена турбина мощностью 10 МВт при частоте вращения 3000 об/мин, в 1930 г. турбина мощностью 24 МВт при частоте вращения 3000 об/мин на начальные параметры пара 2,55 МПа и 375°С, а в 1931 г. - турбина мощностью 50 МВт при частоте 1500 об/мин на параметры пара 2,85 МПа и 400 °С.

В 1934 г. в Украине вступил в строй Харьковский турбогенераторный завод (ХТГЗ, а в настоящее время – ОАО «Турбоатом») и начал изготовлять первые украинские турбины мощностью 50 и 100 МВт при частоте 1500 об/мин на параметры пара 2,85 МПа и 400°С.

В 1940 году в Свердловске был построен Уральский турбомоторный завод (УТМЗ), который выпускал теплофикационные турбины с регулируемыми отборами пара мощностью 12, 25, 50 МВт, а позже –100 и 250 МВт.

Именно в этот период начался выпуск турбин мощностью 50 тыс. кВт – тихоходных в Харькове, быстроходных в Ленинграде. В 1940 году ЛМЗ и ХТГЗ приступили к изготовлению паровых турбин мощностью 100 тыс. кВт. Опыт эксплуатации тихоходного агрегата ХТГЗ на Зуевской ГРЭС оказался положительным. Общее число часов наработки на турбине АК-100-29 Зуевской ГРЭС превзошло расчетное в несколько раз.

Велик вклад в создание и развитие теории турбомашин, в разработку и реализацию проектов стационарных паровых и газовых турбоустановок выдающихся ученых–турбинистов Кириллова И.И., Уварова В.В. (см. подраздел 3.6), Жирицкого Г.С., Дейча М.Е., Арсенева В.Г., Щегляева А.В., ШубенкоШубина Л.А., Шнее Я.И., Косяка Ю.Ф. и др. Хорошо известны работы зарубежных ученых Б. Эккерта, К. Баммерта, У. Хауторна, Дж. Хорлокка, В. Траупеля, Ву Чунг-Хуа и др.

С 1946 года заводы начали выпускать турбины высокого давления на параметры пара 8,8 МПа, 500°С мощностью 25, 50 и 100 МВт при частоте 3000 об/мин. В 1952 г. ЛМЗ выпустил турбину мощностью 150 МВт на начальные параметры пара 16,6 МПа, 550°С с промежуточным перегревом до 520°С, которая в то время была самым мощным в Европе одновальным агрегатом.

В 1958 г. выпущены головные образцы турбин ЛМЗ типа К-200-130 и ХТГЗ типа К-150130 мощностью 200 и 150 МВт на параметры пара 12,8 МПа, 565°С, а в 1960 г. – головные образцы турбин ЛМЗ и ХТГЗ типа К-300-240 мощностью 300 МВт с начальными сверхкритическими параметрами пара 23,5 МПа, 560°С и промежуточным перегревом до 565°С. В 1965 г. на ЛМЗ выпущена двухвальная турбина мощностью 800 МВт, а на ХТГЗ – одновальная турбина мощностью 500 МВт на параметры пара 23,5 МПа и 540°С с промежуточным перегревом до 540°С. Начиная с 1969 г. ЛМЗ производит одновальные турбины типа К-800-240 мощностью 800 МВт на те же параметры пара.

С 1970 г. Уральский турбомоторный завод выпускает теплофикационные турбины типа Т-250-240 мощностью 250 МВт на сверхкритические параметры пара 23,5 МПа, 540°С с промежуточным перегревом до 540°С, которые не имеют себе равных в мировом турбостроении.

В 1978 г. ЛМЗ изготовил уникальную одновальную турбину типа К-1200-240 мощностью 1200 МВт при частоте 3000 об/мин на начальные параметры пара 23,5 МПа, 540°С с промежуточным перегревом до 540°С, которая при отключении подогревателей высокого давления рассчитана на повышение мощности до 1400 МВт и является самой крупной одновальной турбиной в мире.

Основные типы паровых турбин и их параметры

Различают следующие основные типы турбин:

  • в зависимости от числа ступеней –одно ступенчатые (одна или несколько ступеней скорости) и
  • многоступенчатые; в зависимости от числа корпусов –однокорпусные, двухкорпусные (ЦВД и ЦНД) и многокорпусные (ЦСВД, ЦВД, ЦСД, ЦНД), одновальные и многовальные ;
  • в зависимости от направления потока пара –осевые , или аксиальные, турбины, в которых пар движется вдоль оси турбины, ирадиальные турбины, где пар движется перпендикулярно оси турбины;
  • по принципу действия пара –активные турбины (в которых потенциальная энергия пара превращается в кинетическую только в неподвижных направляющих решетках, а в рабочих решетках кинетическая энергия пара превращается в механическую работу) иреактивные турбины (в которых расширение пара происходит и в направляющих, и в рабочих решетках каждой ступени приблизительно в одинаковой степени);
  • в зависимости от характера теплового процесса –конденсационные паровые турбины, в которых весь расход свежего пара, за исключением отборов на регенерацию, протекая через проточную часть и расширяясь в ней до давления, меньше атмосферного, поступает в конденсатор, где теплота отработавшего пара отдается охлаждающей воде и полезно не используется, и турбины с противодавлением , в которых отработавший пар направляется к тепловым потребителям, использующим теплоту для отопительных или производственных целей;конденсационные турбины с регулируемым отбором пара , в которых часть пара отбирается из промежуточной ступени и отводится к тепловому потребителю при автоматически поддерживаемом постоянном давлении, а остальное количество пара продолжает работать в последующих ступенях и направляется в конденсатор, и, наконец,турбины с регулируемым отбором пара и противодавлением , в которых часть пара отбирается при постоянном давлении из промежуточной ступени, а остальная часть проходит через последующие ступени и отводится к тепловому потребителю при более низком давлении;
  • по параметрам свежего пара – турбины среднего давления (3,43 МПа, 435°С), турбины повышного давления (8,8 МПа, 535°С), турбины высокого давления (12,75 МПа, 565°С) и турбины сверхкритических параметров (23,55 МПа, 560°С);
  • по использованию в промышленности – турбины стационарного типа с постоянным числом оборотов ротора (для работы на электрических станциях) и переменным числом оборотов ротора (для привода насосов, компрессоров), а также турбины нестационарного типа с переменным числом оборотов ротора (судовые и транспортные).

Таблица 3.1 Основные показатели некоторых турбин перегретого пара мощностью до 200 МВт


Показатель

Завод-изготовитель

Турбоатом

Номинальная мощность, МВт

Начальное давление, МПа

Начальная температура,°C

Давление промперегрева, МПа

Температура промперегрева,

Конечное давление, кПа

Температура пит.воды, °C

Число регенер. отборов

Расход пара, кг/с

СМ* – «Силовые машины».

Таблица 3.2 Основные показатели турбин перегретого пара мощностью выше 200 МВт

Показатель

Завод-изготовитель

Турбоатом

Турбоатом

Номинальная мощность,МВт

Начальное давление, МПа

Начальная температура,°C

Давление промперегрева, МПа

Температура промперегрева,

Конечное давление, кПа

Температура пит.воды, °C

Число регенер. отборов

Расход пара, кг/с


В обозначении турбин первая буква характеризует тип турбины: К – конденсационная, Т – конденсационная с теплофикационным отбором пара, П – с производственным отбором пара для промышленного потребителя, ПТ – с производственным и теплофикационным регулируемыми отборами пара, Р – с противодавлением, ПР – с производственным отбором и противодавлением.

Вторая группа (цифры) в обозначении указывает мощность турбины, МВт (если дробь, то в числителе номинальная, а в знаменателе – максимальная мощность).

Третья группа (цифры) в обозначении указывает начальное давление пара перед стопорным клапаном турбины, ата (кгс/см2 ) или МПа. Под чертой для турбин типов П, ПТ, Р и ПР указывается номинальное давление производственного отбора или противодавление, ата (кгс/см2 ) или МПа. Под номинальной мощностью понимается наибольшая мощность, которую турбина должна развивать длительное время при номинальных значениях всех других основных параметров, а максимальная мощность – это наибольшая мощность, которую турбина должна длительно развивать при отсутствии отборов пара для внешних потребителей теплоты.

Основные характеристики и параметры современных турбин перегретого пара, установленных на ТЭС в Украине и России, приведены в табл. 3.1 и 3.2.