Главная · Горло · Симметрия относительно оси. Как нарисовать симметричный предмет

Симметрия относительно оси. Как нарисовать симметричный предмет

В широком смысле симметрией именуется сохранение чего-либо неизменным при каких-то преобразованиях. Обладают таким свойством и некоторые геометрические фигуры.

Геометрическая симметрия

Применительно к геометрической фигуре означает, что если данную фигуру преобразовать – например, повернуть – некоторые ее свойства останутся прежними.

Возможность таких преобразований различается от фигуры к фигуре. Например, круг можно сколько угодно вращать вокруг точки, расположенной в его центре, он так и останется кругом, ничто для него не изменится.

Понятие симметрии можно объяснить, не прибегая к вращению. Достаточно провести через центр круга прямую и построить в любом месте фигуры перпендикулярный ей отрезок, соединяющий две точки на окружности. Точка пересечения с прямой будет делить на две части, которые будут равны друг другу.

Иными словами, прямая разделила фигуру на две равные части. Точки частей фигуры, расположенные на прямых, перпендикулярных данной, находятся на равном расстоянии от нее. Вот эта пряма и будет называться осью симметрии. Симметрия такого рода – – называется осевой симметрией.

Количество осей симметрии

У количество будет различным. Например, у круга и шара таких осей множество. У равностороннего треугольника осью симметрии будет перпендикуляр, опущенный на каждую из сторон, следовательно, у него три оси. У квадрата и прямоугольника можно провести четыре оси симметрии. Две из них перпендикулярны сторонам четырехугольников, а две другие являются диагоналями. А вот у равнобедренного треугольника ось симметрии только одна, располагающаяся меду равными его сторонами.

Осевая симметрия встречается и в природе. Ее можно наблюдать в двух вариантах.

Первый вид – радиальная симметрия, предполагающая наличие нескольких осей. Она характерна, например, для морских звезд. Более высокоразвитым организмам присуща билатеральная, или двусторонняя симметрия с единственной осью, делящей тело на две части.

Человеческому телу тоже присуща билатеральная симметрия, но идеальной ее назвать нельзя. Симметрично расположены ноги, руки, глаза, легкие, но не сердце, печень или селезенка. Отклонения от билатеральной симметрии заметны даже внешне. Например, крайне редко бывает так, чтобы у человека на обеих щеках были одинаковые родинки.

Осью симметрии называется прямая линия, при повороте вокруг которой на некоторый определённый угол фигура совмещается сама с собой .

Наименьший угол поворота, приводящий фигуру к самосовмещению, называется элементарным углом поворота оси . Элементарный угол поворота оси  содержится целое число раз в 360 :

где n – целое число.

Число n, показывающее сколько раз элементарный угол поворота оси содержится в 360 0 , называется порядком оси.

В геометрических фигурах могут присутствовать оси любых порядков, начиная от оси первого порядка и кончая осью бесконечного порядка.

Элементарный угол поворота оси первого порядка (n = 1) равен 360 0 . Так как каждая фигура, будучи повернута вокруг любого направления на 360 0 , совмещается сама с собой, то всякая фигура обладает бесконечным количеством осей первого порядка. Такие оси не являются характерными, поэтому они обычно не упоминаются.

Ось бесконечного порядка отвечает бесконечно малому элементарному углу поворота. Эта ось присутствует во всех фигурах вращения в качестве оси вращения.

Примерами осей третьего, четвертого, пятого, шестого и т. д. порядков являются перпендикуляры к плоскости рисунка, проходящие через центры правильных многоугольников, треугольников, квадратов, пятиугольников и т.п.

Таким образом, в геометрии существует бесконечный ряд осей различных порядков.

В кристаллических же многогранниках возможны не любые оси симметрии, а только оси первого, второго, третьего, четвертого и шестого порядка.

Оси симметрии пятого и выше шестого порядка в кристаллах невозможны. Это положение является одним из основных законов кристаллографии и называется законом симметрии кристаллов.

Как и др. геометрические законы кристаллографии, закон симметрии кристаллов объясняется решетчатым строением кристаллического вещества. Действительно, раз симметрия кристалла есть проявление симметрии его внутреннего строения, то в кристаллах возможны только такие элементы симметрии, которые не противоречат свойствам пространственной решетки.

Докажем, что ось пятого порядка не удовлетворяет законам пространственной решетки и тем самым докажем ее невозможность в кристаллических многогранниках.

Предположим, что ось пятого порядка в пространственной решетке возможна. Пусть эта ось будет перпендикулярна плоскости чертежа, пересекая ее в точке О (рис.2.9). В частном случае точка О может совпадать с одним из узлов решетки.

Рис. 2.9. Ось симметрии пятого порядка невозможна в пространственных решетках

Возьмем ближайший от оси узел решетки А 1 , лежащий в плоскости чертежа. Так как вокруг оси пятого порядка все повторяется пять раз, то ближайших к ней узлов в плоскости чертежа должно быть всего пять А 1 ,А 2 ,А 3 ,А 4 ,А 5 . Располагаясь на одинаковых расстояниях от точки О в вершинах правильного пятиугольника, они совмещаются друг с другом при повороте вокруг О на 360/5=72°.

Эти пять узлов, лежащие в одной плоскости, образуют плоскую сетку пространственной решетки и поэтому к ним приложимы все основные свойства решетки. Если узлы А 1 и А 2 принадлежат ряду плоской сетки с промежутком А 1 А 2 , то через любой узел решетки можно провести ряд, параллельный ряду А 1 А 2 . Проведем такой ряд через узел А 3 . Этот ряд, проходящий и через узел А 5 , должен иметь промежуток, равный А 1 А 2 , т. к. в пространственной решетке все параллельные ряды обладают одинаковой плотностью.

Следовательно, на расстоянии А 3 А x = А 1 А 2 от узла А 3 должен находиться еще один узел А x . Однако дополнительный узел А x оказывается лежащим ближе к точке О, чем узел А 1 , взятый по условию ближайшим к оси пятого порядка.

Таким образом, сделанное нами допущение о возможности оси пятого порядка в пространственных решетках привело нас к явному абсурду и поэтому является ошибочным.

Поскольку существование оси пятого порядка несовместимо с основными свойствами пространственной решетки, то такая ось невозможна и в кристаллах.

Аналогичным образом доказывается невозможность существования в кристаллах осей симметрии выше шестого порядка и, наоборот, возможность в кристаллах осей второго, третьего, четвертого и шестого порядка, присутствие которых не противоречит свойствам пространственных решеток.

Для обозначения осей симметрии употребляется буква L, а порядок оси указывается маленькой цифрой, располагаемой справа от буквы (например, L 4 - ось четвертого порядка).

В кристаллических многогранниках оси симметрии могут проходить через центры противоположных граней перпендикулярно к ним, через середины противоположных ребер перпендикулярно к ним (только L 2) и через вершины многогранника. В последнем случае симметричные грани и ребра одинаково наклонены к данной оси.

Кристалл может иметь несколько осей симметрии одного порядка, количества которых указывается коэффициентом перед буквой. Например, в прямоугольном параллелепипеде присутствует 3L 2 , т. е. три оси симметрии второго порядка; в кубе имеются 3L 4 , 4L 3 и 6L 2 , т. е. три оси симметрии четвертого порядка, четыре оси третьего порядка и шесть осей второго порядка и т. д.

«Симметрия вокруг нас» - Все виды осевой симметрии. Вращения. Греческое слово симметрия означает «пропорциональность», «гармония». Произвольная. Центральная относительно точки. Симметрия в пространстве. Вращения (поворотная). В геометрии есть фигуры, которые имеют. Симметрия. Осевая. Один вид симметрии. Вокруг нас. Центральная.

«В мире симметрии» - Орнаменты, фризы имеют в своей основе периодически повторяющийся узор. Симметричны формы жука, червяка, гриба, листа, цветка и др. Большинство зданий зеркально симметричны. Во всем ли в жизни должна быть симметрия? Зачем надо знать о симметрии, изучая технические науки? Что такое симметрия? Симметрия в природе и технике.

«Симметрия в искусстве» - Центрально- осевая симметрия в архитектуре. II.1. Пропорция в архитектуре. Палаццо Спада (Рим). По характеру своих творческих возможностей периодичность - универсальное явление. III. Ле-Корбюэье. Ритм является одним из основных элементов выразительности мелодии. Р. Декарт. Ж. А. Фабр. Геометрические методы изображения пространственных фигур:

«Точка симметрии» - Фигуры, не имеющие осей симметрии. Точка О называется центром симметрии. Две точки А и А1 называются симметричными относительно О, если О середина отрезка АА1. Равнобочная трапеция имеет только осевую симметрию. Симметрия в природе. Прямоугольник и ромб, не являющиеся квадратами, имеют две оси симметрии.

«Математическая симметрия» - Однако у сложных молекул, как правило, отсутствует симметрия. Палиндромы. Осевая. Центральная симметрия. Осевая симметрия. Типы симметрии. Симметрия в биологии. Вращательная симметрия. Симметрия в искусствах. ИМЕЕТ МНОГО ОБЩЕГО С ПОСТУПАТЕЛЬНОЙ СИММЕТРИЕЙ В МАТЕМАТИКЕ. Спиральная симметрия. Поступательная.

«Виды симметрии» - Центральная симметрия является движением. Зеркальный двойник оказывается "вывернутым" вдоль направления перпендикулярного к плоскости зеркала. Осевая симметрия также является движением. Теорема. Параллельный перенос. Центральная симметрия. Виды движения. Понятие движения. Параллельный перенос – один из видов движения.

Всего в теме 11 презентаций

Вам понадобится

  • - свойства симметричных точек;
  • - свойства симметричных фигур;
  • - линейка;
  • - угольник;
  • - циркуль;
  • - карандаш;
  • - лист бумаги;
  • - компьютер с графическим редактором.

Инструкция

Проведите прямую a, которая будет являться осью симметрии. Если ее координаты не заданы, начертите ее произвольно. С одной стороны от этой прямой поставьте произвольную точку A. необходимо найти симметричную точку.

Полезный совет

Свойства симметрии постоянно используются в программе AutoCAD. Для этого используется опция Mirror. Для построения равнобедренного треугольника или равнобедренной трапеции достаточно начертить нижнее основание и угол между ним и боковой стороной. Отразите их с помощью указанной команды и продлите боковые стороны до необходимой величины. В случае с треугольником это будет точка их пересечения, а для трапеции - заданная величина.

С симметрией вы постоянно сталкиваетесь в графических редакторах, когда пользуетесь опцией «отразить по вертикали/горизонтали». В этом случае за ось симметрии берется прямая, соответствующая одной из вертикальных или горизонтальных сторон рамки рисунка.

Источники:

  • как начертить центральную симметрию

Построение сечения конуса не такая уж сложная задача. Главное - соблюдать строгую последовательность действий. Тогда данная задача будет легко выполнима и не потребует от Вас больших трудозатрат.

Вам понадобится

  • - бумага;
  • - ручка;
  • - циркль;
  • - линейка.

Инструкция

При ответе на этот вопрос, сначала следует определиться – какими параметрами задано сечение.
Пусть это будет прямая пересечения плоскости l с плоскостью и точка О, которая местом пересечения с его сечением.

Построение иллюстрирует рис.1. Первый шаг построения сечения – это через центр сечения его диаметра, продленного до l перпендикулярно этой линии. В итоге получается точка L. Далее через т.О проведите прямую LW, и постройте две направляющие конуса, лежащие в главном сечении О2М и О2С. В пересечении этих направляющих лежат точка Q, а также уже показанная точка W. Это первые две точки искомого сечения.

Теперь проведите в основании конуса ВВ1 перпендикулярный МС и постройте образующие перпендикулярного сечения О2В и О2В1. В этом сечении через т.О проведите прямую RG, параллельную ВВ1. Т.R и т.G - еще две точки искомого сечения. Если бы сечения бал известен, то его можно было бы построить уже на этой стадии. Однако это вовсе не эллипс, а нечто эллипсообразное, имеющее симметрию относительно отрезка QW. Поэтому следует строить как можно больше точек сечения, чтобы соединяя их в дальнейшем плавной кривой получить наиболее достоверный эскиз.

Постройте произвольную точку сечения. Для этого проведите в основании конуса произвольный диаметр AN и постройте соответствующие направляющие О2A и O2N. Через т.О проведите прямую, проходящую через PQ и WG, до ее пересечения с только что построенными направляющими в точках P и E. Это еще две точки искомого сечения. Продолжая так же и дальше, можно сколь угодно искомых точек.

Правда, процедуру их получения можно немного упростить пользуясь симметрией относительно QW. Для этого можно в плоскости искомого сечения провести прямые SS’, параллельные RG до пересечения их с поверхность конуса. Построение завершается скруглением построенной ломаной из хорд. Достаточно построить половину искомого сечения в силу уже упомянутой симметрии относительно QW.

Видео по теме

Совет 3: Как построить график тригонометрической функции

Вам требуется начертить график тригонометрической функции ? Освойте алгоритм действий на примере построения синусоиды. Для решения поставленной задачи используйте метод исследования.

Вам понадобится

  • - линейка;
  • - карандаш;
  • - знание основ тригонометрии.

Инструкция

Видео по теме

Обратите внимание

Если две полуоси однополосного гиперболоида равны, то фигуру можно получить путем вращения гиперболы с полуосями, одна из которых вышеуказанная, а другая, отличающаяся от двух равных, вокруг мнимой оси.

Полезный совет

При рассмотрении этой фигуры относительно осей Oxz и Oyz видно, что ее главными сечениями являются гиперболы. А при разрезе данной пространственной фигуры вращения плоскостью Oxy ее сечение представляет собой эллипс. Горловой эллипс однополосного гиперболоида проходит через начало координат, ведь z=0.

Горловой эллипс описывается уравнением x²/a² +y²/b²=1, а другие эллипсы составляются по уравнению x²/a² +y²/b²=1+h²/c².

Источники:

  • Эллипсоиды, параболоиды, гиперболоиды. Прямолинейные образующие

Форма пятиконечной звезды повсеместно используется человеком с древних времен. Мы считаем ее форму прекрасной, так как бессознательно различаем в ней соотношения золотого сечения, т.е. красота пятиконечной звезды обоснована математически. Первым описал построение пятиконечной звезды Евклид в своих "Началах". Давайте же приобщимся к его опыту.

Вам понадобится

  • линейка;
  • карандаш;
  • циркуль;
  • транспортир.

Инструкция

Построение звезды сводится к построению с последующим соединением его вершин друг с другом последовательно через одну. Для того чтобы построить правильный необходимо разбить окружность на пять .
Постройте произвольную окружность при помощи циркуля. Обозначьте ее центр точкой O.

Отметьте точку A и при помощи линейки начертите отрезок ОА. Теперь необходимо разделить отрезок OA пополам, для этого из точки А проведите дугу радиусом ОА до пересечения ее с окружностью в двух точках M и N. Постройте отрезок MN. Точка Е, в которой MN пересекает OA, будет делить отрезок OA пополам.

Восстановите перпендикуляр OD к радиусу ОА и соедините точку D и E. Сделайте засечку B на OA из точки E радиусом ED.

Теперь при помощи отрезка DB разметьте окружность на пять равных частей. Обозначьте вершины правильного пятиугольника последовательно цифрами от 1 до 5. Соедините точки в следующей последовательности: 1 с 3, 2 с 4, 3 с 5, 4 с 1, 5 с 2. Вот и правильная пятиконечная звезда, в правильный пятиугольник. Именно таким способом строил

Рассмотрим теперь оси симметрии сторон треугольника. Напомним, что осью симметрии отрезка является перпендикуляр, восставленный к отрезку в его середине.

Любая точка такого перпендикуляра одинаково удалена от концов отрезка. Пусть теперь - перпендикуляры, проведенные через середины сторон ВС и АС треугольника ABC (рис. 220) к этим сторонам, т. е. оси симметрии этих двух сторон. Точка их пересечения Q одинаково удалена от вершин В и С треугольника, так как лежит на оси симметрии стороны ВС, точно так же она и одинаково удалена от вершин А и С. Следовательно, она одинаково удалена от всех трех вершин треугольника, в том числе от вершин А и В. Значит, она лежит на оси симметрии третьей стороны АВ треугольника. Итак, оси симметрии трех сторон треугольника пересекаются в одной точке. Эта точка одинаково удалена от вершин треугольника. Следовательно, если провести окружность радиусом, равным расстоянию этой точки от вершин треугольника, с центром в найденной точке, то она пройдет через все три вершины треугольника. Такая окружность (рис. 220) называется описанной окружностью. Обратно, если представить себе окружность, проходящую через три вершины треугольника, то ее центр обязан находиться на равных расстояниях от вершин треугольника и потому принадлежит каждой из осей симметрии сторон треугольника.

Поэтому у треугольника имеется только одна описанная окружность: вокруг данного треугольника можно описать окружность, и притом только одну; центр ее лежит в точке пересечения трех перпендикуляров, восставленных к сторонам треугольника в их серединах.

На рис. 221 показаны окружности, описанные вокруг остроугольного, прямоугольного и тупоугольного треугольников; центр описанной окружности лежит в первом случае внутри треугольника, во втором - на середине гипотенузы треугольника, в третьем - вне треугольника. Это проще всего следует из свойств углов, опирающихся на дугу окружности (см. п. 210).

Так как любые три точки, не лежащие на одной прямой, можно считать вершинами треугольника, то можно утверждать, что через три любые точки, не принадлежащие прямой, проходит единственная окружность. Поэтому две окружности имеют не более двух общих точек.