Главная · Горло · Метод минимальных квадратов. Аппроксимация опытных данных

Метод минимальных квадратов. Аппроксимация опытных данных

Метод наименьших квадратов используется для оценки параметров уравнение регрессии.
Количество строк (исходных данных)

Одним из методов изучения стохастических связей между признаками является регрессионный анализ .
Регрессионный анализ представляет собой вывод уравнения регрессии, с помощью которого находится средняя величина случайной переменной (признака-результата), если величина другой (или других) переменных (признаков-факторов) известна. Он включает следующие этапы:

  1. выбор формы связи (вида аналитического уравнения регрессии);
  2. оценку параметров уравнения;
  3. оценку качества аналитического уравнения регрессии.
Наиболее часто для описания статистической связи признаков используется линейная форма. Внимание к линейной связи объясняется четкой экономической интерпретацией ее параметров, ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму.
В случае линейной парной связи уравнение регрессии примет вид: y i =a+b·x i +u i . Параметры данного уравнения а и b оцениваются по данным статистического наблюдения x и y . Результатом такой оценки является уравнение: , где , - оценки параметров a и b , - значение результативного признака (переменной), полученное по уравнению регрессии (расчетное значение).

Наиболее часто для оценки параметров используют метод наименьших квадратов (МНК).
Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (u) и независимой переменной (x) (см. предпосылки МНК).

Задача оценивания параметров линейного парного уравнения методом наименьших квадратов состоит в следующем: получить такие оценки параметров , , при которых сумма квадратов отклонений фактических значений результативного признака - y i от расчетных значений – минимальна.
Формально критерий МНК можно записать так: .

Классификация методов наименьших квадратов

  1. Метод наименьших квадратов.
  2. Метод максимального правдоподобия (для нормальной классической линейной модели регрессии постулируется нормальность регрессионных остатков).
  3. Обобщенный метод наименьших квадратов ОМНК применяется в случае автокорреляции ошибок и в случае гетероскедастичности.
  4. Метод взвешенных наименьших квадратов (частный случай ОМНК с гетероскедастичными остатками).

Проиллюстрируем суть классического метода наименьших квадратов графически . Для этого построим точечный график по данным наблюдений (x i , y i , i=1;n) в прямоугольной системе координат (такой точечный график называют корреляционным полем). Попытаемся подобрать прямую линию, которая ближе всего расположена к точкам корреляционного поля. Согласно методу наименьших квадратов линия выбирается так, чтобы сумма квадратов расстояний по вертикали между точками корреляционного поля и этой линией была бы минимальной.

Математическая запись данной задачи: .
Значения y i и x i =1...n нам известны, это данные наблюдений. В функции S они представляют собой константы. Переменными в данной функции являются искомые оценки параметров - , . Чтобы найти минимум функции 2-ух переменных необходимо вычислить частные производные данной функции по каждому из параметров и приравнять их нулю, т.е. .
В результате получим систему из 2-ух нормальных линейных уравнений:
Решая данную систему, найдем искомые оценки параметров:

Правильность расчета параметров уравнения регрессии может быть проверена сравнением сумм (возможно некоторое расхождение из-за округления расчетов).
Для расчета оценок параметров , можно построить таблицу 1.
Знак коэффициента регрессии b указывает направление связи (если b >0, связь прямая, если b <0, то связь обратная). Величина b показывает на сколько единиц изменится в среднем признак-результат -y при изменении признака-фактора - х на 1 единицу своего измерения.
Формально значение параметра а – среднее значение y при х равном нулю. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка параметра а не имеет смысла.

Оценка тесноты связи между признаками осуществляется с помощью коэффициента линейной парной корреляции - r x,y . Он может быть рассчитан по формуле: . Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b: .
Область допустимых значений линейного коэффициента парной корреляции от –1 до +1. Знак коэффициента корреляции указывает направление связи. Если r x, y >0, то связь прямая; если r x, y <0, то связь обратная.
Если данный коэффициент по модулю близок к единице, то связь между признаками может быть интерпретирована как довольно тесная линейная. Если его модуль равен единице ê r x , y ê =1, то связь между признаками функциональная линейная. Если признаки х и y линейно независимы, то r x,y близок к 0.
Для расчета r x,y можно использовать также таблицу 1.

Таблица 1

N наблюдения x i y i x i ∙y i
1 x 1 y 1 x 1 ·y 1
2 x 2 y 2 x 2 ·y 2
...
n x n y n x n ·y n
Сумма по столбцу ∑x ∑y ∑x·y
Среднее значение
Для оценки качества полученного уравнения регрессии рассчитывают теоретический коэффициент детерминации – R 2 yx:

,
где d 2 – объясненная уравнением регрессии дисперсия y ;
e 2 - остаточная (необъясненная уравнением регрессии) дисперсия y ;
s 2 y - общая (полная) дисперсия y .
Коэффициент детерминации характеризует долю вариации (дисперсии) результативного признака y , объясняемую регрессией (а, следовательно, и фактором х), в общей вариации (дисперсии) y . Коэффициент детерминации R 2 yx принимает значения от 0 до 1. Соответственно величина 1-R 2 yx характеризует долю дисперсии y , вызванную влиянием прочих неучтенных в модели факторов и ошибками спецификации.
При парной линейной регрессии R 2 yx =r 2 yx .

Метод наименьших квадратов (МНК) позволяет оценивать различные величины, используя результаты множества измерений, содержащих случайные ошибки.

Характеристика МНК

Основная идея данного метода состоит в том, что в качестве критерия точности решения задачи рассматривается сумма квадратов ошибок, которую стремятся свести к минимуму. При использовании этого метода можно применять как численный, так и аналитический подход.

В частности, в качестве численной реализации метод наименьших квадратов подразумевает проведение как можно большего числа измерений неизвестной случайной величины. Причем, чем больше вычислений, тем точнее будет решение. На этом множестве вычислений (исходных данных) получают другое множество предполагаемых решений, из которого затем выбирается наилучшее. Если множество решений параметризировать, то метод наименьших квадратов сведется к поиску оптимального значения параметров.

В качестве аналитического подхода к реализации МНК на множестве исходных данных (измерений) и предполагаемом множестве решений определяется некоторая (функционал), которую можно выразить формулой, получаемой в качестве некоторой гипотезы, требующей подтверждения. В этом случае метод наименьших квадратов сводится к нахождению минимума этого функционала на множестве квадратов ошибок исходных данных.

Заметьте, что не сами ошибки, а именно квадраты ошибок. Почему? Дело в том, что зачастую отклонения измерений от точного значения бывают как положительными, так и отрицательными. При определении средней простое суммирование может привести к неверному выводу о качестве оценки, поскольку взаимное уничтожение положительных и отрицательных значений понизит мощность выборки множества измерений. А, следовательно, и точность оценки.

Для того чтобы этого не произошло, и суммируют квадраты отклонений. Даже более того, чтобы выровнять размерность измеряемой величины и итоговой оценки, из суммы квадратов погрешностей извлекают

Некоторые приложения МНК

МНК широко используется в различных областях. Например, в теории вероятностей и математической статистике метод используется для определения такой характеристики случайной величины, как среднее квадратическое отклонение, определяющей ширину диапазона значений случайной величины.

После выравнивания получим функцию следующего вида: g (x) = x + 1 3 + 1 .

Мы можем аппроксимировать эти данные с помощью линейной зависимости y = a x + b , вычислив соответствующие параметры. Для этого нам нужно будет применить так называемый метод наименьших квадратов. Также потребуется сделать чертеж, чтобы проверить, какая линия будет лучше выравнивать экспериментальные данные.

Yandex.RTB R-A-339285-1

В чем именно заключается МНК (метод наименьших квадратов)

Главное, что нам нужно сделать, – это найти такие коэффициенты линейной зависимости, при которых значение функции двух переменных F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 будет наименьшим. Иначе говоря, при определенных значениях a и b сумма квадратов отклонений представленных данных от получившейся прямой будет иметь минимальное значение. В этом и состоит смысл метода наименьших квадратов. Все, что нам надо сделать для решения примера – это найти экстремум функции двух переменных.

Как вывести формулы для вычисления коэффициентов

Для того чтобы вывести формулы для вычисления коэффициентов, нужно составить и решить систему уравнений с двумя переменными. Для этого мы вычисляем частные производные выражения F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 по a и b и приравниваем их к 0 .

δ F (a , b) δ a = 0 δ F (a , b) δ b = 0 ⇔ - 2 ∑ i = 1 n (y i - (a x i + b)) x i = 0 - 2 ∑ i = 1 n (y i - (a x i + b)) = 0 ⇔ a ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + ∑ i = 1 n b = ∑ i = 1 n y i ⇔ a ∑ i = 1 n x i 2 + b ∑ i = 1 n x i = ∑ i = 1 n x i y i a ∑ i = 1 n x i + n b = ∑ i = 1 n y i

Для решения системы уравнений можно использовать любые методы, например, подстановку или метод Крамера. В результате у нас должны получиться формулы, с помощью которых вычисляются коэффициенты по методу наименьших квадратов.

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n

Мы вычислили значения переменных, при который функция
F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 примет минимальное значение. В третьем пункте мы докажем, почему оно является именно таким.

Это и есть применение метода наименьших квадратов на практике. Его формула, которая применяется для поиска параметра a , включает в себя ∑ i = 1 n x i , ∑ i = 1 n y i , ∑ i = 1 n x i y i , ∑ i = 1 n x i 2 , а также параметр
n – им обозначено количество экспериментальных данных. Советуем вам вычислять каждую сумму отдельно. Значение коэффициента b вычисляется сразу после a .

Обратимся вновь к исходному примеру.

Пример 1

Здесь у нас n равен пяти. Чтобы было удобнее вычислять нужные суммы, входящие в формулы коэффициентов, заполним таблицу.

i = 1 i = 2 i = 3 i = 4 i = 5 ∑ i = 1 5
x i 0 1 2 4 5 12
y i 2 , 1 2 , 4 2 , 6 2 , 8 3 12 , 9
x i y i 0 2 , 4 5 , 2 11 , 2 15 33 , 8
x i 2 0 1 4 16 25 46

Решение

Четвертая строка включает в себя данные, полученные при умножении значений из второй строки на значения третьей для каждого отдельного i . Пятая строка содержит данные из второй, возведенные в квадрат. В последнем столбце приводятся суммы значений отдельных строчек.

Воспользуемся методом наименьших квадратов, чтобы вычислить нужные нам коэффициенты a и b . Для этого подставим нужные значения из последнего столбца и подсчитаем суммы:

n ∑ i = 1 n x i y i - ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n - ∑ i = 1 n x i 2 b = ∑ i = 1 n y i - a ∑ i = 1 n x i n ⇒ a = 5 · 33 , 8 - 12 · 12 , 9 5 · 46 - 12 2 b = 12 , 9 - a · 12 5 ⇒ a ≈ 0 , 165 b ≈ 2 , 184

У нас получилось, что нужная аппроксимирующая прямая будет выглядеть как y = 0 , 165 x + 2 , 184 . Теперь нам надо определить, какая линия будет лучше аппроксимировать данные – g (x) = x + 1 3 + 1 или 0 , 165 x + 2 , 184 . Произведем оценку с помощью метода наименьших квадратов.

Чтобы вычислить погрешность, нам надо найти суммы квадратов отклонений данных от прямых σ 1 = ∑ i = 1 n (y i - (a x i + b i)) 2 и σ 2 = ∑ i = 1 n (y i - g (x i)) 2 , минимальное значение будет соответствовать более подходящей линии.

σ 1 = ∑ i = 1 n (y i - (a x i + b i)) 2 = = ∑ i = 1 5 (y i - (0 , 165 x i + 2 , 184)) 2 ≈ 0 , 019 σ 2 = ∑ i = 1 n (y i - g (x i)) 2 = = ∑ i = 1 5 (y i - (x i + 1 3 + 1)) 2 ≈ 0 , 096

Ответ: поскольку σ 1 < σ 2 , то прямой, наилучшим образом аппроксимирующей исходные данные, будет
y = 0 , 165 x + 2 , 184 .

Метод наименьших квадратов наглядно показан на графической иллюстрации. С помощью красной линии отмечена прямая g (x) = x + 1 3 + 1 , синей – y = 0 , 165 x + 2 , 184 . Исходные данные обозначены розовыми точками.

Поясним, для чего именно нужны приближения подобного вида.

Они могут быть использованы в задачах, требующих сглаживания данных, а также в тех, где данные надо интерполировать или экстраполировать. Например, в задаче, разобранной выше, можно было бы найти значение наблюдаемой величины y при x = 3 или при x = 6 . Таким примерам мы посвятили отдельную статью.

Доказательство метода МНК

Чтобы функция приняла минимальное значение при вычисленных a и b , нужно, чтобы в данной точке матрица квадратичной формы дифференциала функции вида F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 была положительно определенной. Покажем, как это должно выглядеть.

Пример 2

У нас есть дифференциал второго порядка следующего вида:

d 2 F (a ; b) = δ 2 F (a ; b) δ a 2 d 2 a + 2 δ 2 F (a ; b) δ a δ b d a d b + δ 2 F (a ; b) δ b 2 d 2 b

Решение

δ 2 F (a ; b) δ a 2 = δ δ F (a ; b) δ a δ a = = δ - 2 ∑ i = 1 n (y i - (a x i + b)) x i δ a = 2 ∑ i = 1 n (x i) 2 δ 2 F (a ; b) δ a δ b = δ δ F (a ; b) δ a δ b = = δ - 2 ∑ i = 1 n (y i - (a x i + b)) x i δ b = 2 ∑ i = 1 n x i δ 2 F (a ; b) δ b 2 = δ δ F (a ; b) δ b δ b = δ - 2 ∑ i = 1 n (y i - (a x i + b)) δ b = 2 ∑ i = 1 n (1) = 2 n

Иначе говоря, можно записать так: d 2 F (a ; b) = 2 ∑ i = 1 n (x i) 2 d 2 a + 2 · 2 ∑ x i i = 1 n d a d b + (2 n) d 2 b .

Мы получили матрицу квадратичной формы вида M = 2 ∑ i = 1 n (x i) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n .

В этом случае значения отдельных элементов не будут меняться в зависимости от a и b . Является ли эта матрица положительно определенной? Чтобы ответить на этот вопрос, проверим, являются ли ее угловые миноры положительными.

Вычисляем угловой минор первого порядка: 2 ∑ i = 1 n (x i) 2 > 0 . Поскольку точки x i не совпадают, то неравенство является строгим. Будем иметь это в виду при дальнейших расчетах.

Вычисляем угловой минор второго порядка:

d e t (M) = 2 ∑ i = 1 n (x i) 2 2 ∑ i = 1 n x i 2 ∑ i = 1 n x i 2 n = 4 n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2

После этого переходим к доказательству неравенства n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 > 0 с помощью математической индукции.

  1. Проверим, будет ли данное неравенство справедливым при произвольном n . Возьмем 2 и подсчитаем:

2 ∑ i = 1 2 (x i) 2 - ∑ i = 1 2 x i 2 = 2 x 1 2 + x 2 2 - x 1 + x 2 2 = = x 1 2 - 2 x 1 x 2 + x 2 2 = x 1 + x 2 2 > 0

У нас получилось верное равенство (если значения x 1 и x 2 не будут совпадать).

  1. Сделаем предположение, что данное неравенство будет верным для n , т.е. n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 > 0 – справедливо.
  2. Теперь докажем справедливость при n + 1 , т.е. что (n + 1) ∑ i = 1 n + 1 (x i) 2 - ∑ i = 1 n + 1 x i 2 > 0 , если верно n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 > 0 .

Вычисляем:

(n + 1) ∑ i = 1 n + 1 (x i) 2 - ∑ i = 1 n + 1 x i 2 = = (n + 1) ∑ i = 1 n (x i) 2 + x n + 1 2 - ∑ i = 1 n x i + x n + 1 2 = = n ∑ i = 1 n (x i) 2 + n · x n + 1 2 + ∑ i = 1 n (x i) 2 + x n + 1 2 - - ∑ i = 1 n x i 2 + 2 x n + 1 ∑ i = 1 n x i + x n + 1 2 = = ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 + n · x n + 1 2 - x n + 1 ∑ i = 1 n x i + ∑ i = 1 n (x i) 2 = = ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 + x n + 1 2 - 2 x n + 1 x 1 + x 1 2 + + x n + 1 2 - 2 x n + 1 x 2 + x 2 2 + . . . + x n + 1 2 - 2 x n + 1 x 1 + x n 2 = = n ∑ i = 1 n (x i) 2 - ∑ i = 1 n x i 2 + + (x n + 1 - x 1) 2 + (x n + 1 - x 2) 2 + . . . + (x n - 1 - x n) 2 > 0

Выражение, заключенное в фигурные скобки, будет больше 0 (исходя из того, что мы предполагали в пункте 2), и остальные слагаемые будут больше 0 , поскольку все они являются квадратами чисел. Мы доказали неравенство.

Ответ: найденные a и b будут соответствовать наименьшему значению функции F (a , b) = ∑ i = 1 n (y i - (a x i + b)) 2 , значит, они являются искомыми параметрами метода наименьших квадратов (МНК).

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Если некоторая физическая величина зависит от другой величины, то эту зависимость можно исследовать, измеряя y при различных значениях x . В результате измерений получается ряд значений:

x 1 , x 2 , ..., x i , ... , x n ;

y 1 , y 2 , ..., y i , ... , y n .

По данным такого эксперимента можно построить график зависимости y = ƒ(x). Полученная кривая дает возможность судить о виде функции ƒ(x). Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Определить их позволяет метод наименьших квадратов. Экспериментальные точки, как правило, не ложатся точно на кривую. Метод наименьших квадратов требует, чтобы сумма квадратов отклонений экспериментальных точек от кривой, т.е. 2 была наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости, т.е. когда

y = kx или y = a + bx.

Линейная зависимость очень широко распространена в физике. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например, если предполагают, что показатель преломления стекла n связан с длиной λ световой волны соотношением n = a + b/λ 2 , то на графике строят зависимость n от λ -2 .

Рассмотрим зависимость y = kx (прямая, проходящая через начало координат). Составим величину φ – сумму квадратов отклонений наших точек от прямой

Величина φ всегда положительна и оказывается тем меньше, чем ближе к прямой лежат наши точки. Метод наименьших квадратов утверждает, что для k следует выбирать такое значение, при котором φ имеет минимум


или
(19)

Вычисление показывает, что среднеквадратичная ошибка определения величины k равна при этом

, (20)
где – n число измерений.

Рассмотрим теперь несколько более трудный случай, когда точки должны удовлетворить формуле y = a + bx (прямая, не проходящая через начало координат).

Задача состоит в том, чтобы по имеющемуся набору значений x i , y i найти наилучшие значения a и b.

Снова составим квадратичную форму φ , равную сумме квадратов отклонений точек x i , y i от прямой

и найдем значения a и b , при которых φ имеет минимум

;

.

.

Совместное решение этих уравнений дает

(21)

Среднеквадратичные ошибки определения a и b равны

(23)

.  (24)

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (19)–(24). Формы этих таблиц приведены в рассматриваемых ниже примерах.

Пример 1. Исследовалось основное уравнение динамики вращательного движения ε = M/J (прямая, проходящая через начало координат). При различных значениях момента M измерялось угловое ускорение ε некоторого тела. Требуется определить момент инерции этого тела. Результаты измерений момента силы и углового ускорения занесены во второй и третий столбцы таблицы 5 .

Таблица 5
n M, Н · м ε, c -1 M 2 M · ε ε - kM (ε - kM) 2
1 1.44 0.52 2.0736 0.7488 0.039432 0.001555
2 3.12 1.06 9.7344 3.3072 0.018768 0.000352
3 4.59 1.45 21.0681 6.6555 -0.08181 0.006693
4 5.90 1.92 34.81 11.328 -0.049 0.002401
5 7.45 2.56 55.5025 19.072 0.073725 0.005435
– – 123.1886 41.1115 – 0.016436

По формуле (19) определяем:

.

Для определения среднеквадратичной ошибки воспользуемся формулой (20)

0.005775 кг -1 · м -2 .

По формуле (18) имеем

; .

S J = (2.996 · 0.005775)/0.3337 = 0.05185 кг · м 2 .

Задавшись надежностью P = 0.95 , по таблице коэффициентов Стьюдента для n = 5, находим t = 2.78 и определяем абсолютную ошибку ΔJ = 2.78 · 0.05185 = 0.1441 ≈ 0.2 кг · м 2 .

Результаты запишем в виде:

J = (3.0 ± 0.2) кг · м 2 ;


Пример 2. Вычислим температурный коэффициент сопротивления металла по методу наименьших квадратов. Сопротивление зависит от температуры по линейному закону

R t = R 0 (1 + α t°) = R 0 + R 0 α t°.

Свободный член определяет сопротивление R 0 при температуре 0° C , а угловой коэффициент – произведение температурного коэффициента α на сопротивление R 0 .

Результаты измерений и расчетов приведены в таблице (см. таблицу 6 ).

Таблица 6
n t°, c r, Ом t-¯ t (t-¯ t) 2 (t-¯ t)r r - bt - a (r - bt - a) 2 ,10 -6
1 23 1.242 -62.8333 3948.028 -78.039 0.007673 58.8722
2 59 1.326 -26.8333 720.0278 -35.581 -0.00353 12.4959
3 84 1.386 -1.83333 3.361111 -2.541 -0.00965 93.1506
4 96 1.417 10.16667 103.3611 14.40617 -0.01039 107.898
5 120 1.512 34.16667 1167.361 51.66 0.021141 446.932
6 133 1.520 47.16667 2224.694 71.69333 -0.00524 27.4556
515 8.403 – 8166.833 21.5985 – 746.804
∑/n 85.83333 1.4005 – – – – –

По формулам (21), (22) определяем

R 0 = ¯ R- α R 0 ¯ t = 1.4005 - 0.002645 · 85.83333 = 1.1735 Ом .

Найдем ошибку в определении α. Так как , то по формуле (18) имеем:

.

Пользуясь формулами (23), (24) имеем

;

0.014126 Ом .

Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для n = 6, находим t = 2.57 и определяем абсолютную ошибку Δα = 2.57 · 0.000132 = 0.000338 град -1 .

α = (23 ± 4) · 10 -4 град -1 при P = 0.95.


Пример 3. Требуется определить радиус кривизны линзы по кольцам Ньютона. Измерялись радиусы колец Ньютона r m и определялись номера этих колец m. Радиусы колец Ньютона связаны с радиусом кривизны линзы R и номером кольца уравнением

r 2 m = mλR - 2d 0 R,

где d 0 – толщина зазора между линзой и плоскопараллельной пластинкой (или деформация линзы),

λ – длина волны падающего света.

λ = (600 ± 6) нм;
r 2 m = y;
m = x;
λR = b;
-2d 0 R = a,

тогда уравнение примет вид y = a + bx .

.

Результаты измерений и вычислений занесены в таблицу 7 .

Таблица 7
n x = m y = r 2 , 10 -2 мм 2 m -¯ m (m -¯ m) 2 (m -¯ m)y y - bx - a, 10 -4 (y - bx - a) 2 , 10 -6
1 1 6.101 -2.5 6.25 -0.152525 12.01 1.44229
2 2 11.834 -1.5 2.25 -0.17751 -9.6 0.930766
3 3 17.808 -0.5 0.25 -0.08904 -7.2 0.519086
4 4 23.814 0.5 0.25 0.11907 -1.6 0.0243955
5 5 29.812 1.5 2.25 0.44718 3.28 0.107646
6 6 35.760 2.5 6.25 0.894 3.12 0.0975819
21 125.129 – 17.5 1.041175 – 3.12176
∑/n 3.5 20.8548333 – – – – –

Сущность метода наименьших квадратов заключается в отыскании параметров модели тренда, которая лучше всего описывает тенденцию развития какого-либо случайного явления во времени или в пространстве (тренд – это линия, которая и характеризует тенденцию этого развития). Задача метода наименьших квадратов (МНК) сводится к нахождению не просто какой-то модели тренда, а к нахождению лучшей или оптимальной модели. Эта модель будет оптимальной, если сумма квадратических отклонений между наблюдаемыми фактическими величинами и соответствующими им расчетными величинами тренда будет минимальной (наименьшей):

где - квадратичное отклонение между наблюдаемой фактической величиной

и соответствующей ей расчетной величиной тренда,

Фактическое (наблюдаемое) значение изучаемого явления,

Расчетное значение модели тренда,

Число наблюдений за изучаемым явлением.

МНК самостоятельно применяется довольно редко. Как правило, чаще всего его используют лишь в качестве необходимого технического приема при корреляционных исследованиях. Следует помнить, что информационной основой МНК может быть только достоверный статистический ряд, причем число наблюдений не должно быть меньше 4-х, иначе, сглаживающие процедуры МНК могут потерять здравый смысл.

Инструментарий МНК сводится к следующим процедурам:

Первая процедура. Выясняется, существует ли вообще какая-либо тенденция изменения результативного признака при изменении выбранного фактора-аргумента, или другими словами, есть ли связь между «у » и «х ».

Вторая процедура. Определяется, какая линия (траектория) способна лучше всего описать или охарактеризовать эту тенденцию.

Третья процедура.

Пример . Допустим, мы имеем информацию о средней урожайности подсолнечника по исследуемому хозяйству (табл. 9.1).

Таблица 9.1

Номер наблюдения

Урожайность, ц/га

Поскольку уровень технологии при производстве подсолнечника в нашей стране за последние 10 лет практически не изменился, значит, по всей видимости, колебания урожайности в анализируемый период очень сильно зависели от колебания погодно-климатических условий. Действительно ли это так?

Первая процедура МНК. Проверяется гипотеза о существовании тенденции изменения урожайности подсолнечника в зависимости от изменения погодно-климатических условий за анализируемые 10 лет.

В данном примере за «y » целесообразно принять урожайность подсолнечника, а за «x » – номер наблюдаемого года в анализируемом периоде. Проверку гипотезы о существовании какой-либо взаимосвязи между «x » и «y » можно выполнить двумя способами: вручную и при помощи компьютерных программ. Конечно, при наличии компьютерной техники данная проблема решается сама собой. Но, чтобы лучше понять инструментарий МНК целесообразно выполнить проверку гипотезы о существовании связи между «x » и «y » вручную, когда под рукой находятся только ручка и обыкновенный калькулятор. В таких случаях гипотезу о существовании тенденции лучше всего проверить визуальным способом по расположению графического изображения анализируемого ряда динамики - корреляционного поля:

Корреляционное поле в нашем примере расположено вокруг медленно возрастающей линии. Это уже само по себе говорит о существовании определенной тенденции в изменении урожайности подсолнечника. Нельзя говорить о наличии какой-либо тенденции лишь тогда, когда корреляционное поле похоже на круг, окружность, строго вертикальное или строго горизонтальное облако, или же состоит из хаотично разбросанных точек. Во всех остальных случаях следует подтвердить гипотезу о существовании взаимосвязи между «x » и «y », и продолжить исследования.

Вторая процедура МНК. Определяется, какая линия (траектория) способна лучше всего описать или охарактеризовать тенденцию изменения урожайности подсолнечника за анализируемый период.

При наличии компьютерной техники подбор оптимального тренда происходит автоматически. При «ручной» обработке выбор оптимальной функции осуществляется, как правило, визуальным способом – по расположению корреляционного поля. То есть, по виду графика подбирается уравнение линии, которая лучше всего подходит к эмпирическому тренду (к фактической траектории).

Как известно, в природе существует огромное разнообразие функциональных зависимостей, поэтому визуальным способом проанализировать даже незначительную их часть - крайне затруднительно. К счастью, в реальной экономической практике большинство взаимосвязей достаточно точно могут быть описаны или параболой, или гиперболой, или же прямой линией. В связи с этим, при «ручном» варианте подбора лучшей функции, можно ограничиться только этими тремя моделями.

Гипербола:

Парабола второго порядка: :

Нетрудно заметить, что в нашем примере лучше всего тенденцию изменения урожайности подсолнечника за анализируемые 10 лет характеризует прямая линия, поэтому уравнением регрессии будет уравнение прямой.

Третья процедура. Рассчитываются параметры регрессионного уравнения, характеризующего данную линию, или другими словами, определяется аналитическая формула, описывающая лучшую модель тренда.

Нахождение значений параметров уравнения регрессии, в нашем случае параметров и , является сердцевиной МНК. Данный процесс сводится к решению системы нормальных уравнений.

(9.2)

Эта система уравнений довольно легко решается методом Гаусса. Напомним, что в результате решения, в нашем примере, находятся значения параметров и . Таким образом, найденное уравнение регрессии будет иметь следующий вид: