Главная · Горло · Тепло от аэс. Атомные теплоэлектроцентрали и атомные станции теплоснабжения

Тепло от аэс. Атомные теплоэлектроцентрали и атомные станции теплоснабжения

История создания атомных станций теплоснабжения в крупных городах

Изучение возможности использования ядерных энергоисточников для целей теплоснабжения было начато в конце 1970-х гг.

В 1976 г. Горьковским отделением института «Теплоэлектропроект» - ГоТЭП (в настоящее время ОАО «Нижегородская инжиниринговая компания «Атомэнергопроект») и институтом «ВНИПИэнергопром» был разработан «Сводный ТЭД по вопросам использования атомной энергии для целей теплоснабжения до 1990 г.»), в котором была обоснована экономическая целесообразность внедрения ядерных энергоисточников в сектор теплоснабжения за счет обеспечения значительной экономии дефицитных газа и мазута, улучшения экологической обстановки в городах, решения проблем транспортировки углеводородного топлива.

При этом было показано, что для энергодефицитных систем с большим (более 2000 Гкал/ч) теплопотреблением оптимальным решением является использование атомных теплоэлектроцентралей (АТЭЦ) с ВВЭР-1000, а для систем средней мощности с покрытием тепловых нагрузок на уровне 1000-2000 Гкал/ч, не испытывающих потребности в дополнительных электрических мощностях, атомных станций теплоснабжения (АСТ) мощностью примерно 500 МВт. По данным «Сводного ТЭДа...» строительство АСТ было целесообразно в 30-35 промышленно-жилых комплексах страны, из них 27 - в Европейской части.

После обсуждения указанного вопроса в ЦК КПСС и Правительстве СССР перед Минсредмашем (так называлась атомная отрасль) и Минэнерго была поставлена задача создания атомной станции теплоснабжения с гарантированной безопасностью для размещения ее вблизи крупных городов. Главным конструктором реакторной установки (РУ) было назначено ОКБМ (в настоящее время ОАО «ОКБМ Афри-кантов»), разработчиком ТЭО головных станций в г. Горьком (ныне - г. Нижний Новгород) и в г. Воронеже - вышеупомянутый ГоТЭП. Научное руководство обеспечивалось РНЦ «Курчатовский Институт». Разработку АСТ по указанию Правительства лично курировал Президент Академии наук СССР А.П. Александров.

Выбор площадок для сооружения головных АСТ в городах Горьком и Воронеже был обусловлен не только наличием в указанных городах проблем с теплоснабжением, но и другими причинами:

  • - в Горьком располагались разработчик реакторной установки (ОКБМ) и политехнический институт, в котором на физико-техническом факультете готовились специалисты для атомной отрасли;
  • - рядом с Воронежем уже работала Нововоронежская АЭС, на которой строились все головные блоки ВВЭР, имелся центр подготовки персонала для АЭС и располагалось мощное строительно-монтажное управление;
  • - оба города размещались на берегах крупных судоходных рек, что позволяло осуществить транспортировку крупногабаритного корпусного оборудования РУ, нетранспортабельного по железной дороге.

По результатам разработки в 1978 г. технического проекта РУ АСТ-500 и ТЭО в марте 1979 г. вышло постановление Совета министров СССР о сооружении двух головных станций теплоснабжения в Горьком и Воронеже. При этом Генпроектировщиком Горьковской АСТ был назначен ГИ ВНИПИЭТ (Минсредмаш), а Воронежской АСТ - ГоТЭП (Минэнерго).

Сооружение головных АСТ в городах Горьком и Воронеже было начато в 1982 и 1983 гг. соответственно.

Правительством СССР были рассмотрены обращения региональных властей ряда крупных областей и городов по поводу строительства АСТ (в т. ч. Архангельска, Иванова, Брянска, Ярославля, Хабаровска) и приняты положительные решения. Для этих регионов ГоТЭП были выполнены необходимые технико-экономические исследования и обоснования, а в Архангельской области начаты подготовительные работы по сооружению.

Реакторная установка АСТ-500.

РУ АСТ-500 - реакторная установка на основе интегрального водо-водяного реактора давления с естественной циркуляцией теплоносителя первого контура, страховочным корпусом и пассивными системами безопасности. Главный конструктор реакторной установки - ОКБМ, научный руководитель проекта - РНЦ «Курчатовский институт». Основные технические характеристики РУ АСТ-500: тепловая мощность реактора - 500 МВт, отпуск тепловой энергии - 430 Гкал/ч, вид используемого топлива - диоксид урана UO2. Реактор АСТ выполнен по интегральной схеме, т. е., активная зона, теплообменники 1-2 контура и компенсатор давления размещаются в корпусе реактора. Это решение позволило исключить трубопроводы большого диаметра, опасные с точки зрения разрыва.

В реакторе циркулирует вода, являющаяся теплоносителем первого контура. Применение естественной циркуляции теплоносителя в корпусе реактора исключает сложные и опасные для активной зоны динамические режимы, характерные для всех реакторов с принудительной циркуляцией теплоносителя.

Перезарядка активной зоны реактора происходит 1 раз в 2 года. Компактность интегрального реактора позволила применить второй герметичный страховочный корпус, рассчитанный на давление, устанавливающееся при разгерметизации корпуса реактора. Передача тепловой энергии в сеть осуществляется через промежуточный (второй) контур и сетевой (третий) контур (рис. 1).

Давление в сетевом контуре всегда выше, чем во втором, что позволяет исключить попадание воды второго контура в сетевой контур при негерметичности сетевых теплообменников. Реактор оснащен системами безопасности пассивного принципа действия, которые могут вводиться в действие в авариях без команд оператора при отказе систем автоматического управления и функционировать длительное время без подачи энергии извне. Протекание быстрых взрывных процессов типа Чернобыльского в реакторе АСТ принципиально невозможно. Радиационные последствия самых тяжелых аварий ограничены и не превышают естественного радиационного фона. Реакцией атомщиков на Чернобыль стали глубокий анализ безопасности ядерных энергоисточников и разработка проектов реакторов нового поколения. Анализ проекта АСТ-500, выполненный после Чернобыльской аварии, показал, что основные качества реакторов нового поколения уже нашли свое воплощение в реакторе АСТ. В их числе:

  • - внутренние присущие свойства безопасности, основанные на законах природы;
  • - защищенность от ошибок персонала;
  • - ограниченность последствий запроектных аварий.

Разработанные советскими инженерами и учеными в 1980-х гг. технические решения РУ АСТ-500 в настоящее время широко используются зарубежными разработчиками в проектах перспективных установок нового поколения.

Горьковская АСТ.

Строительство Горьковской АСТ (ГАСТ), как было отмечено выше, началось в 1982 г. Площадка станции размещалась близ д. Федяково и ж/д станции Ройка в Кстовском районе Горьковской области в нескольких километрах к востоку от городской черты Горького.

Станция строилась по проекту ГИ ВНИПИЭТ и включала два энергоблока с РУ АСТ-500 единичной тепловой мощностью 500 МВт. Каждый блок обеспечивал отпуск тепла в количестве 430 Гкал/ч в виде горячей воды с давлением до 1,6 МПа и температурой до 150С.

Планировалось, что ГАСТ будет снабжать тепловой энергией Нагорную часть г. Горького. При вводе в действие ГАСТ предполагалось закрыть около 300 низкоэффективных котельных различной мощности в Нагорной части города. Структура системы ЦТ на базе основного теплоисточника ГАСТ выглядела следующим образом:

  • - базисный теплоисточник - ГАСТ установленной тепловой мощностью 1000 МВт (2x500 МВт);
  • - пиковые котельные (ПК) - пять существующих промышленных и отопительных котельных тепловой мощностью от 35 до 750 МВт;
  • - магистральные тепловые сети - кольцевые с тупиковыми ответвлениями;
  • - распределительные станции теплоснабжения (РСТ) для подключения магистральных тепловых сетей по зависимой и независимой схемам.

Общая тепловая нагрузка нагорной части города, обеспечиваемая системой ЦТ, составляла примерно 2380 МВт.

Отпуск теплоты в системе ЦТ на базе ГАСТ планировался в объеме примерно 7,4 ГВт. ч., в том числе от ГАСТ 5,8 ГВт. ч. (78%). Выдача тепловой мощности от АСТ в транзитные тепловые сети обеспечивалась теплоносителем - сетевой водой с максимальной температурой 150С при температуре на входе в обратном трубопроводе 70С. Крупные ПК предусматривались «полупиковыми» с возможностью выдачи свободной тепловой мощности в транзитные тепловые сети параллельно АСТ. Общая протяженность транзитных тепловых сетей от ГАСТ около 30 км.

Рельеф местности переменный с абсолютными отметками от 90 до 200 м. Диаметры транзитных трубопроводов 800, 1000 и 1200 мм. Насосные подкачивающие станции располагались в РСТ.

При разработке системы ЦТ на базе ГАСТ было применено несколько новых технологических решений, в том числе:

  • 1. количественное регулирование отпуска теплоты в транзитных тепловых сетях с постоянной температурой теплоносителя в подающих трубопроводах: в отопительный период - 150 ОС, в летний - 90С;
  • 2. последовательное включение (отключение) и изменение тепловой мощности ПК при уровнях теплопотребления более 1000 МВт при температурах наружного воздуха ниже +3С;
  • 3. схема подключения ПК к АСТ через транзитные тепловые сети - параллельная, а не традиционная последовательная при дальнем теплоснабжении;
  • 4. аккумулирование теплоты в баках запаса подпиточной воды (2 бака по 10000 м. куб.) для стабильной работы ГАСТ.

Здесь стоит отметить, что для теплоснабжения заречной части г. Горького с учетом того, что рядом расположено несколько небольших промышленных городов, предлагалось сооружение АТЭЦ с реакторами ВВЭР-1000 для энергоснабжения не только заречной части города, но и Дзержинска, Заволжья, Правдинска, Балахны и других населенных пунктов. Были приняты три варианта размещения АТЭЦ и выполнен полный комплекс изыскательских работ по всем трем площадкам. Соответствующее ТЭО было разработано ГоТЭПом в 1986 г., но эти планы так и остались на бумаге.

Решающие этапы сооружения ГАСТ совпали с Чернобыльскими событиями, последующей «ломкой» структур власти и ожесточенной политической борьбой в «перестроечный» период.

В середине 1988 г. в Горьком началось движение общественности за прекращение строительства ГАСТ (статьи в местной прессе, демонстрации и митинги с лозунгами о запрете строительства АСТ, требования о проведении референдума). Не смогло переломить общий настрой против ГАСТ и положительное заключение международной экспертизы проекта и самой станции, проведенной МАГАТЭ в 1989 г., хотя эта экспертиза была предпринята по требованию общественности.

Нижегородский областной Совет народных депутатов, учитывая мнение населения, выступил против продолжения строительства станции и в августе 1990 г. принял решение «О прекращении строительства ГАСТ».

Следствием данного решения явилось распоряжение Совета Министров РСФСР от 29.11.1990 г., №1345-Р «О прекращении строительства Горьковской АСТ» и приказ Минатом-энергопрома СССР (одно из очередных новых названий Минсредмаша) от 29.11.1991 г., №523 «О ликвидации дирекции ГАСТ», предусматривающий передачу ГАСТ на баланс г. Нижнего Новгорода и Нижегородской области.

К этому времени были изготовлены и поставлены на станцию два комплекта оборудования РУ, изготовлены две активные зоны реакторов, общая строительная готовность по зданиям двух блоков составила 85-90%, монтажная готовность оборудования - около 70%, завершались строительно-монтажные работы по пусковому комплексу первого энергоблока, набран и подготовлен эксплуатационный персонал, разрабатывалась пуско-наладочная и эксплуатационная документация. В соответствии с распоряжением Главы администрации Нижегородской области Б.Е. Немцова от 05.12.1991 г., №3 и в соответствии с Гражданским Кодексом РФ и Федеральным законом от 14.11.2002 г., №161-ФЗ «О государственных и муниципальных унитарных предприятиях», для целей максимального использования объектов промышленной площадки Горьковской АСТ и обеспечения сохранности уникального оборудования реакторных установок взамен Дирекции строящейся ГАСТ было создано Государственное предприятие Нижегородской области «Нижегородский производственно-энергетический комплекс» (подведомственное предприятие Министерства ЖКХ и ТЭК Нижегородской области).

Последние годы помещения Горьковской АСТ (рис. 2, 3) сдаются в аренду частным предприятиям, в числе которых Нижегородский ликероводочный завод «РООМ». Тепловые сети от Горьковской АСТ практически полностью демонтированы.

В 2006 г. и 2008 г. нынешнее Правительство Нижегородской области предпринимало несколько безуспешных попыток по инициированию строительства парогазовой ТЭЦ (электрической мощностью 900 МВт (2x450 МВт), тепловой - 825 Гкал/ч) на базе недостроенной АСТ.

До настоящего времени теплоснабжение Нагорной части города, которая составляет половину Нижнего Новгорода, осуществляется от одной крупной котельной тепловой мощностью около 700 Гкал/ч, двумя котельными по 150 Гкал/ч (которые планировалось переводить в пиковый режим при вводе ГАСТ) и множеством мелких котельных. В связи с интенсивным строительством жилья последние годы в данной части города имеется дефицит тепловой мощности.

Воронежская АСТ.

Сооружение Воронежской АСТ (ВАСТ) было начато в 1983 г., о чем говорилось выше. Площадка строительства ВАСТ расположена на южной окраине г. Воронежа на правом берегу Воронежского водохранилища (удаление от городской застройки - 6,5 км.). Станция строилась по проекту ГоТЭП, включала два энергоблока с реакторными установками АСТ-500 тепловой мощностью 500 МВт и отличалась от Горьковской АСТ наличием защитной оболочки (аналогичной ВВЭР-1000) для защиты от падения самолета и схемно-конструктивным исполнением отдельных систем безопасности (в ГАСТ защита от падения самолета обеспечивалась размещением реакторного блока в прочно-плотном боксе).

При работе двух энергоблоков общей тепловой мощностью 860 Гкал/ч ВАСТ должна была обеспечивать до 29% годовой потребности г. Воронежа в тепловой энергии на нужды отопления и горячего водоснабжения города, устранив создавшийся на тот период дефицит в тепловой энергии и создать условия для дальнейшего развития города. Как и ГАСТ, Воронежская АСТ стала картой в развернувшейся в городе и области политической борьбе за власть в «перестроечный» период.

Строительство ВАСТ было остановлено в 1990 г. по инициативе местных властей г. Воронежа (решение Воронежского городского совета народных депутатов от 05.06.1990 г.) с учетом результатов городского референдума по вопросу теплоснабжения г. Воронежа. К моменту остановки строительства была создана строительно-монтажная база с необходимой инфраструктурой, путями и коммуникациями, выполнено более 50% проектного объема строительно-монтажных работ по сооружению ВАСТ, поставлен на станцию комплект оборудования РУ для первого энергоблока и частично для второго, изготовлена активная зона. С 1992 г. и по настоящее время в соответствии с постановлением Правительства РФ от 28.12.1992 г., №1026 и последующими распорядительными документами Минатома России, приказом Росатома РФ от 05.12.2006 г. №589 объект находится в режиме консервации (рис. 4). Недостроенная станция является федеральной собственностью, Дирекция строящейся Воронежской АСТ является филиалом ОАО «Концерн Росэнергоатом».

На цели консервации Воронежской АСТ концерном «Росэнергоатом» ежегодно выделяются солидные средства из резерва на развитие. Курирование вопросов консервации объектов Воронежской АСТ осуществляет департамент капитального строительства ОАО «Концерн Росэнергоатом». Территория станции охраняется.

В соответствии с Постановлением Правительства РФ от 28.12.1992 г., №1026 в 1994 г. была проведена общественная экспертиза проекта и имеющегося задела по строительству при участии 28 специалистов и научных работников г. Воронежа, а в 1995 г. - госэкспертиза Минприроды РФ. Результаты обеих экспертиз подтвердили возможность и целесообразность завершения строительства ВАСТ.

Получено заключение Института государства и права РАН от 07.09.1998 г. за №14202-24-2115-4 по правовой экспертизе решений, принятых по ВАСТ. Оно подтвердило, что решение городских властей г. Воронежа от 1990 г. о прекращении сооружения ВАСТ со ссылками на проведенный референдум не имеет юридической силы, а также подтвердило наличие всех условий для принятия Правительством РФ решения о расконсервации и завершении сооружения ВАСТ. В 2008-2010 гг. было подготовлено несколько предложений по решению проблемы ВАСТ, в т. ч.: достройки ВАСТ, перепрофилированию АСТ в АТЭЦ с реакторами ВБЭР-300 (разработчик ОАО «ОКБМ Африкантов») или ВК-300 (разработчик ОАО «НИКИЭТ»), созданию на площадке многоцелевого инновационного энерготехнологического и медицинского комплекса на базе установки РУТА-70 (разработчик ГНЦ РФ-ФЭИ) и др.

За истекшие с начала строительства годы ситуация с теплоснабжением в г. Воронеже только ухудшилась, при этом альтернативные Воронежской АСТ варианты обеспечения города тепловой энергией так и не были разработаны.

Тем не менее, несколько десятков километров трубопроводов теплосетей для теплоснабжения Советского и Коминтерновского районов, проложенные практически по всему предполагаемому маршруту, были демонтированы весной - летом 2006 г.

Статьей 29 Федерального закона от 21.11.1995 г., №170-ФЗ «Об использовании атомной энергии» определено, что во всех случаях прекращения сооружения ядерного объекта, не связанных со снижением уровня его безопасности, ухудшением состояния окружающей среды или другими неблагоприятными последствиями, должен решаться вопрос о возмещении убытков, связанных с прекращением строительства, а также - об источниках возмещения этих убытков.

Статья подготовлена по следующим материалам

  • 1. Полвека в атомном машиностроении. Н. Новгород: КиТ-издат, 1997.
  • 2. История ОАО «НИАЭП» в документах и воспоминаниях ветеранов (1951-2008) / Сборник статей. Н. Новгород: Литера, 2008.
  • 3. Что такое атомная станция теплоснабжения / О.Б. Самойлов, В.С. Кууль, Б.А. Авербах и др., под ред. О.Б. Самойлова, В.С. Кууля. - М.: Энергоатомиздат, 1989. - 96 с.
  • 4. Г. Юрьева. Уникальный атомный комплекс был спроектирован 30 лет назад (интервью с В.Н. Чистяковым) // «Россия: атомный проект», вып. 8, 2010. ядерный энергоисточник теплоснабжение
  • 5. Сайт Министерства ЖКХ и ТЭК Нижегородской области.
  • 6. Зингер Н.М., Еше Г.Г., Гилевич А.И. и др. // Теплоэнергетика, 1982. №8. С. 27-30.
  • 7. Востоков В.С., Друмов В.В., Еше Г.Г. и др. О повышении эффективности использования АСТ // Вопросы атомной науки и техники, 1983, выпуск 6.
  • 8. О. Александрова. Операция «Расконсервация» // газета «Коммерсантъ» (Воронеж), №48 от 25.03.2008 г.

Объясняется это тем, что в России существует централизованная система водяного отопления зданий, при наличии которой целесообразно применять атомные станции для получения не только электрической, но и тепловой энергии.

Первые проекты подобных станций были разработаны еще в 70‑х годах прошлого века, однако из‑за наступивших в конце 80‑х экономических потрясений и жесткого противодействия общественности до конца ни один из них реализован не был.

Вопросы технологии

Вместе с тем, рациональное зерно в такой идее есть. На производство горячей воды и пара (низкотемпературного тепла) для нужд городов и промышленности расходуется в полтора раза больше топлива, чем для выработки электроэнергии, при этом значительную часть тепла вырабатывают мелкие, малоэффективные установки, сжигающие наиболее ценные виды топлива – нефть и газ.

По некоторым подсчетам, предполагается, что уже в ближайшее время ежегодное потребление низкотемпературного тепла (его еще называют низкопотенциальным) достигнет весьма внушительных цифр. Для выработки такого количества тепла придется сжигать огромное количество топлива.

Решением проблемы могли бы стать атомные станции теплоснабжения – АСТ. Главная их особенность – здесь не требуется такого высокого температурного потенциала теплоносителя первого контура, как на АЭС, потому что в АСТ не нужно получать электроэнергию, получать пар на турбине, нужно только тепло. Это, естественно, упрощает реактор, удешевляет его эксплуатацию. Если говорить о водо охлаждаемых реакторах, то в них снижается давление: нужно уже не 160 атмосфер, например, а 30, то есть значительно меньше. Это первая отличительная особенность.

Кроме того, в АСТ должно быть такое число теплоотводящих контуров, чтобы радиоактивный теплоноситель никаким образом не мог бы попасть в теплосеть. Для этого строятся промежуточные теплообменники и т. д. Параметры и режимы их работы рассчитаны так, что станции вписываются в существующие сети как дополнительные источники тепла. Создание подобных мощных централизованных источников позволяет демонтировать устаревшие установки, работающие на органическом топливе, а достаточно технически совершенные, но мелкие использовать в режиме пиковых нагрузок, которые наиболее часто возникают в холодное время года. Сами же ACT могут взять на себя базовую часть нагрузки.

По управляемости ACT – весьма гибкий агрегат, который не предъявляет никаких специфических требований к управлению тепловыми сетями в смысле регулирования распределения тепла, что очень важно. В принципе, ACT может покрывать и пиковую нагрузку, но для атомной станции, как для всякого капиталоемкого оборудования (капиталовложения велики, а топливная составляющая мала), наиболее экономичен режим максимально возможной постоянной мощности, то есть базовый.

Как отмечают специалисты, когда в 70‑х годах XX века обсуждался этот вопрос, все были в большом воодушевлении. Ясно, что использование атомной энергии для получения низкотемпературного тепла способно дать огромный эффект. Однако у таких проектов был и есть существенный недостаток. Дело в том, что если электрическую энергию можно без существенных потерь передавать на десятки и даже сотни километров, то для горячей воды это невозможно: потери тепла в теплотрассах (особенно в наших) очень велики. А это значит, что АСТ целесообразно строить в непосредственной близости от городов или даже в их черте. Отсюда вытекает важное требование: АСТ должны обладать гораздо более высоким уровнем безопасности, чем АЭС.

Впрочем, особенности реактора ACT (применение естественной циркуляции и интегральной компоновки, а также низкого давления внутри корпуса) позволяют успешно решить задачу безопасности без чрезмерных затрат посредством довольно простой конструкции: наличия второго, страховочного корпуса, который не исключает возможности осмотра основного, несущего корпуса, не ослабляет требований к его надежности, но позволяет при крайних, непредвиденных нарушениях полностью удержать в своем объеме всю начинку реактора и весь теплоноситель, содержащий радиоактивные вещества.

Специалисты приводят модель подобного крайнего события: при разрыве основного корпуса внутренний объем, занимаемый теперь теплоносителем, несколько увеличится, соответственно, упадет давление (примерно на 30 процентов), уровень воды хотя и понизится, но она по‑прежнему будет охватывать всю активную зону и обеспечивать ее охлаждение. Благодаря такому соответствию характеристик работающего и защитного оборудования обеспечивается надежное охлаждение активной зоны.

Подобная технология делает АСТ более экологически безопасными источниками теплоснабжения, чем традиционные ТЭЦ. Поэтому в Советском Союзе была запланирована целая серия подобных станций, и уже начинались работы по первой очереди. Однако затем грянул Чернобыль, позже Советский Союз распался, и планы реализовать не удалось.

Нереализованные планы и современные перспективы

Первой атомной станцией, поставлявшей тепло, была Сибирская АЭС в Северске Томской области. С 1961 года она поставляла, кроме электроэнергии, и тепло. По состоянию на 2000‑е годы реакторы давали 30‑35 процентов тепла, необходимого для отопления одного из жилых массивов Томска, и более 50 процентов – для города Северска и Сибирского химического комбината. Кроме того, в нашей стране работал реактор АДЭ-2 на Красноярском горно-химическом комбинате, с 1964 года до его остановки в 2010‑м поставлявший тепловую и электрическую энергию для города Железногорска.

Сегодня как атомный источник теплоснабжения действует лишь маломощная (48 МВт) Билибинская АЭС в Чукотском автономном округе, снабжающая теплом и электричеством город Билибино (около 6 тысяч жителей) и местные горнодобывающие предприятия.

В Советском Союзе было начато строительство еще двух АСТ: Воронежской и Горьковской (в нынешнем Нижнем Новгороде), а также завершен проект Ивановской АСТ, сооружение которой начать не успели. Работы прекратились на рубеже 1980‑х – 1990‑х. Главное, на что упирали при закрытии почти достроенных Воронежской и Нижегородской атомных станций теплоснабжения, – это протесты общественности в условиях послечернобыльской радиофобии. В итоге города остались без нормальных источников тепла. Примечательно, что Нижегородскую АСТ прикрыл теперь уже покойный Борис Немцов, передав часть ее помещений ликероводочному заводу.

Кстати, эти атомные станции теплоснабжения относились к инновационному тогда проекту АСТ-500. В целях обеспечения высокой надежности и безопасности реакторной установки были заложены следующие основные технические решения: естественная циркуляция теплоносителя в первом контуре и трехконтурная схема реакторной установки. Интегральная компоновка оборудования первого контура позволила свести к минимуму разветвленность контура и избежать применения трубопроводов большого диаметра, а низкая удельная энергонапряженность активной зоны способствовала повышению надежности охлаждения активной зоны и снижению уровня аварийных последствий. Кроме того, технические решения обеспечивали сохранение активной зоны под водой при разгерметизации основного корпуса реактора и локализацию радиоактивных продуктов вследствие использования двойного корпуса. Высокая степень защищенности реактора от аварий обеспечивалась применением новой схемы системы теплоотвода, при которой возможен отвод остаточного энерговыделения даже при выходе из строя двух петель из трех, а также путем ряда других схемных и компоновочных решений.

Реинкарнация идеи

Так что же? Можно ли говорить о том, что от АСТ отказались исключительно из‑за того, что неудачно сложились обстоятельства? Не совсем. Беспристрастный анализ технико-экономических показателей атомных станций теплоснабжения выявил, что они слабо конкурентоспособны с источниками тепла на органическом топливе, потому что цены на тепловую энергию гораздо ниже, чем на электроэнергию. И срок окупаемости такой станции, если строить ее на условиях коммерческого кредита, получается очень большой. В современных российских условиях это серьезный минус. Но нельзя сказать, что от создания атомных станций теплоснабжения в России совсем отказались.
Есть вариант малой необслуживаемой АСТ на базе реактора «Елена» и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем».

Наконец, сейчас в нашей стране строится головная плавучая атомная станция теплоснабжения «Академик Ломоносов», которую планируют сдать осенью этого года. Разместившись у побережья Чукотки, она заместит мощности Билибинской АЭС, которая в 2019 году будет выведена из эксплуатации. В «Росэнергоатоме» планируют, что «Академик Ломоносов» станет далеко не единственной плавучей энергоустановкой, и в дальнейшем и в других городах Крайнего Севера, Дальнего Востока появятся подобные ПАТЭС. Так что идея атомных станций теплоснабжения живет и развивается и перспективы у этого направления, безусловно есть.

Атомная станция теплоснабжения.

Россия — одна из немногих стран, где серьёзно рассматриваются варианты строительства атомных станций теплоснабжения. Объясняется это тем, что в России существует централизованная система водяного отопления зданий, при наличии которой целесообразно применять атомные станции для получения не только электрической, но и тепловой энергии. Первые проекты таких станций были разработаны ещё в 70-е годы XX века, однако из-за наступивших в конце 80-х гг экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был. Исключение составляют Билибинская АЭС небольшой мощности, снабжающая теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (главной задачей которых является производство плутония):

  • Сибирская АЭС, поставлявшая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химическом комбинате, с 1964 года до его остановки в 2010-м поставлявший тепловую и электрическую энергию для города Железногорска.

Было также начато строительство следующих АСТ на базе реакторов, в принципе аналогичных ВВЭР-1000:

  • Воронежская АСТ (не путать с Нововоронежской АЭС)
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство всех трёх АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.
В настоящий момент (2006) концерн «Росэнергоатом» планирует построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах. Есть вариант малой необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем».
На Украине от АЭС отапливается ряд городов в том числе Энергодар, отапливаемый самой большой АЭС в Европе.

На производство горячей воды и пара (низкотемпературного тепла) для нужд городов и промышленности расходуется в полтора раза больше топлива, чем для выработки электроэнергии, при этом значительную часть тепла вырабатывают мелкие, малоэффективные установки, сжигающие наиболее ценные виды топлива — нефть и газ.
Предполагается, что уже в ближайшее время ежегодное потребление низкотемпературного тепла (его еще называют низкопотенциальным) достигнет весьма внушительной цифры — 6 млрд. Гкал. Для выработки такого количества тепла пришлось бы, например, сжечь около 600 млн. т нефти, то есть практически всю нашу годовую добычу 1981 г., и это лишь при условии стопроцентного использования ее теплосодержания, чего в действительности, конечно, нет.
Около 30—40% всех видов топлива расходуется именно для производства горячей воды и технологического пара.
Параметры и режимы их работы рассчитаны так, что станции вписываются в существующие сети как дополнительный источник тепла. Создание таких новых мощных централизованных источников позволит демонтировать устаревшие установки, работающие на органическом топливе, а достаточно технически совершенные, но мелкие использовать в режиме пиковых нагрузок, которые наиболее часто возникают в холодное время года. Сами же ACT возьмут на себя базовую часть нагрузки.
По управляемости ACT — весьма гибкий агрегат, который не накладывает никаких специфических требований к управлению тепловыми сетями в смысле регулирования распределением тепла, что очень важно. В принципе ACT может покрывать и пиковую нагрузку, но для атомной станции, как для всякого капиталоемкого оборудования (капиталовложения велики, а топливная составляющая мала), наиболее экономичен режим максимально возможной постоянной мощности, то есть базовый.
Ясно, что использование атомной энергии для получения низкотемпературного тепла должно дать огромный эффект.
С применением атомной энергии для получения высокотемпературного тепла также связаны большие надежды многих отраслей промышленности.

Однако, есть и существенный недостаток. Дело в том, что если электрическую энергию можно без существенных потерь передавать на десятки и даже сотни километров, что невозможно для тепловой энергии (горячей воды). А это значит, что станция должна находиться практически в черте города.
И действительно, в экологическом плане атомные станции самые чистые, конечно если не будет серьезной аварии.
в Советском Союзе была запланирована серия подобных станций, и уже начаты работы по первой очереди. Но, как говорят: "если хочешь насмешить бога, расскажи ему о своих планах".

Специфика работы ACT — непосредственная близость к городу — заставляет учитывать даже и эти предельно редкие повреждения. Для этого надо создать технические средства, которым под силу обеспечить требуемые санитарные условия работы ACT не только при разрыве трубопровода, но и при повреждении корпуса реактора.
Особенности реактора ACT (применение естественной циркуляции и интегральной компоновки, а также низкого давления внутри корпуса) позволяют эту задачу успешно решить на уровне приемлемых затрат. И сводится это к созданию довольно простой конструкции: второго, страховочного корпуса, который не исключал бы возможности осмотра основного, несущего корпуса, никак не ослаблял бы наших требований н его надежности как главного элемента установки, но позволял бы при самых крайних, непредвиденных нарушениях полностью удержать в своем объеме всю начинку реактора и весь теплоноситель, содержащий радиоактивные вещества.
Вот модель такого крайнего события. При разрыве основного корпуса внутренний объем, занимаемый теперь теплоносителем, несколько увеличится, соответственно упадет давление, примерно на 30%, уровень воды хотя и понизится, но она по-прежнему будет охватывать всю активную зону и обеспечивать ее охлаждение. Благодаря такому соответствию характеристик работающего и защитного оборудования обеспечивается надежное охлаждение активной зоны.

Cтраница 1


Атомные станции теплоснабжения (ACT) предназначаются для отпуска теплоты на отопление, вентиляцию и горячее водоснабжение и выполняются по трехконтурной схеме. В первом (реакторном) контуре и в теплосети поддерживается давление 1 5 - 2 МПа, а в промежуточном контуре оно составляет 1 2 МПа. При этом исключаются перетечки как радиоактивной воды в теплосеть, так и минерализованной сетевой воды в реакторный контур. Водный режим промежуточного контура поддерживается его продувкой в сочетании с очисткой продувочной воды.  

Разработанные отечественные атомные станции теплоснабжения (ACT) состоят из двух блоков общей тепловой мощностью 1000 МВт с реакторами АСТ-500. Для того чтобы устранить возможность попадания радиоактивных веществ в поток горячей воды, направляемый к потребителю теплоты, схема ACT выполнена трехонтурной. В первом контуре (реакторном) теплообмен происходит при естественной циркуляции воды, давление здесь поддерживается равным 1 6 - 2 МПа. Во втором и третьем контурах циркуляция, конечнс, принудительная.  

Ведется строительство первых атомных станций теплоснабжения (АСТ) тепловой мощностью по 3600 ГДж / ч (860 Гкал / ч) в Горьком и Воронеже.  

В настоящее время разрабатываются атомные станции промышленного теплоснабжения для снабжения предприятий технологическим паром с давлением 2 МПа и горячей водой.  

С целью покрытия промышленных и смешанных промышленно-отопительных нагрузок необходимо создание специальных атомных станций промышленного теплоснабжения (АСПТ), на которых можно получать тепло в виде технологического пара и горячей воды.  

Энергетическая программа СССР предусматривает создание атомных теплоэлектроцентралей, атомных станций теплоснабжения и атомных станций промышленного теплоснабжения (АСПТ), которые обеспечат значительную экономию дорогостоящего органического топлива, на котором в настоящее время работает большинство ТЭЦ.  


В качестве источников теплоты в ближайшие годы, по-видимому, начнут широко внедряться атомные станции теплоснабжения (ACT), представляющие собой по существу атомные парогенераторы. В настоящее время уже сооружаются две головные ACT - под Горьким и Воронежем, каждая с двумя реакторами (из-соображений резервирования) по 500 МВт. Строительные площадки находятся на расстоянии 1 5 - 2 км от города. Эти ACT будут обеспечивать теплом районы городов, насчитывающие примерно по 300 - 400 тыс. жителей. К 1990 г. строительство таких станций будет экономически оправдано для сотен населенных пунктов СССР. ACT позволят сэкономить большое количество нефти, равное трети ее сегодняшней добычи в стране. Предполагается, что атомная теплота будет вдвое дешевле, чем та, ко -, торую дают котельные на органическом топливе.  

Описываются конструкции атомных электростанций (АЭС), атомных теплоэлектроцентралей (АТЭЦ) и атомных станций теплоснабжения (ACT) с корпусными, канальными и другими типами ядерных реакторов. Рассматриваются принципиальные вопросы технологии работы, оборудование и основы эксплуатации. Основное внимание уделяется выбору площадок для строительства, конструкциям зданий и сооружений комплекса АЭС, защите от излучения, организации производства строительных работ.  

В 1978 - 1980 гг. проводились первоначальные технические и экономические исследования в направлении создания атомных станций промышленного теплоснабжения (АСПТ), предназначаемых для подачи потребителям как горячей воды, так и пара разных параметров для технологических целей, что могло бы дополнительно расширить возможность замены органического топлива ядерным. В одиннадцатой пятилетке соответствующие разработки будут продолжены и при благоприятных технических и экономических результатах решится вопрос о строительстве первых АСПТ.  

Конструктивные особенности корпусов реакторов, специфические условия эксплуатации и повышенные требования к надежности и безопасности атомных станций промышленного теплоснабжения требуют проведения комплекса НИР и ОКР по созданию норм расчета на прочность, разработке правил устройства и безопасной эксплуатации, общих положений по сварке и правил контроля сварных соединений многослойных корпусов атомных реакторов.  

Предусматривается дальнейшая централизация теплоснабжения за счет сооружения преимущественно мощных ТЭЦ на органическом и ядерном топливе, атомных станций теплоснабжения и крупных котельных.  

Горьковская атомная станция теплоснабжения - одна из двух АСТ в нашей стране, строительство которых стартовало в начале 1980-х, но так и не было завершено по ряду причин, включая протесты общественности и, само собой, развал Союза.
Станция не была достроена, реакторная установка не была собрана, топливо еще даже и не думали привозить... Именно поэтому посещение объекта полностью безопасно с точки зрения боязни радиации
Само собой, если не терять здравый смысл... потому как кое-что радиоактивное найти всё же удалось =)

Лично моё мнение, что протесты оказали гораздо меньшее влияние на принятие решения об остановке строительства, нежели банальное "кончились деньги", характерное для десятков тысяч недостроев по всей территории России и бывших республик СССР. Потому как стройка очень активно велась именно в постчернобыльские годы (судя по многочисленным надписям, оставленным строителями), а часть административных и лабораторных помещений станции уже была введена в эксплуатацию и функционировала вплоть до начала 90-х (календари и плакаты на стенах)

Я и представляла себе, что ГАСТ - это классический недострой в классическом понимании: металл, бетон и однообразные коридоры с лесенками (или без лесенок). Но в ходе посещения всё оказалось не совсем так.

Строительство Горьковской АСТ (ГАСТ) началось в 1982 г.
Станция строилась по проекту ГИ ВНИПИЭТ и включала два энергоблока с реакторными установками АСТ-500 единичной тепловой мощностью 500 МВт. Каждый блок должен был обеспечивать отпуск тепла в количестве 430 Гкал/ч в виде горячей воды с давлением до 1,6 МПа и температурой до 150 ОС. Планировалось, что ГАСТ будет снабжать тепловой энергией Нагорную часть г Горького. При вводе в действие ГАСТ предполагалось закрыть около 300 низкоэффективных котельных различной мощности в Нагорной части города.

Структура системы ЦТ на базе основного теплоисточника ГАСТ выглядела следующим образом:
■ базисный теплоисточник - ГАСТ установленной тепловой мощностью 1000 МВт (2x500 МВт);
■ пиковые котельные (ПК) - пять существующих промышленных и отопительных котельных тепловой мощностью от 35 до 750 МВт;
■ магистральные тепловые сети - кольцевые с тупиковыми ответвлениями;
■ распределительные станции теплоснабжения (РСТ) для подключения магистральных тепловых сетей по зависимой и независимой схемам.
Общая тепловая нагрузка нагорной части города, обеспечиваемая системой ЦТ, составляла примерно 2380 МВт.
Отпуск теплоты в системе ЦТ на базе ГАСТ планировался в объеме примерно 7,4 ГВт.ч, в том числе от ГАСТ 5,8 ГВт.ч (78%).
Выдача тепловой мощности от АСТ в транзитные тепловые сети обеспечивалась теплоносителем - сетевой водой с максимальной температурой 150 ОС при температуре на входе в обратном трубопроводе 70 ОС.
Крупные ПК предусматривались «полупиковыми» с возможностью выдачи свободной тепловой мощности в транзитные тепловые сети параллельно АСТ
Общая протяженность транзитных тепловых сетей от ГАСТ около 30 км. Рельеф местности переменный с абсолютными отметками от 90 до 200 м. Диаметры транзитных трубопроводов 800, 1000 и 1200 мм. Насосные подкачивающие станции располагались в РСТ.
При разработке системы ЦТ на базе ГАСТ было применено несколько новых технологических решений, в том числе:
1. количественное регулирование отпуска теплоты в транзитных тепловых сетях с постоянной температурой теплоносителя в подающих трубопроводах: в отопительный период - 150 ОС, в летний - 90 ОС;
2. последовательное включение (отключение) и изменение тепловой мощности ПК при уровнях теплопотребления более 1000 МВт при температурах наружного воздуха ниже +3 ОС;
3. схема подключения ПК к АСТ через транзитные тепловые сети - параллельная, а не традиционная последовательная при дальнем теплоснабжении;
4. аккумулирование теплоты в баках запаса подпиточной воды (2 бака по 10000 м3) для стабильной работы ГАСТ.

Здесь стоит отметить, что для теплоснабжения заречной части г. Горького с учетом того, что рядом расположено несколько небольших промышленных городов, предлагалось сооружение АТЭЦ с реакторами ВВЭР-1000 для энергоснабжения не только заречной части города, но и Дзержинска, Заволжья, Правдинска, Балахны и других населенных пунктов. Были приняты три варианта размещения АТЭЦ и выполнен полный комплекс изыскательских работ по всем трем площадкам. Соответствующее ТЭО было разработано ГоТЭПом в 1986 г., но эти планы так и остались на бумаге.

Решающие этапы сооружения ГАСТ совпали с Чернобыльскими событиями, последующей «ломкой» структур власти и ожесточенной политической борьбой в «перестроечный» период.
В середине 1988 г. в Горьком началось движение общественности за прекращение строительства ГАСТ (статьи в местной прессе, демонстрации и митинги с лозунгами о запрете строительства АСТ, требования о проведении референдума).
Не смогло переломить общий настрой против ГАСТ и положительное заключение международной экспертизы проекта и самой станции, проведенной МАГАТЭ в 1989 г. , хотя эта экспертиза была предпринята по требованию общественности.
Нижегородский областной Совет народных депутатов, учитывая мнение населения, выступил против продолжения строительства станции и в августе 1990 г. принял решение «О прекращении строительства ГАСТ» .

В 2006 г. и 2008 г. нынешнее Правительство Нижегородской области предпринимало несколько безуспешных попыток по инициированию строительства парогазовой ТЭЦ (электрической мощностью 900 МВт (2x450 МВт), тепловой - 825 Гкал/ч) на базе недостроенной АСТ.
До настоящего времени теплоснабжение Нагорной части города, которая составляет половину Нижнего Новгорода, осуществляется от одной крупной котельной тепловой мощностью около 700 Гкал/ч, двумя котельными по 150 Гкал/ч (которые планировалось переводить в пиковый режим при вводе ГАСТ) и множеством мелких котельных. В связи с интенсивным строительством жилья последние годы в данной части города имеется дефицит тепловой мощности.

Но почти сразу начинают попадаться защитные двери - десятки разнообразных защитных дверей, от небольших лючков до полноразмерных массивных гермух

Некоторые помещения встречают посетителей полной пустотой или несколькими одинокими трубами где-нибудь в углах, но другие наполнены до отказа

Каждая последующая дверь, кажется, ведёт в новое место, - но тут вдруг ловишь себя на ощущении дежавю. Мы действительно вернулись к точке отсчета, или только так кажется?

Снова просторный зал, заполненный клубками их ржавых труб, стеклоткани и сияющих нержавейкой резервуаров и задвижек

Внезапное яркое пятно на фоне серо-ржавых коридоров

И снова сияние нержавейки

Множество коридоров, наталкивающих на мысли о гигантской котельной (хотя, по сути, это она и есть), приводят к той части комплекса, которую уже успели ввести в эксплуатацию на момент заморозки проекта

Ну а дальше - десятки помещений самого разного назначения: от подсобок и кабинетов до мастерских, лабораторий и залов с бескрайними рядами распотрошенных шкафов ЭВМ. На стенах - плакаты тех лет, на окнах - сухие цветы, под ногами - открытки и советская агитация.

Вести съемку ночью не очень-то комфортно из-за риска быть замеченными с улицы: ведь у всех кабинетов есть широкие окна... Поэтому останавливаюсь для съемки только лишь щитов управления, надеясь вернуться снова и подробно осмотреть здесь всё-всё-всё

Затем, проходя мимо плакатов, повествующих о нужности и безопасности станции, попадаем к ее центральному узлу

Реакторный зал представляет из себя стройплощадку в классическом понимании: видно, что здесь должны были собрать нечто сложное и громоздкое, но прекратили деятельность на той стадии, когда разнообразные элементы реакторных и тепловых установок были фактически хаотично разложены по залу.

Не имея хорошего представления об устройстве именно такой установки, довольно сложно прикинуть, что из этого что, какое назначение имеет и к чему прикручивается

Зато здесь есть некоторое количество удобных смотровых площадок, позволяющих окинуть взглядом (и лучом фонаря) всё доступное пространство

Некоторые детали до сих пор находятся в упаковке - накрытые полиэтиленом или брезентом, они привлекают к себе еще большее внимание, нежели бы просто лежали, как попало

То, что обычно принимается посетителями за, собственно, реактор, есть ни что иное, как просто крышка, покоящаяся на пусть и странной, но вполне строительной подставке (к ней можно подойти снизу и увидеть это)

Это так называемая головка от дефектоскопа типа "гаммарид" - она представляет из себя стальной контейнер, по центру которого расположен полый цилиндр из обеднённого урана (толщиной 45 мм), а внутрь должен помещаться изотоп иридия. Штуковина изрядно фонит, и трогать ее руками (а тем более - тащить домой) крайне не рекомендуется

Гаммариды используются до сих пор (в несколько более органичном исполнении) при строительстве таких объектов, как электро- и теплостанции для "просвечивания" конструкций и сварных швов, для заблаговременного поиска дефектов

Вот так-то, удовлетворившись по полной и даже найдя "что-нибудь фонящее", но всё же оставив твердое намерение вернуться, группа лазателей благополучно, под лай собак и шарящего где-то охранника покидает комплекс недостроенной Горьковской атомной станции теплоснабжения, благодаря друг друга за компанию и приятно проведённое время.

Благодарю за внимание!