Главная · Горло · Определение объема циркулирующей крови. Что такое оцк Увеличение оцк

Определение объема циркулирующей крови. Что такое оцк Увеличение оцк

Глава 10.
Расчет объема циркулирующей крови, центрального объема крови и объема крови, находящейся в системе малого круга

Объемные характеристики кровообращения оказываются чрезвычайно важными при наличия механизмов изменения основных гемодинамических параметров. С достоверностью установлено, что не только насосная функция сердца (нагрузка "на входе"), но и сосудистый тонус, особенно резистивных сосудов ("ауторегуляция"), зависят от объемных характеристик сердечно-сосудистой системы. Особое значение объемы крови имеют для регуляции системной гемодинамики, определяя не только рефлекторные реакции, но и вовлечение гуморальных, в том числе и эндокринных факторов.

10.1. Расчет объема циркулирующей крови

Для определения объема циркулирующей крови (ОЦК) обычно используют методику разведения индикатора. В качестве индикатора используют те же вещества, что и для определения сердечного выброса методом Стюарта-Гамильтона. В качестве примера приводится наша модификация методики с краской Ивенса Т-1824 (В.Б.Брин,1978). Предварительно готовится 1% раствор синьки Ивенса и производится ряд разведений краски согласно таблице, приводимой в приложении 20 [показать] .

Таблица приготовления 1% раствора краски Ивенса (синей Т-1824) при определении объема циркулирующей крови
Пробирка Количество основного раствора краски, мл Количество физраствора, мл Соотношение Содержание краски в 1 мл, мг Количество плазмы крови, мл Содержание краски в 0, 1, мг Содержание краски в 1 мл плазмы крови, мг
1 1,0 0 1:1 10 3 1,0 0,3333
2 1,4 0,6 7:10 7 3 0,7 0,2333
3 2,0 2,0 5:10 5 3 0,5 0,1666
4 2,0 3,0 4:10 4 3 0,4 0,1333
5 1,5 3,5 3:10 3 3 0,3 0,1000
6 2,0 8,0 2:10 2 3 0,2 0,0666
7 1,0 9,0 1:10 1 3 0,1 0,0333
8 0,5 9,5 1:20 0,5 3 0,05 0,0166
9 0,2 9,8 1:50 0,2 3 0,02 0,0066
10 0,1 9,9 1:100 0,1 3 0,01 0,0033

В шприц, смоченный гепарином, из вены набирается 6-7 мл крови и через эту же иглу вводится в вену 5-10 мл 1% раствора краски (50-100 мг). Через 10 мин вновь производится забор 5 мл крови в гепаринизированный шприц. Обе порции крови центрифугируются при 6000 об/мин в течение 30 мин-1ч. Сразу же после взятия первой порции крови из шприца заполняется 2 капилляра гематокрита и центрифугируются при 6000 об/мин - 15-30 мин. Плазма из обеих пробирок отсасывается и в 2 пробирки наливается по 1 мл фоновой плазмы и плазмы с синькой. В каждую пробирку наливается по 5 мл физиологического раствора, т.е. производится разведение 1:6. Плазма фоновой пробирки разливается поровну, т.е. по 3 мл в две пробирки. В штатив помещают три пробирки с плазмой и нумеруют в следующем порядке:

  1. - нормальная плазма 3,0 мл;
  2. - нормальная плазма 3,0 мл;
  3. -опытная плазма с синькой 3,0 мл.

В первую пробирку добавляют 0,1 мл физиологического раствора, во вторую пробирку - 0,1 мл краски из пробирки ряда разведения краски, например из пробирки №7 (см. выше приложение 20); в третью пробирку не добавляют ничего. На спектрофотометре СФ-26 при длине волны 640 мкм фотометируют: 1 кювета - плазма из первой пробирки; 2 кювета - плазма с синькой из второй пробирки; 3 кювета - опытная плазма из пробирки №3. Фотометирование можно производить и на фотоэлектроколориметре со светофильтром №8 - 600 нм.

где Н т - гематокритный показатель; 0,96 - поправочный коэффициент для учета количества плазмы, остающейся между эритроцитами после центрифугирования крови.

Общая формула расчета ОЦК для любого индикатора может быть представлена следующим образом:

где С - количество введенного индикатора в микрограмиах; К - концентрация индикатора в крови, мКг/мл.

Объем циркулирующей крови может быть определен бескровным методом с помощью регистрации интегрального базисного сопротивления тела (R) на реографе при наложении электродов для реографии по методу Тищенко. Отличием от размещения электродов по оригинальному методу Тищенко является их помещение для определения OЦК не на дистальные участки голеней и предплечий, а на середину голеней и предплечий. Формула расчета OЦК в случае применения стандартных реографических свинцовых пластинчатых электродов площадью 25 см 2 по Н.М.Шестакову (1977) для человека:

Могут быть применены вместо свинцовых пластин и электроды-присоски для грудных отведений ЭКГ. Попарно объединенные для верхних и нижних конечностей, они также накладываются на средние трети голеней и предплечий. Поскольку площадь этих электродов меньше, формула расчета (ЦК по Н.М.Шестакову (1977) имеет иной вид:

Аналогичный метод определения ОЦК может быть использован и у лабораторных животных. Так, для кроликов формула, эмпирически выведенная Н.М. Шестаковым, имеет следующий вид:

Для других видов животных формула может быть выведена эмпирически, путем сопоставления реографических данных с прямыми методами регистрации ОЦК.

Однако, как показали наши исследования, определение ОЦК по реографическому методу Н.М.Шестакова дает существенные погрешности, а в условиях патологии, например при наличии отечного синдрома или клеточной дегидратации, вообще не применима. В то же время быстрота и подкупающая несложность и атравматичность метода, на наш взгляд, выдвигают настоятельную необходимость его изучения и совершенствования.

Определение объемов крови в различных участках тела возможно и с помощью тетраполярной реография (Н.А.Енизарова с соавт., 1981). В таких случаях правильнее говорить об удельных объемах, так как импеданс отражает общий объем жидкости изучаемой области (мл на 100 г ткани). При измерении "токовые" кольцевые электроды накладываются на голову (уровень на середине лба) и на 5 см выше внутренней лодыжки, а "потенциальные" в зависимости от определяемого объема:

  1. для определения удельного объема крови в брюшной полости (ОКБ уд) - на 8 см ниже места сочленения грудины и мечевидного отростка и на уровне гребней подвздошных костей таза;
  2. для определения удельного периферического объема крови конечности (ПОК уд) электроды накладываются соответственно на 10 и 25 см выше внутренней лодыжки.
Расчет производится по формулам:

где К 2 · ρ равняется 25·10 3 , Ом·см; Q - периметр голени.

Цримерно тот же смысл имеет и ударный коэффициент циркуляции (УКЦ):

УКЦ = УOК / ОЦК

10.2. Расчет объемов крови в малом круге

Определение объема крови, находящейся в малом круге кровообращения, имеет чрезвычайно важное значение. Известно, что обеспечение быстрого увеличения сердечного выброса происходит в первую очередь за счет активного уменьшения емкости сосудистого лoжа малого круга кровообращения. И лишь в дальнейшем увеличивается венозный возврат к правому сердцу. Подобные физиологические реакции наблюдаются при переходе из состояния покоя к активной физической деятельности и вообще при состояниях, требующих быстрого увеличения сердечного выброса. Кроме того ряд авторов полагает, что система малого круга кровообращения является важным депо крови в организме. И наконец, имеется четкая зависимость между количествам крови в легочных капиллярах и степенью ее насыщаемости кислородом.

Объем циркулирующей крови в малом круге кровообращения (ОЦК м.к.) рассчитывается по формуле:

где ОЦОК - остаточный центральный объем крови.

Центральный объем крови рассчитывается по формуле:

где Т ц - время кровотока от правого сердца до выхода из левого желудочка, обычно определяемое от момента введения индикатора (краски, физиологического раствора и т.д.) в правое сердце до его появления в начальном отделе аорты.

Центральный объем крови можно рассчитать и при использовании метода тетраполярной реографии (Н.А.Елизарова с соавт., 1981). В этих случаях "потенциальные" электроды накладываются в области шеи (уровень остистого отростка VII шейного позвонка) и места членения грудины и мечевидного отростка, "токовые" - по методике, описанной нами выше (раздел 10.1). Удельный центральный объем крови (ЦОК уд) вычисляется по формуле (мл на 100 г ткани):

где К·ρ равняется 95middot;10 3 , Ом·см; Q ср. - усредненный периметр грудной клетки, см; z - межэлектродное базисное сопротивление.

Расчетным путем определяют следующие показатели, характеризующие соотношение между объемом крови в малом круге кровообращения и газодинамическими показателями:

Источник : Брин В.Б., Зонис Б.Я. Физиология системного кровообращения. Формулы и расчеты. Издательство Ростовского университета, 1984. 88 с.

Литература [показать]

  1. Александров А.Л., Гусаров Г.В., Егурнов Н.И., Семенов А.А. Некоторые косвенные методы измерения сердечного выброса и диагностики легочной гимертензии. - В кн.: Проблемы пульмонологии. Л., 1980, вып. 8, с.189.
  2. Амосов Н.М., Лшцук В.А., Пацкина С.А. и др. Саморегуляция сердца. Киев, 1969.
  3. Андреев Л.Б., Андреева Н.Б. Кинетокардиография. Ростов н/Д: Изд-во Рост, у-та, 1971.
  4. Брин В.Б. Фазовая структура систолы левого желудочка при деафферентации синокаротидных рефлексогенных зон у взрослых собак и щенков. - Пат. физиол, и экспер. терап., 1975, №5, с.79.
  5. Брин B.Б. Возрастные особенности реактивности синокаротидного прессорного механизма. - В кн.: Физиология и биохимия онтогенеза. Л., 1977, с.56.
  6. Брин В.Б. Влияние обзидана на системную гемодинамику у собак в онтогенезе. - Фармакол. и токсикол., 1977, №5, с.551.
  7. Брин В.Б. Влияние альфа-адреноблокатора пирроксана на системную гемодинамику при вазоренальной гипертензии у щенков и собак. - Бюл. экспер. биол. и мед., 1978, №6, с.664.
  8. Брин В.Б. Сравнительно-онтогенетический анализ патогенеза артериальных гипертензий. Автореф. на соиск. уч. ст. док. мед. наук, Ростов н/Д, 1979.
  9. Брин В.Б., Зонис Б.Я. Фазовая структура сердечного цикла у собак в постнатальнал отногенезе. - Бюл. экспер. биол. и мед., 1974, №2, с. 15.
  10. Брин В.Б., Зонис Б.Я. Функциональное состояние сердца и гемодинамика малого круга при дыхательной недостаточности. - В кн.: Дыхательная недостаточность в клинике и эксперименте. Тез. докл. Всес. конф. Куйбышев, 1977, с.10.
  11. Брин В.Б., Сааков Б.А., Кравченко А.Н. Изменения системной гемодинамики при экспериментальной реноваскулярной гипертонии у собак разного возраста. Cor et Vasa, Ed.Ross, 1977, т.19, №6, с.411.
  12. Вейн А.М., Соловьева А.Д., Колосова О.А. Вегетно-сосудистая дистония. М., 1981.
  13. Гайтон А. Физиология кровообращения. Минутный объем сердца и его регуляция. М., 1969.
  14. Гуревич М.И., Берштейн С.А. Основы гемодинамики. - Киев, 1979.
  15. Гуревич М.И., Берштейн С.А., Голов Д.А. и др. Определение сердечного выброса методом термодилюции. - Физиол. журн. СССР, 1967, т.53, №3, с.350.
  16. Гуревич М.И., Брусиловский Б.М., Цирульников В.А., Дукин Е.А. Количественная оценка величины сердечного выброса реографическим методом. - Врачебное дело, 1976, № 7, с.82.
  17. Гуревич М.И., Фесенко Л.Д., Филиппов М.М. О надежности определения сердечного выброса методом тетраполярной грудной импедансной реографии. - Физиол. журн. СССР, 1978, т.24, № 18, с.840.
  18. Дастан Х.П. Методы исследования гемодинамики у больных гипертензией. - В кн.: Артериальные гипертензии. Материалы советско-американского симпозиума. М., 1980, с.94.
  19. Дембо А.Г., Левина Л.И, Суров Е.Н. Значение определения давления в малом круге кровообращения у спортсменов. - Теория и практика физической культуры, 1971, № 9, с.26.
  20. Душанин С.А., Морев А.Г., Бойчук Г.К. О легочной гипертензии при циррозе печени и определении ее графическими методами. - Врачебное дело, 1972, №1, с.81.
  21. Елизарова Н.А., Битар С., Алиева Г.Э., Цветков А.А. Изучение регионарного кровообращения с помощью импедансометрии. - Терап.архив, 1981, т.53, № 12, с.16.
  22. Заславская P.M. Фармакологические воздействия на легочное кровообращение. М., 1974.
  23. Зернов Н.Г., Кубергер М.Б., Попов А.А. Легочная гипертензия в детском возрасте. М., 1977.
  24. Зонис Б.Я. Фазовая структура сердечного цикла по данным кинетокардиографии у собак в постнатальном онтогенезе. - Журн. эволюцион. биохимии и физиол., 1974, т.10, № 4, с.357.
  25. Зонис Б.Я. Электромеханическая деятельность сердца у собак различного возраста в норме и при развитии реноваскулярной гипертонии, Автореф. дис. на соиск. уч.ст. канд.мед.наук, Махачкала, 1975.
  26. Зонис Б.Я., Брин В.Б. Влияние однократного приема альфа-адренергического блокатора пирроксана на кардио- и гемодинамку у здоровых людей и больных артериальными гипертензиями, - Кардиология, 1979, т.19, № 10, с.102.
  27. Зонис Я.М., Зонис Б.Я. О возможности определения давления в малом круге кровообращения по кинетокардиограмме при хронических заболеваниях легких. - Терап. архив, 4977, т.49, № 6, с.57.
  28. Изаков В.Я., Иткин Г.П., Мархасин B.C. и др. Биомеханика сердечной мышцы. М., 1981.
  29. Карпман В.Л. Фазовый анализ сердечной деятельности. М., 1965
  30. Кедров А.А. Попытка количественной оценки центрального и периферического кровообращения электрометрическим путем. - Клиническая медицина, 1948, т.26, № 5, с.32.
  31. Кедров А.А. Электроплетизмография как метод объективной оценки кровообращения. Автореф. дис. на соиск. уч. ст. канд. мед. наук, Л., 1949.
  32. Клиническая реография. Под ред. проф. В.Т.Шершнева, Киев, 4977.
  33. Коротков Н.С. К вопросу о методах исследования кровяного давления. - Известия ВМА, 1905, № 9, с.365.
  34. Лазарис Я.А., Серебровская И.А. Легочное кровообращение. М., 1963.
  35. Лериш Р. Воспоминания о моей минувшей жизни. М., 1966.
  36. Мажбич Б.И., Иоффе Л.Д., Замещений М.Е. Клинико-физиологические аспекты регионарной электроплетизмографии легких. Новосибирск, 1974.
  37. Маршалл Р.Д., Шефферд Дж. Функция сердца у здоровых и бальных. М., 1972.
  38. Меерсон Ф.З. Адаптация сердца к большой нагрузке и сердечная недостаточность. М., 1975.
  39. Методы исследования кровообращения. Под общей редакцией проф. Б.И.Ткаченко. Л., 1976.
  40. Мойбенко А.А., Повжитков М.М., Бутенко Г.М. Цитотоксические повреждения сердца и кардиогенный шок. Киев, 1977.
  41. Мухарлямов Н.М. Легочное сердце. М., 1973.
  42. Мухарлямов Н.М., Сазонова Л.Н., Пушкарь Ю.Т. Исследование периферического кровообращения с помощью автоматизированной окклюзионной плетизмографии, - Терап. архив, 1981, т.53, № 12, с.3.
  43. Оранский И.Е, Акселерационная кинетокардиография. М., 1973.
  44. Орлов В.В. Плетизмография. М.-Л., 1961.
  45. Осколкова М.К., Красина Г.А. Реография в педиатрии. М., 1980.
  46. Парин В.В., Меерсон Ф.З. Очерки клинической физиологии кровообращения. М., 1960.
  47. Парин В.В. Патологическая физиология малого круга кровообращения В кн.: Руководство по патологической, физиологии. М., 1966, т.3, с. 265.
  48. Петросян Ю.С. Катетеризация сердца при ревматических пороках. М., 1969.
  49. Повжитков М.М. Рефлекторная регуляция гемодинамики. Киев, 1175.
  50. Пушкарь Ю.Т., Большов В.М., Елизаров Н.А. и др. Определение сердечного выброса методом тетраполярной грудной реографии его метрологические возможности. - Кардиологии, 1977, т.17, №17, с.85.
  51. Радионов Ю.А. Об исследовании гемодинамики методом разведения красителя. - Кардиология, 1966, т.6, №6, с.85.
  52. Савицкий Н.Н. Биофизические основы кровообращения и клинические методы изучения гемодинамики. Л., 1974.
  53. Сазонова Л.Н., Больнов В.М., Максимов Д.Г. и др. Современные методы изучения в клинике состояния резистивных и емкостных сосудов. -Терап. архив, 1979, т.51, №5, с.46.
  54. Сахаров M.П., Орлова Ц.Р., Васильева А.В., Трубецкой А.З. Два компонента сократимости желудочков сердца и их определение на основе неинвазивной методики. - Кардиология, 1980, т.10, №9, с.91.
  55. Селезнев С.А.., Вашетина С.М., Мазуркевич Г.С. Комплексная оценка кровообращения в экспериментальной патологии. Л., 1976.
  56. Сывороткин М.Н. Об оценке сократительной функции миокарда. - Кардиология, 1963, т.З, №5, с.40.
  57. Тищенко М.И. Биофизические и метрологические основы интегральных методов определения ударного объема крови человека. Автореф. дис. на соиск. уч. ст. докт. мед. наук, М., 1971.
  58. Тищенко М.И., Сеплен М.А., Судакова З.В. Дыхательные изменения ударного объема левого желудочка здорового человека. - Физиол. журн. СССР, 1973, т.59, №3, с.459.
  59. Тумановекий М.Н., Сафонов К.Д. Функциональная диагностика заболеваний сердца. М., 1964.
  60. Уигерс К. Динамика кровообращения. М., 1957.
  61. Фельдман С.Б. Оценка сократительной функции миокарда по длительности фаз систолы. М., 1965.
  62. Физиология кровообращения. Физиология сердца. (Руководство по физиологии), Л., 1980.
  63. Фолков Б., Нил Э. Кровообращение. М., 1976.
  64. Шершевский Б.М. Кровообращение в малом круге. М., 1970.
  65. Шестаков Н.М. 0 сложности и недостатках современных методов определения объема циркулирующей крови и о возможности более простого и быстрого метода его определения. - Терап. архив, 1977, №3, с.115. И.устер Л.А., Бордюженко И.И. О роли компонентов формулы определения ударного объема крови методом интегральной реографии тела. -Терап. зрхив, 1978, т.50, ?4, с.87.
  66. Agress С.M., Wegnes S., Frement В.P. et al. Measurement of strolce volume by the vbecy. Aerospace Med., 1967, Dec, p.1248
  67. Blumberger K. Die Untersuchung der Dinamik des Herzens bein Menshen. Ergebn.Med., 1942, Bd.62, S.424.
  68. Bromser P., Hanke С. Die physikalische Bestimiung des Schlagvolumes der Herzens. - Z.Kreislaufforsch., 1933, Bd.25, № I, S.II.
  69. Burstin L. -Determination of pressure in the pulmonary by external graphic recordings. -Brit.Heart J., 1967, v.26, p.396.
  70. Eddleman E.E., Wilis K., Reeves T.J., Harrison Т.К. The kinetocardiogram. I. Method of recording precardial movements. -Circulation, 1953, v.8, p.269
  71. Fegler G. Measurement of cardiac output in anaesthetized animals by a thermodilution method. -Quart.J.Exp.Physiol., 1954, v.39, P.153
  72. Fick A. Über die ilessung des Blutquantums in den Herzventrikeln. Sitzungsbericht der Würzburg: Physiologisch-medizinischer Gesellschaft, 1970, S.36
  73. Frank M.J., Levinson G.E. An index of the contractile state of the myocardium in man. -J.Clin.Invest., 1968, v.47, p.1615
  74. Hamilton W.F. The physiology of the cardiac output. -Circulation, 1953, v.8, p.527
  75. Hamilton W.F., Riley R.L. Comparison of the Fick and dye-dilution method of measurement the cardiac output in man. -Amer.J. Physiol., 1948, v.153, p.309
  76. Kubicek W.G., Patterson R.P.,Witsoe D.A. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. -Ann.N.Y.Acad. Sci., 1970, v.170, p.724.
  77. Landry A.B.,Goodyex A.V.N. Hate of rise left ventricular pressure. Indirect measurement and physiologic significance. -Acer. J.Cardiol., 1965, v.15, p.660.
  78. Levine H.J., McIntyre K.M., Lipana J.G., Qing O.H.L. Force-velocity relations in failing and nonfailing hearts of subjects with aortic stenosis. -Amer.J.Med.Sci., 1970, v.259, P.79
  79. Mason D.T. Usefulness and limitation of the rate of rise of intraventricular pressure (dp/dt) in the evaluation of iqyocardial contractility in man. -Amer.J.Cardiol., 1969, v.23, P.516
  80. Mason D.T., Spann J.F., Zelis R. Quantification of the contractile state of the intact human heat. -Amer.J.Cardiol., 1970, v.26, p. 248
  81. Riva-Rocci S. Un nuovo sfigmomanometro. -Gas.Med.di Turino, 1896, v.50, №51, s.981.
  82. Ross J., Sobel В.E. Regulation of cardiac contraction. -Amer. Rev.Physiol., 1972, v.34, p.47
  83. Sakai A.,Iwasaka T., Tauda N. et al. Evaluation of the determination by impedance cardiography. -Soi et Techn.Biomed., 1976, NI, p.104
  84. Sarnoff S.J.,Mitchell J.H. The regulation of the performence of the heart. -Amer.J.Med.,1961, v.30, p.747
  85. Siegel J.H., Sonnenblick E.Н. Isometric Time-tension relationship as an index of ocardial contractility. -Girculat.Res., 1963, v.12, р.597
  86. Starr J. Studies made by simulating systole at necropsy. -Circulation, 1954, v.9, p.648
  87. Veragut P., Krayenbuhl H.P. Estimation and quantification of myocardial contractility in the closed-chest dog. -Cardiologia (Basel), 1965, v.47, № 2, p.96
  88. Wezler K., Böger A. Der Feststellung und Beurteilung der Flastizitat zentraler und peripherer Arterien am Lebenden. -Schmied.Arch., 1936, Bd.180, S.381.
  89. Wezler K., Böger A. Über einen Weg zur Bestimmung des absoluten Schlagvolumens der Herzens beim Menschen auf Grund der Windkesseltheorie und seine experimentalle Prafung. -N.Schmied. Arch., 1937, Bd.184, S.482.

Материалы публикуются для ознакомления, и не являются предписанием к лечению! Рекомендуем обратиться к врачу-гематологу в вашем лечебном учреждении!

Гиповолемия - одно из опасных заболеваний кроветворной системы, которое может привести к смерти человека. Что такое синдром гиповолемии? Чем опасна болезнь и каковы ее разновидности? Рассмотрим причины, симптомы, виды гиповолемии, методы лечения.

Уменьшение объема циркуляции крови в гематологии носит название гиповолемия. При развитии данного заболевания происходит нарушение форменных элементов в плазме крови. В норме объем циркулирующей плазмы (ОЦП) в организме человека колеблется около 69 мл/кг у мужчин и 65 мл/кг у женщин. Гиповолемия относится к тяжелым состояниям, которые при несвоевременно оказанной медицинской помощи могут привести к смерти человека. Данное заболевание не является самостоятельным, а развивается как осложнение на фоне внутренних заболеваний. Именно поэтому после того как у человека появляются симптомы гиповолемии, важно установить этиологический фактор и только тогда предпринимать меры по лечению. При гиповолемии происходит неправильное распределение внутриклеточной жидкости, что и ведет к уменьшению циркуляции крови.

Гиповолемия — уменьшение объема циркуляции крови

Важно: Синдром гиповолемии может развиваться как при тяжелых патологиях внутренних органов, так и при менее опасных состояниях, поэтому важно установить причины гиповолемии и только потом проводить лечение.

Причины

Снижение объема циркулирующей крови может происходить по множественным причинам, но в основном такое состояние проявляется при следующих заболеваниях:

  1. Обезвоживание организма.
  2. Нарушения обменных процессов: сахарный диабет.
  3. Болезни почек: гломерулонефрит, почечная недостаточность.
  4. Травмы внутренних органов.
  5. Осложнение после оперативных вмешательств.
  6. Перитонит.
  7. Внутренние кровотечения.
  8. Болезни ЖКТ.
  9. Эндокринные нарушения.
  10. Патологии сердечно-сосудистой системы.

Предрасполагающими факторами к развитию гиповолемии считаются:

  1. Недостаточное употребление воды.
  2. Регулярные стрессы, депрессии.
  3. Ожоги.
  4. Переливание крови.
  5. Многократная и обильная рвота.
  6. Диарея.

Обезвоживание — одна из причин гиповолемии

Это далеко не все причины, которые могут спровоцировать развитие гиповолемии. В редких случаях пациентам выставляется диагноз гиповолемия щитовидной железы, при которой происходит не только уменьшение жидкости, но и снижается выработка гормонов. В основном такое состояние диагностируется крайнее редко и только после длительных кровопотерь.

Виды

В гематологии разделяют три основных вида гиповолемии, каждая из которых имеет свои особенности:

  1. Нормоцитемическая — характеризуется снижением циркулирующей крови при стойком гематокрите. В основном причиной такого состояния считается острая кровопотеря, коллапс и другие тяжелые состояния, ведущие к уменьшению тока в венах и больших артериях.
  2. Олигоцитемическая гиповолемия — снижение количества крови и форменных элементов с понижением гематокрита. Основной причиной развития данного состояния считается , которая развивается в результате дефицита эритроцитов или обширном гемолизе эритроцитов. Такое состояние характерно при полученных ожогах 1 или 2 степени.
  3. Полицитемическая гиповолемия — вызывается снижением объема крови на фоне уменьшения количества плазмы.

Стадии болезни

Течение гиповолемии напрямую зависит от количества кровопотери, а также симптомов, с которыми больной обратился к врачам.

Различают три основных степени гиповолемии, каждая из которых имеет характерные признаки:

  1. Легкая степень. Кровопотеря в среднем составляет не больше 15% от общей циркуляции крови. У больных отмечается снижение артериального давления, тахикардия, учащенный пульс и дыхание. Кожные покровы бледные, верхние и нижние конечности холодные, также присутствует повышенная сухость во рту, общая слабость.
  2. Средняя степень. Потеря крови составляет до 40%. Состояние больного достаточно тяжелое, артериальное давление ниже 90 мм.рт.ст., учащенный пульс, тяжелое аритмичное дыхание, повышенная потливость, цианоз губ, бледность, повышенная сонливость, ощущение нехватки воздуха. В некоторых случаях может присутствовать рвота, обмороки, снижается количество мочи.
  3. Тяжелая степень. Больной теряет до 70% общего объема крови, давление ниже 60 мм.рт.ст., пульс еле прослушивается, выраженная тахикардия, спутанность сознания, возможны судороги, дыхание жесткое. Такое состояние крайнее опасно для жизни человека, поскольку может привести к летальному исходу.

Как проявляется гиповолемия?

Клинические признаки гиповолемии достаточно выраженные и сопровождаются следующими симптомами:

  1. Снижение диуреза.
  2. Повышенная жажда.
  3. Бледность кожных покровов.
  4. Снижение температуры тела.
  5. Увеличение частоты сердечных сокращений.
  6. Снижение массы тела.
  7. Сухость и шелушение кожи.
  8. Отеки ног.
  9. Повышенная усталость.
  10. Снижение артериального давления.
  11. Частые головные боли.
  12. «Мушки» перед глазами.

Диагностика и лечение

При подозрении на гиповолемию, врач назначает ряд лабораторных исследований, которые позволяют определить количество эритроцитов и плазмы крови, также назначается анализ мочи. При снижении внеклеточной жидкости, анализ крови выполняется вместе с белковыми растворами, глюкозой, растворами электролитов. Результаты исследований позволяют создать полную картину болезни, определить стадию, вид, назначить соответствующее лечение.

Количество циркулирующей крови в организме является величиной, в достаточной мере стабильной, и диапазон ее изменений довольно узок. Если величина сердечного выброса может как в норме, так и при патологических состояниях изменяться в 5 и более раз, то колебания ОЦК менее существенны и обычно наблюдаются лишь в условиях патологии (например, при кровопотере). Относительное постоянство объема циркулирующей крови свидетельствует, с одной стороны, о безусловной важности его для гомеостаза, а с другой - о наличии достаточно чувствительных и надежных механизмов регуляции этого параметра. О последнем свидетельствует также относительная стабильность ОЦК на фоне интенсивного обмена жидкости между кровью и зкстраваскулярным пространством. По данным Pappenheimer (1953), объем жидкости, диффундирующей из кровеносного русла в ткани и обратно в течение 1 мин, превышает величину сердечного выброса в 45 раз.

Механизмы регуляции общего объема циркулирующей крови до сих пор изучены хуже, нежели других показателей системной гемодинамики. Известно лишь, что механизмы регуляции объема крови включаются в ответ на изменения давления в различных отделах кровеносной системы и в меньшей степени на изменения химических свойств крови, в частности ее осмотического давления. Именно отсутствие специфических механизмов, реагирующих на изменения объема крови (так называемые «волюмрецепторы» являются барорецепторами), и наличие косвенных делают регуляцию ОЦК крайне сложной и многоступенчатой. В конечном итоге она сводится к двум основным исполнительным физиологическим процессам - перемещению жидкости между кровью и зкстраваскулярным пространством и изменениям выведения жидкости из организма. При этом следует учитывать, что в регуляции объема крови большая роль принадлежит изменениям содержания плазмы, нежели глобулярного объема. Кроме того, «мощность» регуляторных и компенсаторных механизмов, включающихся в ответ на гиповолемию, превышает таковую при гиперволемии, что вполне объяснимо с позиций формирования их в процессе эволюции.

Объем циркулирующей крови является весьма информативным показателем, характеризующим системную гемодинамику. Это связано в первую очередь с тем, что он определяет величину венозного возврата к сердцу и, следовательно, его производительность. В условиях гиповолемии минутный объем кровообращения находится в прямой линейной зависимости (до определенных пределов) от степени уменьшения ОЦК (Shien, Billig, 1961; С. А. Селезнев, 1971а). Однако изучение механизмов изменений ОЦК и в первую очередь генеза гиповолемии может быть успешным лишь в случае комплексного исследования объема крови, с одной стороны, и баланса внесосудистой экстра- и интрацеллюлярной жидкости, с другой; при этом необходимо учитывать обмен жидкости на участке «сосуд - ткань».

Настоящая глава посвящена анализу принципов и методов определения лишь объема циркулирующей крови. В связи с тем, что методики определения ОЦК широко освещены в литературе последних лет (Г. М. Соловьев, Г. Г. Радзивил, 1973), в том числе и в руководствах по клиническим исследованиям, нам представлялось целесообразным уделить большее внимание ряду спорных теоретических вопросов, опустив некоторые частные методические приемы. Известно, что объем крови может быть определен как прямыми, так и непрямыми методами. Прямые методы, представляющие в настоящее время лишь исторический интерес, основаны на тотальной кровопотере с последующим отмыванием трупа от оставшейся крови и определением объема ее по содержанию гемоглобина. Естественно, что эти методы не удовлетворяют требованиям, предъявляемым к физиологическому эксперименту сегодняшнего дня, и практически не используются. Иногда они применяются для определения регионарных фракций ОЦК, о чем будет сказано в главе IV.

Оценка тяжести состояния пациента при кровотечениях традиционно и, вполне оправданно с патофизиологических позиций, связывается с определением степени кровопотери. Именно острая, подчас - массивная, кровопотеря выделяет патологические процессы, осложненную геморрагией, из череды нозологических форм острой абдоминальной хирургической патологии, требуя проведения максимально быстрых лечебных мероприятий, направленных на спасение жизни больного. Cтепень нарушений гомеостаза, вызванных геморрагией, и адекватность их коррекции определяет принципиальную возможность, сроки и характер неотложного оперативного вмешательства. Диагностика степени кровопотери и определение индивидуальной стратегии заместительной терапии должны решаться хирургами совместно с врачами-реаниматологам, поскольку именно тяжесть постгеморрагического состояния организма является главным фактором, определяющим все дальнейшие лечебно-диагностические мероприятия. Выбор рациональной тактики лечения является прерогативной хирургов с учетом того, что тяжесть кровопотери служит важнейшим прогностическим признаком возникновения летальных исходов.

Так, летальность среди больных, поступивших в состоянии геморрагического шока в стационар с клинической картиной гастродуоденального кровотечения колеблется от 17, 1 до 28, 5% (Schiller et al. , 1970; C. Sugawa et al. , 1990). Кроме того определение тяжести кровотечения имеет важное прогностическое значение в возникновении рецидива гастродуоденального кровотечения: На Согласительной конференции Института Здоровья США (1989) единодушно признано, что ведущим фактором в возникновении рецидива язвенного гастродуоденального кровотечения является именно величина кровопотери до поступления, по мнению X. Mueller et al. (1994) шок является наиболее информативным признаком в прогнозе рецидива кровотечения и превосходит эндоскопические критерии.

В настоящее время известно более 70 классификаций степени тяжести кровопотери, что само по себе свидетельствует об отсутствии единой концепции в столь актуальном вопросе. На протяжении десятилетий менялись приоритеты в отношении маркеров тяжести кровопотери, что во многом свидетельствует об эволюции взглядов на патогенез постгеморрагических нарушений гомеостаза. Все подходы к оценке тяжести постгеморрагических расстройств, лежащие в основе классификаций тяжести острой кровопотери разделяют на четыре группы: 1) оценка объема циркулирующей крови (ОЦК) и его дефицита по гематологическим параметрам или прямыми методами, 2) инвазивный мониторинг центральной гемодинамики, 3) оценка транспорта кислорода, 4) клиническая оценка тяжести кровопотери.

Оценка объема циркулирующей крови (ОЦК) и его дефицита по гематологическим параметрам или прямыми методами используются для количественной оценки гиповолемии и качества ее коррекции. Многим авторам представлялось особенно важным дифференцированное определение дефицита циркулирующей плазмы и дефицита циркулирующих эритроцитов. При этом на основании дефицита объема циркулирующих эритроцитов (т. н. «истинная анемия») проводилось точное замещение недостающего объема эритроцитов гемотрансфузиями.

А. И. Горбашко (1974, 1982) использовал определение дефицита ОЦК по данным дефицита глобулярного объёма (ГО), выявляемого полиглюкиновым методом, что позволило выделить 3 степени кровопотери:

I степень (легкая) - при дефиците ГО до 20%,

II степень (средняя) - при дефиците ГО от 20 до 30%,

III степень (тяжелая) - при дефиците ГО 30% и более.

Определение глобулярного объёма в свою очередь проводилось по формуле:

ГО = (ОЦП - Ht) / (100- Ht), ОЦП=М х 100/С ,

где М - количество сухого полиглюкина в мг (в 40 мл 6% раствора полиглюкина - 2400 мг сухого вещества), С - концентрация полиглюкина в плазме в мг%, ОЦП - объем циркулирующей плазмы.

П. Г. Брюсов (1997) предлагает свой метод расчета степени кровопотери по дефициту глобулярного объёма в виде формулы:

Vкп=ОЦКд х (ГОд-ГОф) / Год ,

где Vкп - объем кровопотери, ОЦКд - должный ОЦК, Год - глобулярный объем должный, ГОф - глобулярный объем фактический.

Исследование гематокритного числа в динамике позволяет судить о степени постгеморрагической аутогемодилюции, адекватности проведения инфузионной и трансфузионной терапии. Считается, что потеря каждых 500 мл крови сопровождается снижением гематокрита на 5 - 6%, равно как переливание крови пропорционально повышает этот показатель. В качестве одного из быстрых и достоверных методов определения объёма кровопотери на основании показателей гематокрита может быть использован метод Мура (1956):

Объем кровопотери = ОЦКд х (( Htд - Htф) / Htд,

где Htд - должный гематокрит, Htф-гематокрит фактический.

Тем не менее, абсолютное значение кровопотери и дефицита ОЦК при остром гастродуоденальном кровотечении выявить не удается. Это связано с несколькими факторами. Во-первых, крайне затруднительно установить исходный показатель ОЦК. Формулы теоретического расчета ОЦК по номограммам (Lorenz, Nadler, Allen, Hooper) дают лишь приблизительные значения, не учитывая конституциональных особенностей данного индивида, степени исходной гиповолемии, возрастных изменений ОЦК (у стариков его значение может варьировать в пределах 10-20% от должного). Во-вторых, перераспределение крови с секвестрацией ее на периферии и параллельно развивающаяся гидремическая реакция, а также начатая на догоспитальном этапе и продолжающаяся в стационаре инфузионная терапия делают ОЦК у каждого конкретного больного величиной весьма вариабельной.

Широко известны (но не широко применяемы в клинике) прямые методы определения ОЦК , основанные на принципах: 1) плазменных индикаторов - красителей, альбумина I131, полиглюкина (Gregersen, 1938; Е. Д. Черникова, 1967; В. Н. Липатов, 1969) ; 2) глобулярных индикаторов - эритроцитов, меченых Cr51, Fe59 и другими изотопами (Н. Н. Чернышева, 1962; А. Г. Караванов, 1969) ; 3) плазменного и глобулярного индикаторов одновременно (Н. А. Яицкий, 2002). Теоретически рассчитаны должные показатели ОЦК, объёма циркулирующей плазмы и эритроцитов, созданы номограммы для определения волемии по гематокриту и массе тела (Жизневский Я. А. , 1994). Используемые лабораторные методы определения величины ОЦК или даже более точный метод интегральной реографии, отражают величину ОЦК лишь в данный момент времени, тогда как достоверно установить истинную величину и, соответственно, объем кровопотери не представляется возможным. Поэтому методы оценки ОЦК и его дефицита в абсолютных значениях в настоящее время представляют интерес скорее для экспериментальной, нежели для клинической медицины.

Инвазивный мониторинг центральной гемодинамики. Простейшим методом инвазивной оценки степени гиповолемии является измерение величины центрального венозного давления (ЦВД). ЦВД отражает взаимодействие между венозным возвратом и насосной функцией правого желудочка. Указывая на адекватность наполнения полостей правого сердца, ЦВД косвенно отражает волемию организма. Следует принимать во внимание то, что на величину ЦВД оказывают влияние не только ОЦК, но и венозный тонус, контрактильность желудочков, функция предсердно-желудочковых клапанов, объем проводимой инфузии. Поэтому, строго говоря, показатель ЦВД не равнозначен показателю венозного возврата, но в большинстве случаев коррелирует с ним.

Тем не менее, по величине ЦВД можно получить ориентировочное представление о кровопотере: при уменьшении ОЦК на 10% ЦВД (в норме 2 - 12 мм водн. ст.) может не измениться; кровопотеря более 20% ОЦК сопровождается снижением ЦВД на 7 мм водн. ст. Для выявления скрытой гиповолемии при нормальном ЦВД используют измерение при вертикальном положении пациента; снижение ЦВД на 4 - 6 мм водн. ст. указывает на факт гиповолемии.

Показателем, с большей степенью объективности отражающем преднагрузку левого желудочка, а значит, и венозный возврат, является давление заклинивания в легочных капиллярах (ДЗЛК), в норме составляющее 10+4 мм рт. ст. Во многих современных публикация ДЗЛК считается отражением волемии и является обязательной составляющей исследования называемого гемодинамического профиля. Измерение ДЗЛК оказывается незаменимым при необходимости высокой скорости заместительной инфузионной терапии на фоне левожелудочковой недостаточности (например, при кровопотере у стариков). Измерение ДЗЛК проводится прямым методом посредством установки в ветвь легочной артерии через центральный венозный доступ и полости правого сердца катетера Swan-Ganz и соединением его с регистрирующей аппаратурой. Катетер Swan-Ganz может быть использован для измерения сердечного выброса (СВ) по методу болюсной термодилюции. Некоторые современные мониторы (Baxter Vigilance) выполняют автоматическое непрерывное измерение сердечного выброса. Ряд катетеров снабжен оксиметрами, что позволяет осуществлять постоянный мониторинг кислородной сатурации смешанной венозной крови. Наряду с этим, катетеризация легочной артерии позволяет рассчитать индексы, отражающие работу миокарда, транспорт и потребление кислорода (Malbrain M. et al. , 2005).

Идея комплексной оценки гемодинамического профиля пациента и конечной цели гемодинамики - кислородного транспорта - нашла свое отражение в так называемом структурном подходе к проблеме шока. Предлагаемый подход основан на анализе показателей, представленных в виде двух групп: «давление / кровоток» - ДЗЛК, сердечный выброс (СВ), общее периферическое сосудистое сопротивление (ОПСС) и «транспорт кислорода» - DO2 (доставка кислорода), VO2 (потребление кислорода), концентрация лактата в сыворотке крови. Показатели первой группы описывают ведущие нарушения центральной гемодинамики в данный момент времени в виде так называемых малых гемодинамических профилей. В случае гиповолемического шока определяющим в нарушении центральной гемодинамики будет снижение наполнения желудочков (низкое ДЗЛК), приводящее к уменьшению СВ, что в свою очередь вызывает вазоконстрикцию и увеличение ОПСС (см. табл.).

Таблица. Динамика основных показателей инвазивного мониторинга гемодинамики при критических состояниях.

Структурный подход в оценке гемодинамики является не только высоко информативным, но и позволяет контролируемо корригировать обусловленные кровопотерей волемические расстройства. Степень и компенсированность гиповолемии в данном случае показывают ДЗЛК и СВ, периферическую вазоконстрикцию - ОПСС.

Оценка транспорта кислорода. Современная концепция геморрагического шока, рассматривающая его как нарушение системного транспорта кислорода, потребовала разработки новых критериев динамической оценки статуса пациента. Традиционный анализ газов крови позволяет максимально быстро получать информацию о рО2, рСО2, рН крови. Более совершенные методы, например программный пакет « Deep picture» , делает возможным автоматическое определение оксигенации крови в легких, транспорт кислорода на периферию, его потребление в тканях по уровню Р50, характеризующему положение кривой диссоциации HbO2 и сродство гемоглобина данной крови к кислороду. По последнему показателю рассчитывается способность кислородного обеспечения тканей при оптимальном содержании гемоглобина. Однако сдвиг кривой диссоциации оксигемоглобина определяется помимо учитываемых рН крови, раСО2, 2, 3-ДГФ еще и качественными особенностями самого гемоглобина (доля метгемоглобина, глюкозированного гемоглобина), а также циркулирующими среднемолекулярными пептидами, продуктами ПОЛ. Влияние компенсаторного сдвига кривой диссоциации оксигемоглобина может быть настолько велико, что возможна компенсация гипоксемии при раО2 40 - 50 торр и ниже. Постоянное неинвазивное измерение уровня периферического насыщения гемоглобина кислородом SaO2 как критерия кислородного транспорта стало возможным с практически повсеместным внедрением в клинику пульсоксиметрии. Тем не менее, в случае геморрагического шока показания пульсоксиметра могут быть весьма недостоверными вследствие снижения пульсового объема крови в периферических тканях на месте установки датчика в результате вазоконстрикции и артерио-венозного шунтирования. Кроме того, показания будут практически одинаковыми при раО2 80 и 200 торр по причине нелинейности кривой диссоциации HbO2. Полной информации об изменениях перфузии и органного транспорта кислорода не дает также изолированное применение метода транскутанного определения рО2, поскольку на величину последнего оказывают влияние не столько изменения гемоциркуляции, сколько адекватность внешнего дыхания.

Недостаточная объективность оценки транспорта кислорода на основании изолированного анализа одного или нескольких показателей, а также рассмотрение аэробного метаболизма как конечной цели многоуровневой саморегулирующейся системы поддержания гомеостаза привели к разработке и использованию интегральных величин, включающих параметры гемоциркуляции, количества и качества кислородоносителя, тканевого метаболизма. Такими интегральными величинами являются:

1) доставка кислорода , отражающая скорость транспорта О2 артериальной кровью ( DO2 = x СаО2 = x (1, 34 х Hb x SaO2) x 10) , норма - 520—720 мл/ (мин-м),

2) потребление кислорода , представляющее собой кислородное обеспечение тканевого метаболизма ( VO2 = СИ x ( CaO2 - CvO2) = x (1, 34 x Hb) x ( SaO2 - SvO2) , норма - 110 до 160 мл/ (мин-м),

3) коэффициент утилизации кислорода , отражающий долю кислорода, поглощенного тканями из капиллярного русла (КУО2 = VO2 / DO2), норма - 22 - 32%,

где DO2 - доставка кислорода, VO2 - потребление кислорода, КУO2 - коэффициент утилизации кислорода, СИ - сердечный индекс (сердечный выброс/площадь поверхности тела), Hb - гемоглобин крови, SaO2 - сатурация артериальной крови, SvO2 - сатурация венозной крови, СаО2 - концентрация кислорода в артериальной крови, CvO2 - концентрация кислорода венозной крови.

Параметры «транспорта кислорода» оценивают эффективность центральной гемодинамики в отношении оксигенации тканей. Именно показатели DO2 и VO2 определяют эффективность механизмов доставки кислорода тканям по величине СВ, содержания кислорода в артериальной и смешанной венозной крови. Дополнительным маркером адекватности оксигенации тканей или их ишемии с преобладанием анаэробного метаболизма служит повышение концентрации лактата сыворотки крови. На основании показателей транспорта кислорода можно определить, что является предпочтительным для ликвидации тканевой ишемии у больного в данный момент времени: повышение сердечного выброса или (и) возмещение недостатка кислородоносителя. Однако как бы ни была заманчива идея (кстати, уже воплощенная в жизнь) динамической оценки кровообращения структурным подходом по гемодинамическим формулам и транспорту кислорода, в силу печально известных объективных и субъективных факторов ее широкого применения в отечественной клинической практике ожидать приходиться не скоро.

text_fields

text_fields

arrow_upward

У раз­личных субъектов в зависимости от пола, возраста, телосложения, условий жизни, степени физического развития и тренированности Объем Крови на 1 кг массы тела колеблется и составляет от 50 до 80 мл/кг.

Этот показатель в условиях физиологической нормы у индивидуума весьма постоянен .

Объем крови у мужчины массой 70 кг составляет примерно 5,5 л (75-80 мл/кг ),
у взрослой женщины он несколько меньше (около 70 мл/кг ).

У здорового человека, находящегося в лежачем положении 1-2 недели, объем крови может снизиться на 9- 15% от исходного.

Из 5,5 л крови у взрослого мужчины 55-60%, т.е. 3.0-3.5 л, при­ходится на долю плазмы, остальное количество - на долю эритро­цитов .
В течение суток по сосудам циркулирует около 8000-9000 л крови .
Из этого количества приблизительно 20 л выходит в течение суток из капилляров в ткань в результате фильтрации и возвращается вновь (путем абсорбции) через капилляры (16- 18 л) и с лимфой (2-4 л). Объем жидкой части крови, т.е. плазмы (3-3.5 л), существенно меньше, чем объем жидкости во внесосудистом интерстициальном пространстве (9- 12 л) и во внутриклеточном пространстве тела (27-30 л); с жидкостью этих «пространств» плазма находится в динами­ческом осмотическом равновесии (подробнее см.главу 2).

Общий объем циркулирующей крови (ОЦК) условно делят на его часть, активно циркулирующую по сосудам, и часть, которая не участвует в данный момент в кровообращении, т.е. депонированную (в селезенке, печени, почке, легких и др.), но быстро включаемую в циркуляцию при соответствующих гемодинамических ситуациях. Считается, что количество депонированной крови более чем в два раза превышает объем циркулирующей. Депонированная кровь не находится в состоянии полного застоя, некоторая ее часть все время включается в быстрое передвижение, а соответствующая часть бы­стро движущейся крови переходит в состояние депонирования.

Уменьшение или увеличение объема циркулирующей крови у нормоволюмического субъекта на 5- 10% компенсируется изменением емкости венозного русла и не вызывает сдвигов ЦВД. Более зна­чительное увеличение ОЦК обычно сопряжено с увеличением ве­нозного возврата и при сохранении эффективной сократимости сердца приводит к увеличению сердечного выброса.

Важнейшими факторами, от которых зависит объем крови, явля­ются:

1) регуляция объема жидкости между плазмой и интерстициальным пространством,
2) регуляция обмена жидкости между плаз­мой и внешней средой (осуществляется, главным образом, почками),
3) регуляция объема эритроцитной массы.

Нервная регуляция этих трех механизмов осуществляется с помощью :

1) предсердных рецепторов типа А, реагирующих на изменение давления и, следовательно, яв­ляющихся барореиепторами,
2) типа В - реагирующих на растяже­ние предсердий и весьма чувствительных к изменению объема в них крови.

Существенное влияние на объем кропи оказывает инфузия различ­ных растворов. Вливание в вену изотонического раствора хлорида натрия не повышает длительно объем плазмы на фоне нормального объема крови, так как образующийся в организме избыток жидкости быстро выводится путем усиления диуреза. При дегидратации и дефи­ците солей в организме указанный раствор, введенный в кровь в адекватных количествах, быстро восстанавливает нарушенное равнове­сие. Введение в кровь 5% растворов глюкозы и декстрозы вначале увеличивает содержание воды в сосудистом русле, однако следующим этапом является усиление диуреза и перемещение жидкости сначала в интерстициальное, а затем в клеточное пространство. Внутривенное введение растворов высокомолекулярных декстранов на длительный период (до 12-24 ч) повышает объем циркулирующей крови.