Главная · Горло · Коррозия металла – что это такое и как с ней бороться? Понятие о коррозии металлов и классификация.

Коррозия металла – что это такое и как с ней бороться? Понятие о коррозии металлов и классификация.

Основной материал для изучения темы:

§ 13, стр. 81.

Габриелян, О. С.

Химия. 9 класс: Дрофа, 2013.

Дополнительный материал по теме «Коррозия металлов»

Корро́зия , ржавление, ржа - это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево илиполимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример - кислородная коррозия железа в воде:

Гидроксид железа Fe(OH) 3 и является тем, что называют ржавчиной.

В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозииполимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Классификация видов коррозии

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

    газовая коррозия;

    атмосферная коррозия;

    коррозия в неэлектролитах;

    коррозия в электролитах;

    подземная коррозия;

    биокоррозия;

    коррозия под воздействием блуждающих токов.

По условиям протекания коррозионного процесса различаются следующие виды:

    контактная коррозия;

    щелевая коррозия;

    коррозия при неполном погружении;

    коррозия при полном погружении;

    коррозия при переменном погружении;

    коррозия при трении;

    межкристаллитная коррозия;

    коррозия под напряжением.

По характеру разрушения:

    сплошная коррозия, охватывающая всю поверхность:

    • равномерная;

      неравномерная;

      избирательная;

    локальная (местная) коррозия, охватывающая отдельные участки:

    • язвенная;

      точечная;

      сквозная;

      межкристаллитная (расслаивающая в деформированных заготовках и ножевая в сварных соединениях).

Главная классификация производится по механизму протекания процесса. Различают два вида:

    химическую коррозию;

    электрохимическую коррозию.

Коррозия неметаллических материалов

По мере ужесточения условий эксплуатации (повышение температуры, механических напряжений, агрессивности среды и др.) и неметаллические материалы подвержены действию среды. В связи с чем термин «коррозия» стал применяться и по отношению к этим материалам, например «коррозия бетонов и железобетонов», «коррозия пластмасс и резин». При этом имеется в виду их разрушение и потеря эксплуатационных свойств в результате химического или физико-химического взаимодействия с окружающей средой. Но следует учитывать, что механизмы и кинетика процессов для неметаллов и металлов будут разными.

Коррозия металлов

Ржавчина, самый распространённый вид коррозии.

Коррозия металла.

Коррозия металлов - разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса - «коррозионное разрушение». Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, - коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.

Типы коррозии

Различают 4 основных вида коррозии: электрохимическая коррозия, водородная, кислородная коррозия и химическая.

Электрохимическая коррозия

Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т. п. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды - либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.

Коррозионный элемент

При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO 2 , образуется гальванический элемент, так называемый коррозионный элемент. Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не корродирует. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокспотенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.

Если растворяющийся электрод коррозионно-стоек, процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём оцинковки - цинк имеет более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а цинк должен корродировать. Однако в связи с образованием на поверхности цинка оксидной плёнки процесс коррозии сильно замедляется.

Примером крупномасштабной электрохимической коррозии может служить происшествие, случившееся в декабре 1967 года с норвежским рудовозом «Анатина» (англ. Anatina ), следовавшим из Кипра в Осаку. Налетевший в Тихом океане тайфун привёл к попаданию в трюмы солёной воды и образованию большойгальванической пары: медного концентрата со стальным корпусом судна, который вскоре размягчился, и судно подало сигнал бедствия. Экипаж был спасён подоспевшим немецким судном, а сама «Анатина» еле-еле добралась до порта.

Водородная и кислородная коррозия

Если происходит восстановление ионов H 3 O + или молекул воды H 2 O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:

2H 3 O + + 2e − → 2H 2 O + H 2

2H 2 O + 2e − → 2OH − + H 2

Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:

O 2 + 2H 2 O + 4e − → 4OH −

Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура поверхности неоднородна.

Химическая коррозия

Электрокоррозия полотенцесушителя

Химическая коррозия - взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисления металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

Виды коррозии

    Газовая коррозия

    Атмосферная коррозия

    Коррозия при неполном погружении

    Коррозия по ватерлинии

    Коррозия при полном погружении

    Коррозия при переменном погружении

    Подземная коррозия

    Биокоррозия

    Коррозия внешним током

    Коррозия блуждающим током

    Контактная коррозия

    Коррозия при трении

    Фреттинг-коррозия

    Сплошная коррозия

    Равномерная коррозия

    Неравномерная коррозия

    Местная коррозия

    Подповерхностная коррозия

    Точечная коррозия

    Коррозия пятнами

    Сквозная коррозия

    Послойная коррозия

    Нитевидная коррозия

    Структурная коррозия

    Межкристаллитная коррозия

    Избирательная коррозия

    Графитизация чугуна

    Обесцинкование

    Щелевая коррозия

    Ножевая коррозия

    Коррозионная язва

    Коррозионное растрескивание

    Коррозия под напряжением

    Коррозионная усталость

    Предел коррозионной усталости

    Коррозионная хрупкость

Борьба с коррозией

Коррозия приводит ежегодно к миллиардным убыткам, и решение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.

Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материа­лов и способом их нанесения . Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата являетсяабразивоструйная очистка.

Обычно выделяют три направления методов защиты от коррозии:

    Конструкционный

    Активный

    Пассивный

Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие стали, кортеновские стали, цветные металлы. При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки.

Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод - использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.

В качестве защиты от коррозии может применяться нанесение какого-либо покрытия, которое препятствует образованию коррозионного элемента (пассивный метод).

Кислородная коррозия оцинкованного железа

Кислородная коррозия железа, покрытого оловом

Красочное покрытие, полимерное покрытие и эмалирование должны, прежде всего, предотвратить доступ кислорода и влаги. Часто также применяется покрытие, например, стали другими металлами, такими как цинк, олово, хром, никель. Цинковое покрытие защищает сталь даже когда покрытие частично разрушено. Цинк имеет более отрицательный потенциал и корродирует первым. Ионы Zn 2+ токсичны. При изготовлении консервных банок применяют жесть, покрытую слоем олова. В отличие от оцинкованной жести, при разрушении слоя олова корродировать, притом усиленно, начинает железо, так как олово имеет более положительный потенциал. Другая возможность защитить металл от коррозии - применение защитного электрода с большим отрицательным потенциалом, например, из цинка или магния. Для этого специально создаётся коррозионный элемент. Защищаемый металл выступает в роли катода, и этот вид защиты называют катодной защитой. Растворяемый электрод, называют, соответственно, анодом протекторной защиты. Этот метод применяют для защиты от коррозии морских судов, мостов, котельных установок, расположенных под землей труб. Для защиты корпуса судна на наружную сторону корпуса крепят цинковые пластинки.

Если сравнить потенциалы цинка и магния с железом, они имеют более отрицательные потенциалы. Но тем не менее корродируют они медленнее вследствие образования на поверхности защитной оксидной плёнки, которая защищает металл от дальнейшей коррозии. Образование такой плёнки называют пассивацией металла. У алюминия её усиливают анодным окислением (анодирование). При добавлении небольшого количества хрома в сталь на поверхности металла образуется оксидная плёнка. Содержание хрома в нержавеющей стали - более 12 процентов.

Газотермическое напыление

Для борьбы с коррозией используют также методы газотермического напыления. С помощью газотермического напыления на поверхности металла создается слой из другого металла/сплава, обладающий более высокой стойкостью к коррозии (изолирующий) или наоборот менее стойкий (протекторный). Такой слой позволяет остановить коррозию защищаемого металла. Суть метода такова: газовой струей на поверхность изделия на огромной скорости наносят частицы металлической смеси, например цинк, в результате чего образуется защитный слой толщиной от десятков до сотен микрон. Газотермическое напыление также применяется для продления жизни изношенных узлов оборудования: от восстановления рулевой рейки в автосервисе до нефтедобывающих компаний

Термодиффузионное цинковое покрытие

Для эксплуатации металлоизделий в агрессивных средах, необходима более стойкая антикоррозионная защита поверхности металлоизделий. Термодиффузионное цинковое покрытие является анодным по отношению к чёрным металлам и электрохимически защищает сталь от коррозии. Оно обладает прочным сцеплением (адгезией) с основным металлом за счет взаимной диффузии железа и цинка в поверхностных интерметаллидных фазах, поэтому не происходит отслаивания и скалывания покрытий при ударах, механических нагрузках и деформациях обработанных изделий.

Диффузионное цинкование, осуществляемое из паровой или газовой фазы при высоких температурах (375-850 °C), или с использованием разрежения (вакуума) - при температуре от 250 °C, применяется для покрытия крепёжных изделий, труб, деталей арматуры и др. конструкций. Значительно повышает стойкость стальных, чугунных изделий в средах, содержащих сероводород (в том числе против сероводородного коррозионного растрескивания), промышленной атмосфере, морской воде и др. Толщина диффузионного слоя зависит от температуры, времени, способа цинкования и может составлять 0,01-1,5 мм. Современный процесс диффузионного цинкования позволяет образовывать покрытие на резьбовых поверхностях крепёжных изделий, без затруднения их последующего свинчивания. Микротвёрдость слоя покрытия Hμ = 4000 - 5000 МПа. Диффузионное цинковое покрытие также значительно повышает жаростойкость стальных и чугунных изделий, при температуре до 700 °C. Возможно получение легированных диффузионных цинковых покрытий, применяемое для повышения их служебных характеристик.

Кадмирование

Покрытие стальных деталей кадмием производится методами, аналогичными цинкованию, но даёт более сильную защиту, особенно в морской воде. Применяется значительно реже из-за значительной токсичности кадмия и его дороговизны.

Хромирование

Коррозия ухудшает работутрубопроводов.

Экономические потери от коррозии металлов огромны. В США по последним данным NACE [ ущерб от коррозии и затраты на борьбу с ней составили 3,1 % от ВВП (276 млрд долларов). В Германии этот ущерб составил 2,8 % от ВВП. По оценкам специалистов различных стран эти потери в промышленно развитых странах составляют от 2 до 4 % валового национального продукта. При этом потери металла, включающие массу вышедших из строя металлических конструкций, изделий, оборудования, составляют от 10 до 20 % годового производства стали.

Обрушение Серебряного моста.

Ржавчина является одной из наиболее распространённых причин аварий мостов. Так как ржавчина имеет гораздо больший объём, чем исходная масса железа, её наращивание может привести к неравномерному прилеганию друг к другу конструкционных деталей. Это стало причиной разрушения моста через реку Мианус в 1983 году, когда подшипники подъёмного механизма проржавели внутри. Три водителя погибли при падении в реку. Исследования показали, что сток дороги был перекрыт и не был почищен, а сточные воды проникли в опоры моста. 15 декабря 1967 года Серебряный мост, соединяющий Поинт Плезант, штат Западная Виржиния, и Канауга, штат Огайо, неожиданно рухнул в реку Огайо. В момент обрушения 37 автомобилей двигались по мосту, и 31 из них упали вместе с мостом. Сорок шесть человек погибли, и девять серьёзно пострадали. Помимо человеческих жертв и травм, был разрушен основной транспортный путь между Западной Виржинией и Огайо. Причиной обрушения стала коррозия

Мост Кинзу в Пенсильвании был разрушен в 2003 году от торнадо прежде всего потому, что центральные основные болты проржавели, существенно снизив его устойчивость.

Домашняя работа

Сплавы

Внимание!!!

Для получения оценки «3» достаточно выполнить только первую часть работы, для получения оценки «4», необходимо выполнить без ошибок всю часть работы на «3» и также без ошибок всю часть работы на оценку «4». Для получения оценки «5» необходимо выполнить всю работу без ошибок!!!

Оценка «3»

1. Какой из металлов как простое вещество более подвержен коррозии

1) 1s 2 2s 2 2p 6 3s

2) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

3) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2

4) 1s 2 2s 2 2p 6 3s 2 3p 1

2. Химическую коррозию вызывают

1) вода и кислород

2) оксиды углероды и серы

3) растворы солей

4) все перечисленные факторы.

3. При контакте Ni и Fe в растворе кислоты

1) железо будет растворяться

2) железо будет восстанавливаться

3) никель будет растворяться

4) будет выделяться кислород

Оценка «4»

4. Способы защиты от коррозии, при котором в рабочую среду вводят вещества, уменьшающие агрессивность среды, называют

5. Способ защиты от коррозии, при котором железный лист покрывают слоем олова

6. Наиболее активно корродирует

1) химически чистое железо

2) железо, покрытое слоем олова

3) техническое железо

4) сплав железа с титаном

Оценка «5»

7. Легирующий элемент, сообщающий стали коррозионную стойкость

8. Масса меди, выделившейся на пластинке помещенной в растворе хлорида меди (II) если в реакцию вступил цинк массой 13г

8. Масса меди, выделившейся на железной пластинке помещенной в раствор сульфата меди (II), если в реакцию вступило железо массой 11,2 г.

Коррозия металлов, как известно, приносит много бед. Уж не вам ли, уважаемые автовладельцы, объяснять, чем она грозит: дай ей волю, так от машины одни покрышки останутся. Поэтому, чем раньше начнется борьба с этим бедствием, тем дольше проживет автомобильный кузов.

Чтобы быть успешными в борьбе с коррозией, необходимо выяснить, что же это за «зверь» и понять причины ее возникновения.

Сегодня вы узнаете

Есть ли надежда?

Ущерб, наносимый человечеству коррозией, колоссален. По разным данным коррозия «съедает» от 10 до 25% мировой добычи железа. Превращаясь в бурый порошок, оно безвозвратно рассеивается по белому свету, в результате чего не только мы, но и наши потомки остаемся без этого ценнейшего конструкционного материала.

Но беда не только в том, что теряется металл как таковой, нет — разрушаются мосты, машины, крыши, памятники архитектуры. Коррозия не щадит ничего.

Неизлечимо больна та же Эйфелева башня — символ Парижа. Изготовленная из обычной стали, она неизбежно ржавеет и разрушается. Башню приходится красить каждые 7 лет, отчего ее масса каждый раз увеличивается на 60-70 тонн.

К сожалению, полностью предотвратить коррозию металлов невозможно. Ну, разве что полностью изолировать металл от окружающей среды, например поместить в вакуум. 🙂 Но какой прок от таких «консервированных» деталей? Металл должен «работать». Поэтому единственным способом защиты от коррозии является поиск путей ее замедления.

В незапамятные времена для этого применяли жир, масла, позднее начали покрывать железо другими металлами. Прежде всего, легкоплавким оловом. В трудах древнегреческого историка Геродота (V в. до н.э.) и римского ученого Плиния-старшего уже есть упоминания о применении олова для защиты железа от коррозии.

Интересный случай произошел в 1965 году на Международном симпозиуме по борьбе с коррозией. Некий индийский ученый рассказал об обществе по борьбе с коррозией, которое существует около 1600 лет и членом которого он является. Так вот, полторы тысячи лет назад это общество принимало участие в постройке храмов Солнца на побережье у Конарака. И несмотря на то, что эти храмы некоторое время были затоплены морем, железные балки прекрасно сохранились. Так что и в те далекие времена люди знали толк в борьбе с коррозией. Значит, не все так безнадежно.

Что такое коррозия?

Слово «коррозия» происходит от латинского «corrodo – грызу». Встречаются ссылки и на позднелатинское «corrosio – разъедание». Но так или иначе:

Коррозия – это процесс разрушения металла в результате химического и электрохимического взаимодействия с окружающей средой.

Хотя коррозию чаще всего связывают с металлами, ей также подвергаются бетон, камень, керамика, дерево, пластмассы. Применительно к полимерным материалам, правда, чаще используется термин деструкция или старение.

Коррозия и ржавчина — не одно и то же

В определении коррозии абзацем выше не зря выделено слово «процесс». Дело в том, коррозию частенько отождествляют с термином «ржавчина». Однако это не синонимы. Коррозия — это именно процесс, в то время как ржавчина — один из результатов этого процесса.

Также стоит отметить, что ржавчина — продукт коррозии исключительно железа и его сплавов (таких как сталь или чугун). Поэтому, когда говорим «ржавеет сталь», мы подразумеваем, что ржавеет железо в ее составе.

Если ржавчина относится только к железу, значит другие металлы не ржавеют? Не ржавеют, но это не значит, что они не корродируют. Просто продукты коррозии у них другие.

Например, медь, корродируя, покрывается красивым по цвету зеленоватым налетом (патиной). Серебро на воздухе тускнеет — это на его поверхности образуется налет сульфида, чья тонкая пленка придает металлу характерную розоватую окраску.

Патина — продукт коррозии меди и ее сплавов

Механизм протекания коррозионных процессов

Разнообразие условий и сред, в которых протекают коррозионные процессы, очень широко, поэтому сложно дать единую и всеобъемлющую классификацию встречающихся случаев коррозии. Но не смотря на это, все коррозионные процессы имеют не только общий результат — разрушение металла, но и единую химическую сущность — окисление.

Упрощенно окисление можно назвать процессом обмена веществ электронами. Когда одно вещество окисляется (отдает электроны), другое, наоборот, восстанавливается (получает электроны).

Например, в реакции…

… атом цинка теряет два электрона (окисляется), а молекула хлора присоединяет их (восстанавливается).

Частицы, которые отдают электроны и окисляются, называются восстановителями , а частицы, которые принимают электроны и восстанавливаются, называются окислителями . Два этих процесса (окисление и восстановление) взаимосвязаны и всегда протекают одновременно.

Такие вот реакции, которые в химии называются окислительно-восстановительными, лежат в основе любого коррозионного процесса.

Естественно, склонность к окислению у разных металлов неодинакова. Чтобы понять, у каких она больше, а у каких меньше, вспомним школьный курс химии. Было там такое понятие как электрохимический ряд напряжений (активности) металлов, в котором все металлы расположены слева направо в порядке повышения «благородности».

Так вот, металлы, расположенные в ряду левее, более склонны к отдаче электронов (а значит и к окислению), чем металлы, стоящие правее. Например, железо (Fe) больше подвержено окислению, чем более благородная медь (Cu). Отдельные металлы (например, золото), могут отдавать электроны только при определенных экстремальных условиях.

К ряду активности вернемся немного позднее, а сейчас поговорим об основных видах коррозии.

Виды коррозии

Как уже говорилось, критериев классификация коррозионных процессов существует множество. Так, различают коррозию по виду распространения (сплошная, местная), по типу коррозионной среды (газовая, атмосферная, жидкостная, почвенная), по характеру механических воздействий (коррозионное растрескивание, явление Фреттинга, кавитационная коррозия) и так далее.

Но основным способом классификации коррозии, позволяющим наиболее полно объяснить все тонкости этого коварного процесса, является классификация по механизму протекания.

По этому критерию различают два вида коррозии:

  • химическую
  • электрохимическую

Химическая коррозия

Химическая коррозия отличается от электрохимической тем, что протекает в средах, не проводящих электрический ток. Поэтому при такой коррозии разрушение металла не сопровождается возникновением электрического тока в системе. Это обычное окислительно-восстановительное взаимодействие металла с окружающей средой.

Наиболее типичным примером химической коррозии является газовая коррозия. Газовую коррозию еще называют высокотемпературной, поскольку обычно она протекает при повышенных температурах, когда возможность конденсации влаги на поверхности металла полностью исключена. К такому виду коррозии можно отнести, например, коррозию элементов электронагревателей или сопел ракетных двигателей.

Скорость химической коррозии зависит от температуры — при ее повышении коррозия ускоряется. Из-за этого, например, в процессе производства металлического проката, во все стороны от раскаленной массы разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины.

Окалина — типичный продукт химической коррозии, — оксид, возникающий в результате взаимодействия раскаленного металла с кислородом воздуха.

Помимо кислорода и другие газы могут обладать сильными агрессивными свойствами по отношению к металлам. К таким газам относятся диоксид серы, фтор, хлор, сероводород. Так, например, алюминий и его сплавы, а также стали с высоким содержанием хрома (нержавеющие стали) устойчивы в атмосфере, которая содержит в качестве основного агрессивного агента кислород. Но картина кардинально меняется, если в атмосфере присутствует хлор.

В документации к некоторым антикоррозионным препаратам химическую коррозию иногда называют «сухой», а электрохимическую — «мокрой». Однако химическая коррозия может протекать и в жидкостях. Только в отличие от электрохимической коррозии эти жидкости — неэлектролиты (т.е. не проводящие электрический ток, например спирт, бензол, бензин, керосин).

Примером такой коррозии является коррозия железных деталей двигателя автомобиля. Присутствующая в бензине в качестве примесей сера взаимодействует с поверхностью детали, образуя сульфид железа. Сульфид железа очень хрупок и легко отслаивается, освобождая свежую поверхность для дальнейшего взаимодействия с серой. И так, слой за слоем, деталь постепенно разрушается.

Электрохимическая коррозия

Если химическая коррозия представляет собой не что иное, как простое окисление металла, то электрохимическая — это разрушение за счет гальванических процессов.

В отличие от химической, электрохимическая коррозия протекает в средах с хорошей электропроводностью и сопровождается возникновением тока. Для «запуска» электрохимической коррозии необходимы два условия: гальваническая пара и электролит .

В роли электролита выступает влага на поверхности металла (конденсат, дождевая вода и т.д.). Что такое гальваническая пара? Чтобы понять это, вернемся к ряду активности металлов.

Смотрим. Cлева расположены более активные металлы, справа — менее активные.

Если в контакт вступают два металла с различной активностью, они образуют гальваническую пару, и в присутствии электролита между ними возникает поток электронов, перетекающих от анодных участков к катодным. При этом более активный металл, являющийся анодом гальванопары, начинает корродировать, в то время как менее активный коррозии не подвергается.

Схема гальванического элемента

Для наглядности рассмотрим несколько простых примеров.

Допустим, стальной болт закреплен медной гайкой. Что будет корродировать, железо или медь? Смотрим в ряд активности. Железо более активно (стоит левее), а значит именно оно будет разрушаться в месте соединения.

Стальной болт — медная гайка (корродирует сталь)

А если гайка алюминиевая? Снова смотрим в ряд активности. Здесь картина меняется: уже алюминий (Al), как более активный металл, будет терять электроны и разрушаться.

Таким образом, контакт более активного «левого» металла с менее активным «правым» усиливает коррозию первого.

В качестве примера электрохимической коррозии можно привести случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками. Также примечателен случай, который произошел в декабре 1967 года с норвежским рудовозом «Анатина», следовавшим из Кипра в Осаку. В Тихом океане на судно налетел тайфун и трюмы заполнились соленой водой, в результате чего возникла большая гальваническая пара: медный концентрат + стальной корпус судна. Через некоторое время стальной корпус судна начал размягчаться и оно вскоре подало сигнал бедствия. К счастью, экипаж был спасен подоспевшим немецким судном, а сама «Анатина» кое-как добралась до порта.

Олово и цинк. «Опасные» и «безопасные покрытия

Возьмем еще пример. Допустим, кузовная панель покрыта оловом. Олово — очень стойкий к коррозии металл, кроме того, оно создает пассивный защитный слой, ограждая железо от взаимодействия с внешней средой. Значит, железо под слоем олова находится в целости и сохранности? Да, но только до тех пор, пока слой олова не получит повреждение.

А коль уж такое случается, между оловом и железом тут же возникает гальваническая пара, и железо, являющееся более активным металлом, под воздействием гальванического тока начнет корродировать.

Кстати, в народе до сих пор ходят легенды о якобы «вечных» луженых кузовах «Победы». Корни этой легенды таковы: ремонтируя аварийные машины, мастера использовали паяльные лампы для нагрева. И вдруг, ни с того ни с сего, из-под пламени горелки начинает «рекой» литься олово! Отсюда и пошла молва, что кузов «Победы» был полностью облужен.

На самом деле все гораздо прозаичнее. Штамповая оснастка тех лет была несовершенной, поэтому поверхности деталей получались неровными. Вдобавок тогдашние стали не годились для глубокой вытяжки, и образование морщин при штамповке стало обычным делом. Сваренный, но еще не окрашенный кузов приходилось долго готовить. Выпуклости сглаживали наждачными кругами, а вмятины заполняли оловяным припоем, особенно много которого было вблизи рамки ветрового стекла. Только и всего.

Ну, а так ли «вечен» луженый кузов, вы уже знаете: он вечен до первого хорошего удара острым камешком. А их на наших дорогах более чем достаточно.

А вот с цинком картина совсем иная. Здесь, по сути, мы бьем электрохимическую коррозию ее же оружием. Защищающий металл (цинк) в ряду напряжений стоит левее железа. А значит при повреждении будет разрушаться уже не сталь, а цинк. И только после того, как прокорродирует весь цинк, начнет разрушаться железо. Но, к счастью, корродирует он очень и очень медленно, сохраняя сталь на долгие годы.

а) Коррозия луженой стали: при повреждении покрытия разрушается сталь. б) Коррозия оцинкованной стали: при повреждении покрытия разрушается цинк, защищая от коррозии сталь.

Покрытия, выполненные из более активных металлов называются «безопасными », а из менее активных - «опасными ». Безопасные покрытия, в частности оцинковка, давно и успешно применяются как способ защиты от коррозии автомобильных кузовов.

Почему именно цинк? Ведь помимо цинка в ряду активности относительно железа более активными являются еще несколько элементов. Здесь подвох вот в чем: чем дальше в ряду активности находятся друг от друга два металла, тем быстрее разрушение более активного (менее благородного) . А это, соответственно, сокращает долговечность антикоррозионной защиты. Так что для автомобильных кузовов, где помимо хорошей защиты металла важно достичь и продолжительного срока действия этой защиты, оцинковка подходит как нельзя лучше. Тем более, что цинк доступен и недорог.

Кстати, а что будет, если покрыть кузов, например, золотом? Во-первых, будет ох как дорого! 🙂 Но даже если золото стало бы самым дешевым металлом, такого делать нельзя, поскольку оно окажет нашей «железке» плохую услугу.

Золото ведь стоит очень далеко от железа в ряду активности (дальше всего), и при малейшей царапине железо вскоре превратится в груду ржавчины, покрытую золотой пленкой.

Автомобильный кузов подвергается воздействию как химической, так электрохимической коррозии. Но главная роль все же отводится электрохимическим процессам.

Ведь, чего греха таить, гальванических пар в автомобильном кузове воз и маленькая тележка: это и сварные швы, и контакты разнородных металлов, и посторонние включения в листовом прокате. Не хватает только электролита, чтобы «включить» эти гальванические элементы.

А электролит тоже найти легко — хотя бы влага, содержащаяся в атмосфере.

Кроме того, в реальных условиях эксплуатации оба вида коррозии усиливаются множеством других факторов. Поговорим о главных из них поподробнее.

Факторы, влияющие на коррозию автомобильного кузова

Металл: химический состав и структура

Конечно, если бы автомобильные кузова изготавливались из технически чистого железа, их коррозионная стойкость была бы безупречной. Но к сожалению, а может быть и к счастью, это невозможно. Во-первых, такое железо для автомобиля слишком дорого, во-вторых (что важнее) — недостаточно прочно.

Впрочем, не будем о высоких идеалах, а вернемся к тому, что имеем. Возьмем, к примеру, сталь марки 08КП, широко применяемую в России для штамповки кузовных элементов. При изучении под микроскопом эта сталь представляет собой следующее: мелкие зерна чистого железа перемешаны с зернами карбида железа и другими включениями.

Как вы уже догадались, подобная структура порождает множество микрогальванических элементов, и как только в системе появится электролит, коррозия потихоньку начнет свою разрушительную деятельность.

Интересно, что процесс коррозии железа ускоряется под действием серосодержащих примесей. Обычно она попадает в железо из каменного угля при доменной выплавке из руд. Кстати, в далеком прошлом для этой цели использовался не каменный, а древесный уголь, практически не содержащий серы.

В том числе и по этой причине некоторые металлические предметы древности за свою многовековую историю практически не пострадали от коррозии. Взгляните, к примеру, на эту железную колонну, которая находится во дворе минарета Кутуб-Минар в Дели.

Она стоит уже 1600 (!) лет, и хоть бы что. Наряду с низкой влажностью воздуха в Дели, одной из причин такой поразительной коррозионной стойкости индийского железа является, как раз-таки, низкое содержание в металле серы.

Так что в рассуждениях на манер «раньше металл был чище и кузов долго не ржавел», все-таки есть доля правды, и немалая.

Кстати, почему же тогда не ржавеют нержавеющие стали? А потому, что хром и никель, используемые в качестве легирующих компонентов этих сталей, стоят в электрохимическом ряду напряжений рядом с железом. Кроме того, при контакте с агрессивной средой они образуют на поверхности прочную оксидную пленку, предохраняющую сталь от дальнейшего корродирования.

Хромоникелевая сталь — наиболее типичная нержавейка, но кроме нее есть и другие марки нержавеющих сталей. Например, легкие нержавеющие сплавы могут включать алюминий или титан. Если вы были во Всероссийском выставочном центре, вы наверняка видели перед входом обелиск «Покорителям космоса». Он облицован пластинками из титанового сплава и на его блестящей поверхности нет ни единого пятнышка ржавчины.

Заводские кузовные технологии

Толщина листовой стали, из которой изготавливаются кузовные детали современного легкового автомобиля, составляет, как правило, менее 1 мм. А в некоторых местах кузова эта толщина — и того меньше.

Особенностью процесса штамповки кузовных панелей, да и вообще, любой пластической деформации металла, является возникновение в ходе деформации нежелательных остаточных напряжений. Эти напряжения незначительны, если шпамповочное оборудование не изношено, и скорости деформирования настроены правильно.

В противном случае в кузовную панель закладывается этакая «часовая бомба»: порядок расположения атомов в кристаллических зернах меняется, поэтому металл в состоянии механического напряжения корродирует интенсивнее, чем в нормальном состоянии. И, что характерно, разрушение металла происходит именно на деформированных участках (изгибах, отверстиях), играющих роль анода.

Кроме того, при сварке и сборке кузова на заводе в нем образуется множество щелей, нахлестов и полостей, в которых скапливается грязь и влага. Не говоря уже о сварных швах, образующих с основным металлом все те же гальванические пары.

Влияние окружающей среды при эксплуатации

Среда, в которой эксплуатируются металлические конструкции, в том числе и автомобили, с каждым годом становится все более агрессивной. В последние десятилетия в атмосфере повысилось содержание сернистого газа, оксидов азота и углерода. А значит, автомобили омываются уже не просто водичкой, а кислотными дождями.

Коль уж зашла речь о кислотных дождях, вернемся еще раз к электрохимическому ряду напряжений. Наблюдательный читатель подметил, что в него включен также и водород. Резонный вопрос: зачем? А вот зачем: его положение показывает, какие металлы вытесняют водород из растворов кислот, а какие — нет. Например, железо расположено левее водорода, а значит вытесняет его из растворов кислот, в то время как медь, стоящая правее, на подобный подвиг уже не способна.

Отсюда следует, что кислотные дожди для железа опасны, а для чистой меди — нет. А вот о бронзе и других сплавах на основе меди этого сказать нельзя: они содержат алюминий, олово и другие металлы, находящиеся в ряду левее водорода.

Замечено и доказано, что в условиях большого города кузова живут меньше. В этой связи показательны данные Шведского института коррозии (ШИК), установившего, что:

  • в сельской местности Швеции скорость разрушения стали составляет 8 мкм в год, цинка — 0,8 мкм в год;
  • для города эти цифры составляют 30 и 5 мкм в год соответственно.

Немаловажны и климатические условия, в которых эксплуатируется автомобиль. Так, в условиях морского климата коррозия активизируется примерно в два раза.

Влажность и температура

Насколько велико влияние влажности на коррозию мы можем понять на примере ранее упомянутой железной колонны в Дели (вспомним сухость воздуха, как одну из причин ее коррозионной стойкости).

Поговаривают, что один иностранец решил раскрыть тайну этого нержавеющего железа и каким-то образом отколол небольшой кусочек от колонны. Каково же было его удивление, когда еще на корабле по пути из Индии этот кусочек покрылся ржавчиной. Оказывается, на влажном морском воздухе нержавеющее индийское железо оказалось не таким уж и нержавеющим. Кроме того, аналогичную колонну из Конарака, расположенного поблизости моря, коррозия поразила очень сильно.

Скорость коррозии при относительной влажности до 65% сравнительно невелика, но когда влажность возрастает выше указанного значения — коррозия резко ускоряется, поскольку при такой влажности на металлической поверхности образуется слой влаги. И чем дольше поверхность остается влажной, тем быстрее распространяется коррозия.

Вот почему основные очаги коррозии всегда обнаруживаются в скрытых полостях кузова: cохнут-то они гораздо медленнее открытых частей. Как результат — в них образуются застойные зоны, — настоящий рай для коррозии.

Кстати, применение химических реагентов для борьбы с гололедом коррозии тоже на руку. Вперемешку с подтаявшими снегом и льдом антигололедные соли образуют очень сильный электролит, способный проникнуть куда угодно, в том числе и в скрытые полости.

Что касается температуры, то мы уже знаем, что ее повышение активизирует коррозию. По этой причине вблизи выхлопной системы следов коррозии всегда будет больше.

Доступ воздуха

Интересная все-таки вещь эта коррозия. Насколько интересна, настолько же и коварна. К примеру, не удивляйтесь, что блестящий стальной трос, с виду абсолютно не тронутый коррозией, внутри может оказаться проржавевшим. Так происходит из-за неравномерного доступа воздуха: в тех местах, где он затруднен, угроза коррозии больше. В теории коррозии это явление называется дифференциальной аэрацией.

Принцип дифференциальной аэрации: неравномерный доступ воздуха к разным участкам металлической поверхности приводит к образованию гальванического элемента. При этом участок, интенсивно снабжаемый кислородом, остается невредимым, а участок хуже снабжаемый им, корродирует.

Яркий пример: капля воды, попавшая на поверхность металла. Участок, находящийся под каплей и потому хуже снабжаемый кислородом, играет роль анода. Металл на этом участке окисляется, а роль катода выполняют края капли, более доступные влиянию кислорода. В результате на краях капли начинает осаждаться гидроксид железа — продукт взаимодействия железа, кислорода и влаги.

Кстати, гидроксид железа (Fe 2 O 3 ·nH 2 O) и является тем, что мы называем ржавчиной. Поверхность ржавчины, в отличие от патины на медной поверхности или оксидной пленки алюминия, не защищает железо от дальнейшего корродирования. Изначально ржавчина имеет структуру геля, но затем постепенно происходит ее кристаллизация.

Кристаллизация начинается внутри слоя ржавчины, при этом внешняя оболочка геля, который в сухом состоянии очень рыхлый и хрупкий, отслаивается, и воздействию подвергается следующий слой железа. И так до тех пор, пока все железо не будет уничтожено или в системе не закончится весь кислород с водой.

Возвращаясь к принципу дифференциальной аэрации, можно представить, сколько существует возможностей для развития коррозии в скрытых, плохо проветриваемых участках кузова.

Ржавеют… все!

Как говорится, статистика знает все. Ранее мы упоминали о таком известном центре борьбы с коррозией, как Шведский институт коррозии (ШИК) — одной из наиболее авторитетных организаций в данной области.

Раз в несколько лет ученые института проводят интересное исследование: берут кузова хорошо потрудившихся автомобилей, вырезают из них наиболее полюбившиеся коррозии «фрагменты» (участки порогов, колесных арок, кромок дверей и т.д.) и оценивают степень их коррозионного поражения.

Важно отметить, что среди исследуемых кузовов есть как защищенные (оцинковкой и/или антикором), так и кузова без какой либо дополнительной антикоррозионной защиты (просто окрашенные детали).

Так вот, ШИК утверждает, что наилучшей защитой автомобильного кузова является лишь сочетание «цинк плюс антикор». А вот все остальные варианты, включая «просто оцинковку» или «просто антикор», по словам ученых — плохи.

Оцинковка — не панацея

Сторонники отказа от дополнительной антикоррозионной обработки часто ссылаются на заводскую оцинковку: с ней, мол, никакая коррозия автомобилю не грозит. Но, как показали шведские ученые, это не совсем так.

Действительно, цинк может служить в качестве самостоятельной защиты, но только на ровных и плавных поверхностях, к тому же не подверженных механическим атакам. А на кромках, краях, стыках, а также местах, регулярно подвергающихся «обстрелу» песком и камнями, оцинковка перед коррозией пасует.

К тому же, далеко не у всех автомобилей кузова оцинкованы полностью. Чаще всего цинком покрыто лишь несколько панелей.

Ну и не нужно забывать, что цинк хоть и защищает сталь, но в процессе защиты неизбежно расходуется сам. Поэтому толщина цинкового «щита» со временем будет постепенно снижаться.

Так что легенды о долгожительстве оцинкованных кузовов правдивы лишь в тех случаях, когда цинк становится частью общего барьера, дополнением к регулярной дополнительной антикоррозионной обработке кузова.

Пора заканчивать, но на этом тема коррозии далеко не исчерпана. О борьбе с ней мы продолжим говорить в следующих статьях рубрики «Антикоррозионная защита».

Слово коррозия произошло от латинского corrodere. Оно в переводе означает «разъедать». Чаще всего встречается коррозия металла. Однако есть случаи, когда от коррозии страдают и изделия из других материалов. Ей подвержены и камни, и пластмасса и даже дерево. Сегодня все чаще люди сталкиваются с такой проблемой, как покрытие коррозией памятников архитектуры, сделанных из мрамора и других материалов. Из этого можно сделать, что под такой процесс, как коррозия обозначает разрушение под воздействием окружающей среды

Причины коррозии металлов

Коррозии подвержены большая часть металлов. Данный процесс представляет собой их окисление. Оно приводит к распаду их на оксиды. В простонародии коррозия получила название ржавчина. Она представляет собой порошок мелкого помола светло-коричневого оттенка. На многих видах металлов во время процесса окисления появляется специальный состав в виде скрепленной с ними оксидной пленки. Она обладает плотной структурой, благодаря чему кислороду из воздуха и воде не удается проникнуть в глубокие слои металлов для дальнейшего их разрушения.

Алюминий относится к разряду очень активных металлов. При соприкосновении с воздухом или водой он с теоретической точки зрения должен легко расщепляться. Однако во время коррозии на нем образуется специальная пленка, которая уплотняет его структуру и делает процесс образования ржавчины практически невозможным.

Таблица 1. Совместимость металлов

Магний Цинк Алюминий Кадмий Свинец Олово Медь
Магний Низкое С С С С С С
Высокое У У У С С
Цинк Низкое У У У С С С
Высокое Н Н Н Н Н Н
Алюминий Низкое У Н Н С С
Высокое Н У Н С С С
Кадмий Низкое Н Н Н С С С
Высокое У Н Н Н Н Н
Углеродистая сталь Низкое Н Н Н Н С С С
Высокое Н Н Н Н Н Н Н
Низколегированная сталь Низкое Н Н Н Н С С С
Высокое Н Н Н Н Н Н Н
Литейная сталь Низкое Н Н Н Н С С С
Высокое Н Н Н Н Н Н
Хромированная сталь Низкое Н Н Н Н У У С
Высокое Н Н Н Н Н Н
Свинец Низкое Н Н Н Н Н Н
Высокое Н Н Н Н Н
Олово Низкое Н Н Н Н Н
Высокое Н Н Н Н Н
Медь Низкое Н Н Н Н У С
Высокое Н Н Н Н Н У
Нержавеющая сталь Низкое Н Н Н Н Н Н
Высокое Н Н Н Н У У Н
В 1 столбце таблицы представлены металлы, которые подвергаются или не подвергаются коррозии с металлами указанными в остальных столбцах таблицы и пропорция соотношения площадей металла, указанного в 1 столбце, к металлам в остальных столбцах таблицы. Краткое обозначение С, У, Н в таблице означает:

Таблица 2. Совместимость стали с металлами

Металлы, в отношении которых представлены данные в таблице по подверженности их коррозии Соотношение площади металла к другим металлам таблицы Углеродистая сталь Низколегированная сталь Литейная сталь Хромированная сталь Нержавеющая сталь
Магний Низкое С С С С С
Высокое С С С С С
Цинк Низкое С С С С С
Высокое Н Н Н Н Н
Алюминий Низкое У С С
Высокое Н Н У У У
Кадмий Низкое С С С С С
Высокое Н Н Н Н Н
Углеродистая сталь Низкое У С С С
Высокое Н Н Н Н
Низколегированная сталь Низкое Н Н С С
Высокое Н Н Н Н
Литейная сталь Низкое Н У С С
Высокое Н Н Н
Хромированная сталь Низкое Н Н Н С
Высокое Н Н Н Н
Свинец Низкое Н Н Н Н
Высокое Н Н У Н Н
Олово Низкое Н Н Н
Высокое Н Н Н У
Медь Низкое Н Н У
Высокое Н Н Н Н
Нержавеющая сталь Низкое Н Н
Высокое Н Н Н У

В 1 столбце таблицы представлены металлы, которые подвергаются или не подвергаются коррозии с металлами указанными в остальных столбцах таблицы и пропорция соотношения площадей металла, указанного в 1 столбце, к металлам в остальных столбцах таблицы.

Краткое обозначение С, У, Н в таблице означает:

  1. С - сильная и быстрая коррозия металла;
  2. У - умеренная коррозия металла;
  3. Н - Несущественная или ничтожная коррозия металла

Виды коррозии металлов

Сплошная коррозия

Наименее опасно для различных предметов из металлов является сплошная коррозия. Особенно она не опасна для тех ситуаций, когда повреждения аппаратов и оборудования не нарушают технические нормы их дальнейшего использования. Последствия такого вида коррозии можно с легкостью предугадать и скорректировать с учетом этого оборудование.

Местная коррозия

Большую опасность представляет собой местный вид коррозии. В этом случае потери металла не являются большими, но при этом образуются сквозные поражения металлов, что приводит к выходу из строя изделия или оборудования. Такой вид коррозии встречается в изделиях, которые соприкасаются с морской водой или солями. Такое появление ржавчины способствует тому, что поверхность металлической основы разъедается частично и конструкция теряет свою надежность.

Большое количество проблем появляется в местах, где используется хлорид натрия. Данное вещество применяется для устранения снега и льда на дорогах в городских условиях. Данный вид соли заставляет их превращаться в жидкость, которая уже в разбавленном с солями виде попадает в городские трубопроводы. В этом случае не помешает защита металлов от коррозии. Все подземные коммуникации при попадании воды с солями начинают разрушаться. В Соединенных Штатах Америки подсчитано, что в год на проведение ремонтных работ в области дорожных коммуникации уходит примерно два миллиарда долларов. Однако от данного вида соли для обработки дорожного полотна коммунальщики пока не готовы отказаться из-за низкой его стоимости.

Способы защиты металлов от коррозии


С самых давних времен люди старались защитить металлы от появления коррозии. постоянные атмосферные осадки приводили в негодность металлические изделия. Именно поэтому люди смазывали их различными жирными маслами. Затем они стали использовать для этой цели покрытия из других металлов, которые не ржавеют.

Современные химики тщательно прорабатывают все возможные методы борьбы с коррозией металлов. Они создают специальные растворы. Разрабатываются способы уменьшения рисков образования на металлах коррозии. Примером может служить такой материал, как нержавеющая сталь. Для ее производства использовалось железо, дополненное кобальтом, никелем, хромом и другими элементами. При помощи добавленных к нему элементов удалось создать металл, на котором более длительное время не образуется налет ржавчины.

Для защиты различных металлов от коррозии разработаны различные вещества, которые активно применяются в современной промышленности. Лаки и краски активно сегодня используются. Они являются наиболее доступными средствами для защиты от ржавчины изделий из металлов. Они создают преграду для попадания на сам металл воды или воздуха. Это позволяет на время отсрочить появление коррозии. Следует при нанесении краски или лака учитывать толщину слоя и поверхность материала. Для достижения наилучшего результата покрытие металлов от коррозии должно производиться ровным и плотным слоем.

Химическая коррозия металлов

По сущности коррозия может быть двух видов:

  • химическая,
  • электрохимическая.


Химическая коррозия представляет собой образование ржавчины при определенных условиях. В промышленных условиях не редко приходится сталкиваться с данным типом коррозии. Ведь на многочисленных современных предприятиях металлы перед созданием из них изделий нагреваются, что приводит к образованию такого процесса, как ускоренная химическая коррозия металла. При этом образуется окалина, которая является продуктом его реакции на появление ржавчины во время нагревания.

Ученые доказали, что современное железо гораздо больше подвержено образованию ржавчины. В нем содержится большое количество серы. Она появляется в металле из-за того, что во время добывания железных руд используется каменный уголь. Сера из него попадает в железо. Современные люди удивляются то, что древние предметы их этого металла, которые находят на раскопках археологи, сохраняют свои внешние качества. Это связано с тем, что в древности для добычи железа использовался древесный уголь, который практически не содержит серы, которая могла бы попасть в металл.

Такие металлы подвергаются коррозии

Среди металлов встречаются различные виды. Чаще всего для созданий каких-либо предметов или объектов применяется железо. Именно из него изготовляется в двадцать раз больше изделий и объектов, чем из других металлов вместе взятых. Данный металл стали использовать активнее всего в промышленности в конце 18 начале 19 веков. Именно в этот период был построен первый чугунный мост. Появилось первое морское судно, для изготовления которого была использована сталь.

В природе самородки железа встречаются в редких случаях. Многие люди считают, что данный металл не является земным, его относят к космическим или метеоритным. Именно он является наиболее подверженным к образования коррозии.

Также есть и другие металлы, подверженные коррозии. Среди них выделяются медь, серебро, бронза.

Видео "Коррозия металлов, способы защиты от неё"

Статьи по теме

Современные технологии развиваются с молниеносной скоростью, благодаря чему на рынках появляется огромное количество разнообразной уникальной продукции, несущей декоративный эффект. Именно к такой продукции относится термохромная краска.

Ни для кого не секрет, что металлу не свойственна горючесть. Однако, не смотря на это, воздействие высоких температур приводит к изменению его твердости, в результате чего металл становится мягким, гибким и в результате способен деформироваться. Все это является причинами, по которым несущая способность металла утрачивается, что может стать причиной обрушения целого здания или его отдельной части во время пожара. Несомненно, это очень опасно для человеческой жизни. Для того, чтобы не допустить такого, при строительстве применяются разнообразные составы, способные сделать металлоконструкцию более устойчивой к высоким температурам.

Сегодня без разных видов трубопроводов невозможно представить себе жизнью Они находятся практически в каждом населенном пункте и обеспечивают коммуникации. Производств труб для прокладки под землей осуществляется из металлов самых разных типов.

Ингибитор не является каким-то конкретным веществом. Так называют целуют группу веществ, которые направлены на остановку или задержку протеканий каких-либо физических или физико-химических процессов.

Коррозия происходит под действием химически агрессивных сред - это вода, органические и неорганические кислоты. В результате на поверхностях деталей образуются оксиды металлов. Коррозия не только портит внешний вид поверхностей, но и снижает механические свойства металлов.

Причиной возникновения коррозии является термодинамическая неустойчивость металлов. Все металлы и сплавы, из которых изготовлен автомобиль, в условиях эксплуатации стремятся перейти в более устойчивое окисленное (ионное) состояние. Самопроизвольный переход металла в такое устойчивое состояние и составляет суть коррозии.

Многие проблемы, имеющие прямое отношение к коррозионной стойкости создаваемых изделий, могут быть решены на стадии их проектирования и изготовления. Например, если будет обеспеченно отсутствие в изделии узких зазоров, щелей или карманов, а там, где этого избежать нельзя, устроены дренажные отверстия, то тем самым будет ликвидирована щелевая коррозия. Следует исключить весьма опасную в коррозионном отношении возможность контакта различных металлов и сплавов, способных образовывать активные гальванические пары и стимулировать коррозию одного из них.

Потери от коррозии стали сравнимыми с вложениями в развитие крупных отраслей промышленности. В США например, в настоящее время эти потери значительно превышают 120 млрд долларов в год. Немалую часть составляют потери косвенные, связанные с вынужденным простоем оборудования, снижением мощности действующего оборудования, ухудшением условий труда. Известны случаи, когда коррозия средств транспорта являлась причиной серьезных аварий, сопровождающихся человеческими жертвами.

Для автомобильного транспорта характерно использование агрессивных средств, высоких температур и давлений, больших скоростей потоков, а также условий, когда изделия эксплуатируются при одновременном воздействии агрессивной среды и больших механических нагрузок, т.е. факторов, способствующих коррозии.

Вследствие коррозии теряется большое количество металла, на восполнение которого в автомобилестроении расходуется до 50% ежегодно производимого металла.

Коррозия многообразна в своем проявлении. Поверхность металла не всегда подвергается равномерному разрушению – так называемой общей коррозии. Чаще процесс сосредоточен на отдельных участках, разрушение носит локальный характер.

Использование металлов в напряженном состоянии, переход на высокопрочные стали и сплавы, характеризующиеся высокими внутренними напряжениями, привели к тому, что одним из опаснейших видов коррозии стало коррозионное растрескивание. Ему сильно подвержены нержавеющие стали, сплавы на основе меди, алюминия, магния. Склонность к коррозионному растрескиванию определяется и составом коррозионной среды. Присутствие отдельных компонентов служит необходимым условием для возникновения коррозионного растрескивания. Для нержавеющих сталей это хлориды и щелочи, и для сплавов на основе меди – аммиак.

Особенно уязвимыми для коррозии являются сварные швы. По характерному виду поражения коррозию этого типа называют ножевой.

Частный вид коррозионного растрескивания – коррозионная усталость, при которой появление трещин и ее развитие вызываются одновременным воздействием агрессивной среды и циклических механических нагрузок.

Сплавы на основе железа, высокопрочные сплавы проявляют склонность к межкристаллической коррозии, при которой разрушение идет по границам зерен и при этом теряется механическая прочность.

Весьма опасной коррозией является питтинговая с поражением отдельных очень небольших участков поверхности вплоть до сквозной перфорации изделий. При определенных условиях ей подвержены железо, никель, алюминий, магний, цирконий, медь, олово, цинк и особенно нержавеющие стали.

Для сплавов на основе железа распространенным и опасным видом локальной коррозии является щелевая коррозия под всевозможными прокладками, наростами, в щелях и узких зазорах. Весьма склонны к этому виду коррозии участки металла, контактирующие с неметаллическими материалами (древесина, пластик, стекло, бетон, асбест, ткани).

Для сплавов на основе меди опасно селективное вытравливание из них определенных компонентов (например – обесцинковывание латуни).

По механизму протекания коррозионные процессы делятся на химические, электрохимические и биохимические.

Химической коррозией называют такой тип коррозии, когда металл вступает в прямое химическое взаимодействие с компонентами окружающей среды. Химическая коррозия протекает в газовых средах при высоких температурах, когда образование пленки влаги на поверхности металла невозможно, а также в растворах, не проводящих тока.

Примером химической коррозии является газовая коррозия выпускного тракта автомобильного двигателя отработавшими газами. В топливной системе двигателя может происходить химическая коррозия металлов за счет их взаимодействия с такими примесями топлив, как сероводород, элементарная сера и меркаптаны. В результате окисления масла при работе двигателя могут образовываться продукты, вызывающие химическую коррозию металла вкладышей подшипников.

При высокотемпературной или газовой коррозии состав продуктов коррозии зависит от состава газовой среды, но чаще всего это оксиды металлов. В качестве агрессивных компонентов газовой среды выступают соединения серы, хлора, азота, а чаще всего кислород и его соединения.

Скорость коррозии обычной стали увеличивается в присутствии углекислого газа, паров воды, двуокиси серы и особенно их смесей. Продукты сжигания жидких топлив снижают защитные свойства пленок образующихся продуктов коррозии. Значительное влияние на скорость коррозии углеродистых и низколегированных сталей оказывает соотношение СО и СО 2 в выхлопных газах. С увеличением содержания СО скорость коррозии снижается и при 14-18% может прекратиться. Образующиеся продукты, как правило, создают на поверхности коррозирующего металла пленку, которая тормозит доставку агрессивных компонентов непосредственно к металлу, что снижает скорость коррозии. Защитные свойства образующихся пленок в первую очередь зависят от ее сплошности, толщины (более защитны - тонкие), сцепления с металлом, прочности, эластичности и т.п. С повышением температуры защитные свойства пленок в большинстве случаев ухудшаются. Увеличение давления и скорости движения газовой среды увеличивает скорость коррозии. Процесс коррозии может сопровождаться эрозионным изнашиванием.

Однако в общем процессе коррозионного разрушения автомобиля основное значение имеет электрохимическая коррозия, главным образом, в связи со значительно большей ее скоростью по сравнению с химической. Электрохимическая коррозия возможна только, когда на поверхности металла имеется электролит, т.е. водный раствор солей, кислот, щелочей, обладающих способностью проводить электрический ток. Электрохимическая коррозия протекает в обычных атмосферных условиях, в растворах и расплавах, проводящих ток.

Многочисленными исследованиями установлено, что на поверхности любого металла, находящегося в атмосфере, образуется тонкая пленка воды. Толщина такой пленки может быть различной в зависимости от температуры и влажности воздуха, а также других атмосферных условий. Газы, находящиеся в воздухе, растворяются в пленке воды и создают электролит на металлической поверхности. Так возникают условия для электрохимической коррозии. Таким образом, условия для этого вида коррозии на незащищенных металлических поверхностях существуют практически всегда.

В подавляющем большинстве случаев коррозия является электрохимической. В этом случае на поверхности металла образуются многочисленные микрогальванопары, работа которых и приводит к разрушению металла. На отдельных участках поверхности (примеси, добавки) локализуются катодные участки, на которых идет восстановление окислителей, находящихся в растворе. Чаще всего это растворенный кислород.

На остальной поверхности и особенно на выступах и искажениях кристаллической решетки локализуются анодные участки, на которых идет растворение металла. Таким образом, весь процесс электрохимической коррозии моделируется работой короткозамкнутого гальванического элемента.

Наряду с образованием многочисленных коррозионных микропар на поверхности одного металла, возможно образование макропар между сопряженными деталями из разных металлов. Металл с более отрицательным потенциалом в такой макропаре будет анодом, и скорость его коррозии при этом возрастает.

С увеличением температуры и электропроводности раствора скорость электрохимической коррозии возрастает. Внутренние напряжения и механические нагрузки, особенно знакопеременные, приводят к появлению коррозионной усталости, сопровождающейся снижением механической прочности и тем более, чем выше электропроводность раствора.

Есть еще биохимическая коррозия, которая происходит под действием микроорганизмов.

Суммарно процесс коррозии железа в большинстве случаев описывается следующим уравнением реакции:

и сводится к образованию гидрида закиси железа или гидратированной закиси железа .

На внешней поверхности образуется пленка, благодаря доступу кислорода происходит дальнейшее окисление

с образованием гидрата окиси железа или водной окиси железа .

Между образующимися гидратированными и часто образуется закись – окись железа . Пленки ржавчины обычно и состоят из этих трех слоев. При контакте железа с медью истинная глубина коррозионного разрушения железа повышается за счет локализации анодного процесса вблизи контакта.

Нержавеющие стали могут находиться в паре с медью, алюминием. Медь в большинстве водных растворов растворяется анодно с образованием двухвалентного иона

(3.6)

Медь в контакте инициирует коррозию железа, алюминия, являясь по отношению к ним катодом.

Алюминий при обычных условиях окисляется с образованием Al 2 O 3 , который резко тормозит дальнейшую коррозию алюминия.

Медь и железо значительно стимулируют растворение алюминия на ограниченных участках.

Сплошная коррозия менее опасна, чем местная, которая приводит к разрушению металлических частей кузова, утрате ими прочности.

По условиям, в которых происходит коррозия автомобилей, различаются следующие виды коррозии:

  • газовая (в камерах сгорания на фасках тарелок выпускных клапанов, выпускной трубе, в глушителе и т.п.);
  • в неэлектролитах (в топливной и масляной системах);
  • атмосферная (в естественных условиях хранения, транспортировки и эксплуатации автомобиля);
  • в электролитах (в местах задержки влаги в карманах кузова);
  • структурная (в местах кузова автомобиля, подвергнутых газоплазменной или электрической сварке, в результате которых возникает неоднородность состава металлов);
  • щелевая (в узких щелях и зазорах под действием разности рН-среды или различного содержания кислорода в электролите);
  • под напряжением (на поверхности деталей, агрегатов и конструкций, находящихся под напряжением);
  • при трении (в узлах трения при наличии коррозионной среды, сопровождается коррозионно-механическим износом);
  • биологическая (протекает при участии продуктов, выделяемых микроорганизмами).

Коррозия кузова автомобиля при несвоевременной защите металла, рассматриваемая как совместный результат химической и электрохимической коррозии, проходит в следующей последовательности:

  • подслойная коррозия развивается под лакокрасочным покрытием;
  • шелушение и вспучивание в поврежденных коррозией местах;
  • сквозная коррозия кузова, особенно на стыках;
  • растрескивание сварных швов в местах соединений деталей пола, порогов, крыльев и попадание, как следствие, влаги, пыли и грязи в салон кузова;
  • появление трещин в усилителях, лонжеронах и поперечинах с потерей жесткости кузова;
  • деформация дверных проемов из-за потери жесткости стоек и порогов кузова;
  • нарушение взаимного расположения агрегатов шасси автомобиля, приводящее к нарушению управляемости и равномерности торможения колес;
  • повреждение металлических трубопроводов тормозного привода вследствие потери жесткости в основании кузова из-за коррозии мест крепления;
  • механические повреждения пола кузова в местах крепления амортизаторов, рессор и других узлов автомобиля в результате коррозии мест их крепления, особенно при резком торможении и движении по пересеченной местности.

Действие коррозионных факторов, таких как влажность, концентрация солевых растворов и серных соединений, образующихся из отработавших газов, особенно сильно проявляется в местах, труднодоступных для осмотра и очистки, в небольших зазорах, а также в отбортовках и загибах кромок, где периодически попадающая в них влага может сохраняться длительное время.

С повышением температуры скорость коррозии возрастает (в особенности при наличии в атмосфере агрессивных примесей и содержания влаги).

Разрушительные процессы на кузове также часто интенсифицируются неблагоприятными условиями хранения автомобиля. Наблюдается усиление коррозионного износа в результате применения на дорогах песочно-солевых смесей для борьбы с гололедицей, а также из-за резких перепадов температуры в салоне и снаружи автомобиля.

Коррозионные разрушения на кузове встречаются к тому же в результате контакта стальных деталей с деталями, изготовленными из некоторых других материалов (дюралюминия, каучуков, содержащих сернистые соединения, пластмасс на основе фенольных смол и т.д.), а также в результате контакта металла с деталями, изготовленными из материала, содержащего заметное количество органических кислот (в частности муравьиную).

Теперь о причинах коррозии, обусловленных воздействием нефтепродуктов на детали автомобиля. Это связано, в первую очередь, с наличием в них воды и агрессивных химических соединений. Вода проникает в топливо, масла и смазки во время их производства, хранения и применения. Агрессивные химические соединения возникают, как правило, во время продолжительного хранения нефтепродуктов, в результате происходящих в них процессов старения, а также при эксплуатации двигателя.

Таким образом, среди причин, способствующих интенсивному развитию коррозии автомобилей, есть основные: неправильное конструктивное решение кузова, его деталей и узлов; технологические недостатки при изготовлении кузова; несоблюдение правил предпродажного хранения и транспортировки автомобиля; неправильный уход за кузовом во время эксплуатации.

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ИЛИ ПРОЦЕССЫ ИЗМЕНЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВТОМОБИЛЕЙ В ЭКСПЛУАТАЦИИ


Существует масса различных факторов, которые могут значительно попортить металл. При этом, все металлы так или иначе коррозируют и имеют некоторые недочеты. Например, нельзя соединять медь и алюминий, если они являются частью электрической проводки. Все потому, что образуется такой небольшой электролизер, который понемногу выедает металл. В итоге происходит нагрев, а в итоге и дуговой удар, что может привести к пожару. Некоторые металлы, вроде олова, имеют свойство распадаться. Это, так называемая, оловянная чума. Такое может произойти, например, из-за низкой температуры. Но больше всего коррозии подвержена сталь. Сталь, если это не легированная, то есть смешанна с хромом, имеет свойство ржаветь. А ржавчина – самый страшный враг стали и железа. У нее есть несколько особенностей, которые могут попросту уничтожить металл.

На самом деле, существует масса различных способов, которыми можно предотвратить коррозию металла. В некоторых случаях, это может помочь, а иногда это уже бессмысленно. Для предотвращения коррозии существует специальная антикоррозийная грунт эмаль , которая предотвращает и не допускает ржавчину. Но так ли она опасна? Давайте немного разберемся в этом и как можно предотвратить ржавчину.

Чем опасна ржавчина

Ржавчина – распад стали или железа. При контакте железа и влаги, появляется химическая реакция, которая превращает металл в коррозию. Из-за этого получается, что металл теряет свою прочность и становится более мягким. Это опасно для всех металлических конструкций, так как он становится тоньше. При длительной ржавчине может разрушиться даже очень толстая металлическая балка. Кроме того, это значительно портит внешний вид, особенно, если металл имеет какой-то декоративный смысл.

Способы предотвращения

Для инструментов, обычно, используется обычное масло или специальная смазка. Таким образом, контакт металла и влаги предотвращается. Благодаря этому, не происходит никакой коррозии. А вот большие конструкции маслом покрыть сложно. Поэтому их покрывают эмалью. Их вы можете купить по ссылке http://www.untec.ru , где есть большой выбор. Основная суть эмали в том, что она накладывается, как краска. Держится намного лучше и может быть использована для железобетона или других материалов. Отличный материал, который можно даже использовать без грунтовки, так как и без этого хорошо ложится.