Главная · Горло · Ядерный магнитный резонанс. Использование ЯМР в медицине

Ядерный магнитный резонанс. Использование ЯМР в медицине

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ядерно-магнитный резонанс

Введение

У атома, помещенного в магнитное поле, спонтанные переходы между подуровнями одного и того же уровня маловероятны. Однако такие переходы осуществляются индуцировано под влиянием внешнего электромагнитного поля. Необходимым условием является совпадение частоты электромагнитного поля с частотой фотона, соответствующего разности энергий между расщепленными подуровнями. При этом можно наблюдать поглощение энергии электромагнитного поля, которое называют магнитным резонансом. В зависимости от типа частиц - носителей магнитного момента - различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

ядерный магнитный резонанс томография

1. Ядерно-магнитный резонанс

Ядерный магнитный резонанс (ЯМР) -- резонансное поглощение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, обусловленное переориентацией магнитных моментов ядер. Явление магнитного резонанса было открыто в 1945--1946 гг. двумя независимыми группами ученых. Вдохновителями этого были Ф. Блох и Э. Пёрселл.

Физическая сущность ЯМР.В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих из нуклонов с полуцелым спином 1/2, 3/2, 5/2…. Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом, в то время как для всех прочих ядер магнитный момент отличен от нуля. Таким образом, ядра обладают угловым моментом J=hI, связанным с магнитным моментом м соотношением м=J, где h -- постоянная Планка, I -- спиновое квантовое число,-- гиромагнитное отношение.

Угловой момент и магнитный момент ядра квантованы, и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением: JZ=hµI, где µI-- магнитное квантовое число собственного состояния ядра, его значения определяются спиновым квантовым числом ядра µI=I, I-1, I-2, …, -I. то есть ядро может находиться в 2I+1 состояниях.

Спектры ЯМР.В спектрах ЯМР различают два типа линий по их ширине. Спектры твердых тел имеют большую ширину, и эту область применения ЯМР называют ЯМР широких линий. В жидкостях наблюдаются узкие линии, и это называют ЯМР высокого разрешения. Возможности метода ЯМР высокого разрешения связаны с тем, что ядра одного вида в различном химическом окружении при заданном приложенном постоянном поле поглощают энергию высокочастотного поля при разных частотах, что обусловлено разной степенью экранирования ядер от приложенного магнитного поля. Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.

2. Использования ЯМР в медико-биологических исследованиях

Ядерным магнитным резонансом называется избирательное поглощение электромагнитных волн (читайте, радиоволн) веществом (в данном случае телом человека), находящимся в магнитном поле, что возможно благодаря наличию ядер с ненулевым магнитным моментом. Во внешнем магнитном поле протоны и нейтроны этих ядер как маленькие магниты ориентируются строго определенным образом и меняют по этой причине свое энергетическое состояние. Расстояние между этими уровнями энергии столь мало, что переходы между ними способно вызвать даже радиоизлучение. Энергия радиоволн в миллиарды раз меньше, чем у рентгеновского излучения, поэтому они не могут вызвать какие-либо повреждения молекул. Итак, сначала происходит поглощение радиоволн. Затем происходит испускание радиоволн ядрами и переход их на более низкие энергетические уровни. И тот, и другой процесс можно зафиксировать, изучая спектры поглощения и излучения ядер. Эти спектры зависят от множества факторов и прежде всего - от величины магнитного поля. Для получения пространственного изображения в ЯМР-томографе, в отличие от КТ нет необходимости в механическом сканировании системой источник-детектор (антенна передатчик и приемник в случае ЯМР). Эта задача решается изменением напряженности магнитного поля в различных точках. Ведь при этом будет изменяться частота (длина волны), на которой происходит передача и прием сигнала. Если мы знаем величину напряженности поля в данной точке, то можем точно связать с ней передаваемый и принимаемый радиосигнал. Т.е. благодаря созданию неоднородного магнитного поля можно настраивать антенну на строго определенный участок органа или ткани без ее механического перемещения и снимать показания с этих точек, лишь меняя частоту приема волны. Следующий этап - обработка информации от всех просканированных точек и формирование изображения. В результате компьютерной обработки информации получаются изображения органов и систем в «срезах», сосудистых структур в различных плоскостях, формируются трехмерные конструкции органов и тканей с высокой разрешающей способностью.

В чем же преимущества ЯМР-томографии?

Первое преимущество - замена рентгеновских лучей радиоволнами. Это позволяет устранить ограничения на контингент обследуемых (детей, беременных), т.к. снимается понятие лучевой нагрузки на пациента и врача.

Второе преимущество - чувствительность метода к отдельным жизненно важным изотопам и особенно к водороду, одному из самых распространенных элементов мягких тканей.

Третье преимущество заключается в чувствительности к различным химическим связям у различным молекул, что повышает контрастность картинки.

Четвертое преимущество кроется в изображении сосудистого русла без дополнительного контрастирования и даже с определением параметров кровотока.

Пятое преимущество заключается в большей на сегодня разрешающей способности исследования - можно увидеть объекты размером в доли миллиметра.

И, наконец, шестое - МРТ позволяет легко получать не только изображения поперечных срезов, но и продольных.

Конечно же, как и любая другая методика, ЯМР-томография имеет свои недостатки. К ним относят:

1. Необходимость создания магнитного поля большой напряженности, что требует огромных энергозатрат при работе оборудования и/или использования дорогих технологий для обеспечения сверхпроводимости.

2. Низкая, особенно в сравнении с рентгенологическими, чувствительность метода ЯМР-томографии, что требует увеличения времени просвечивания. Это приводит к появлению искажений картинки от дыхательных движений (что особенно снижает эффективность исследования легких, исследовании сердца).

3. Невозможность надежного выявления камней, кальцификатов, некоторых видов патологии костных структур.

4. Не следует забывать и о том, что относительное противопоказание для ЯМР-томографии - беременность.

Заключение

История науки учит нас, что каждое новое физическое явление или новый метод проходит трудный путь, начинающийся в момент открытия данного явления и проходящий через несколько фаз. Сначала почти никому не приходит мысль о возможности, даже весьма отдаленной, применения этого явления в повседневной жизни, в науке или технике. Затем наступает фаза развития, во время которой данные экспериментов убеждают всех в большой практической значимости данного явления. Наконец, следует фаза стремительного взлета. Новые инструменты входят в моду, становятся высокопродуктивными, приносят большую прибыль и превращаются в решающий фактор научно- технического прогресса. Приборы, основанные на когда-то давно открытом явлении, заполняют физику, химию, промышленность и медицину.

Наиболее ярким примером изложенной выше несколько упрощенной схемы эволюции служит явление магнитного резонанса, открытое Е. К. Завойским в 1944 г. в форме парамагнитного резонанса и независимо открытого Блохом и Парселлом в 1946 г. в виде резонансного явления магнитных моментов атомных ядер. Сложная эволюция ЯМР часто толкала скептиков к пессимистическим заключениям. Говорили, что “ ЯМР мертв “, что “ ЯМР себя полностью исчерпал“. Однако вопреки и наперекор этим заклинаниям ЯМР продолжал идти вперед и постоянно доказывал свою жизнеспособность. Много раз эта область науки оборачивалась к нам новой, часто совсем неожиданной стороной и давала жизнь новому направлению. Последние революционизирующие изобретения в области ЯМР, включая удивительные методы получения ЯМР - изображений, убедительно свидетельствуют о том, что границы возможного в ЯМР действительно безграничны. Замечательные преимущества ЯМР - интроскопии, которые будут высоко оценены человечеством и которые сейчас являются мощным стимулом стремительного развития ЯМР - интроскопии и широкого применения в медицине, заключаются в очень малой вредности для здоровья человека, свойственной этому новому методу.

Список использованной литературы и источников

1. Антонов В. Ф., Коржуев А. В. Физика и биофизика: курс лекций для студентов медицинских вузов. - Москва: ГЭОТАР-МЕД, 2004.

2. Кузнецов А.Н. Метод спинового зонда. - Москва: Наука, 1976.

3. Материалы сайта www.wikipedia.org

4. Материалы сайта www.humuk.ru;

5. Ремизов А. Н., Максина А. Г., Потапенко А. Я. Медицинская и биологическая физика. - Москва: Дрофа, 2003.

6. Хауссер К. Х., Кальбитцер Х. Р. ЯМР в медицине и биологии: структура молекул, томография, спектроскопия in-vivo. - Киев: Наукова думка, 1993.

7. Эмануэль Н. М., Кузьмин М. Г. Электронный парамагнитный резонанс. - Москва: Издательство Московского университета.1985.

Размещено на Allbest.ru

...

Подобные документы

    Физическое явление ядерно-магнитного резонанса, условия для его возникновения. Принцип получения изображения в магнитно-резонансном томографе. Получение двумерного изображения. Основные преимущества постоянных, резистивных и сверхпроводящих томографов.

    презентация , добавлен 13.10.2013

    Методы современной диагностики. Явление ядерного магнитного резонанса (ЯМР). Сущность явления ЯМР. Спин-спиновое взаимодействие. Анализаторы веществ на основе ЯМР. Техническая реализация ЯМР-томографа. Основные блоки магниторезонансной томографии.

    реферат , добавлен 12.05.2015

    История открытия и сущность ядерно-магнитного резонанса. Спин-спиновое взаимодействие. Понятие магнитно-резонансной томографии (МРТ). Контрастность изображения: протонная плотность, Т1- и Т2-взвешенность. Противопоказания и потенциальные опасности МРТ.

    реферат , добавлен 11.06.2014

    Обеспечение селективности при качественном анализе избирательным поглощением монохроматического света. Спектроскопия ядерного магнитного резонанса. Спектральные линии для проверки шкалы длин волн. Калибровка оборудования, а также подготовка образцов.

    реферат , добавлен 30.04.2014

    Преимущества диагностического способа магнитно-резонансной томографии в акушерстве для прямой визуализации плода. Показания, методика и особенности проведения исследования. Специфика подготовки к МРТ беременной женщины. Ограничения и безопасность метода.

    презентация , добавлен 15.02.2016

    Электротерапия - метод физиотерапии, основанный на использовании дозированного воздействия на организм электрических токов, магнитных или электромагнитных полей. Механизм действия и эффект от методов. Особенности лечения постоянным и импульсным током.

    реферат , добавлен 17.12.2011

    Процессы в замкнутом волноводном тракте. Поляризация и наложение волн, резонанс бегущей и стоячей волны в волноводе. Основными элементами системы генератора качающейся частоты. КСВН волноводной кольцевой системы в режиме бегущих и стоячих волн.

    отчет по практике , добавлен 13.01.2011

    Сущность и значение метода магнитно-резонансной томографии, история его формирования и развития, оценка эффективности на современном этапе. Физическое обоснование данной методики, порядок и принципы построения изображений. Определение и выделение среза.

    реферат , добавлен 24.06.2014

    Возможности использования ядерно-физических феноменов для исследования больных. Методы радионуклидного исследования. Клиническая и лабораторная радиометрия. Радионуклидное сканирование и сцинтиграфия. Радиоизотопная диагностическая лаборатория.

    реферат , добавлен 24.01.2011

    Условия достижения эффекта томографии. Основные задачи и направления применения рентгенологического исследования - ангиографии, венографии и лимфографии. История открытия, принцип действия и преимущества использования метода компьютерной томографии.

Сегодня все чаще пациентов направляют не на рентгенографию или УЗИ, а на ядерную магниторезонансную томографию. В основе такого метода исследования лежит магнетизм ядра. Рассмотрим, что такое , какие ее преимущества и в каких случаях она проводится.

Этот метод диагностики основан на ядерном магнитном резонансе. Во внешнем магнитном поле ядро атома водорода, или протон, находится в двух взаимно противоположных состояниях. Изменить направление магнитного момента ядра можно, подействовав на него электромагнитными лучами с некоторой определенной частотой.

Помещение протона во внешнее магнитное поле вызывает изменение его магнитного момента с возвращением в исходное положение. При этом выделяется определенное количество энергии. фиксирует изменение количества такой энергии.

Томограф использует очень сильные магнитные поля. Электромагниты обычно способны развивать магнитное поле напряженностью 3, иногда до 9 Тл. Оно является полностью безвредным для человека. Система томографа позволяет локализировать направленность магнитного поля с тем, чтобы получить наиболее качественные изображения.

Ядерно магнитный томограф

Способ диагностики основывается на фиксации электромагнитного отклика ядра атома (протона), происходящего из-за возбуждения его электромагнитными волнами в высоконапряженном магнитном поле. Впервые о магнитно резонансной томографии заговорили еще в 1973 году. Тогда американский ученый П. Латербур предложил провести исследование объекта в изменяющемся магнитном поле. Работы этого ученого послужили началу новой эры в медицине.

С помощью магнитно резонансного томографа стало возможным изучать ткани и полости организма человека благодаря степени насыщенности тканей водородом. Часто применяются магнито-резонансные контрастные вещества. Чаще всего это препараты гадолиния, которые способны изменять отклик протонов.
Термин «ядерная МР томография» существовал до 1986 года.

В связи с радиобоязнью у населения в связи с катастрофой на Чернобыльской атомной электростанции из названия нового метода диагностики решено было убрать слово «ядерный». Впрочем, это позволило магнито-резонансной томографии быстро войти в практику диагностики многих заболеваний. На сегодня этот метод является ключевым в определении множества еще недавно труднодиагностируемых заболеваний.

Как проводится диагностика?

При проведении МРТ используется очень сильное магнитное поле. И хотя оно не опасно для человека, все же врачу и пациенту нужно придерживаться определенных правил.

Прежде всего, перед процедурой диагностики пациент заполняет специальную анкету. В ней он указывает состояние здоровья, а также ведомости о себе. Обследование делается в специально подготовленном помещении с кабинкой для переодевания и личных вещей.

Чтобы не навредить самому себе, а также для обеспечения правильности результатов пациент должен снять с себя все вещи, которые содержат металл, оставить в шкафчике для личных вещей мобильные телефоны, кредитные карточки, часы и проч . Женщинам желательно смыть с кожи декоративную косметику.
Дале пациента помещают внутрь трубы томографа. По указанию врача определяется зона обследования. Каждая зона обследуется в течение десяти – двадцати минут. Все это время пациент должен находиться неподвижно. От этого будет зависеть качество снимков. Врач может зафиксировать положение пациента, если это необходимо.

Во время работы аппарата слышатся равномерные звуки. Это нормально и свидетельствует о том, что исследование проходит правильно. Для получения более точных результатов пациенту может быть введено внутривенно контрастное вещество. В отдельных случаях при введении такого вещества ощущается прилив тепла. Это совершенно нормально.

Приблизительно через полчаса после исследования врач может получить протокол исследования (заключение). Выдается также диск с результатами.

Преимущества ядерной МРТ

К преимуществам такого обследования относят следующее.

  1. Возможность получить высококачественные изображения тканей организма в трех проекциях. Это значительно повышает визуализацию тканей и органов. В таком случае ЯМРТ намного лучше, чем компьютерная томография, рентгенография и ультразвуковая диагностика.
  2. Высококачественные объемные изображения дают возможность получить точный диагноз, что улучшает лечение и повышает вероятность выздоровления.
  3. Так как на МРТ можно получить высококачественное изображение, то такое исследование – лучшее для обнаружения опухолей, нарушений деятельности центральной нервной системы, патологических состояний опорно-двигательного аппарата. Так появляется возможность диагностировать те заболевания, которые еще недавно было сложно или невозможно обнаружить.
  4. Современные аппараты для томографии позволяют получить качественные снимки без изменения положения пациента. А для кодирования информации применяются те же методы, что и в компьютерной томографии. Это облегчает диагностику, так как врач видит трехмерные изображения целых органов. Также врач может получить изображения того или иного органа послойно.
  5. Такое обследование хорошо определяет самые ранние патологические изменения в органах. Таким образом можно обнаружить болезнь на стадии, когда пациент еще не ощущает симптомов.
  6. При проведении такого исследования больной не подвергается ионизирующему излучению. Это существенно расширяет сферы применения МРТ.
  7. Процедура МРТ полностью безболезненна и не доставляет больному никакого дискомфорта.

Показания к МРТ

Показаний к проведению магнитно резонансной томографии много.

  • Нарушения мозгового кровообращения.
  • Подозрения на новообразование мозга, поражение его оболочек.
  • Оценка состояния органов после оперативного вмешательства.
  • Диагностика воспалительных явлений.
  • Судороги, эпилепсии.
  • Черепно-мозговая травма.
  • Оценка состояния сосудов.
  • Оценка состояния костей и суставов.
  • Диагностика мягких тканей организма.
  • Заболевания позвоночника (в том числе остеохондроз, спондилоартроз).
  • Травмы позвоночника.
  • Оценка состояния спинного мозга, в том числе подозрения на злокачественные процессы.
  • Остеопороз.
  • Оценка состояния органов брюшины, а также забрюшинного пространства. МРТ показано при желтухе, хроническом гепатите, холецистите, желчнокаменной болезни, опухолевидном поражении печени, панкреатите, заболеваниях желудка, кишечника, селезенки, почек.
  • Диагностика кист.
  • Диагностика состояния надпочечников.
  • Заболевания органов малого таза.
  • Урологические патологии.
  • Гинекологические заболевания.
  • Болезни органов грудной полости.

Кроме того, показано магнито-резонансное исследование всего организма при подозрении на новообразование. С помощью МРТ можно проводить поиск метастазов, если диагностирована первичная опухоль.

Это далеко не полный перечень показаний для проведения магнито-резонансной томографии. Можно с уверенностью утверждать, что нет такого организма и заболевания, которое не можно было бы обнаружить при помощи такого способа диагностики. Поскольку же возможности медицины растут, то перед врачами открываются практически безграничные возможности диагностики и лечения многих опасных болезней.

Когда противопоказана магнитно-резонансная томография?

Для МРТ существует ряд абсолютных и относительных противопоказаний. К абсолютным противопоказаниям относятся такие.

  1. Наличие установленного кардиостимулятора. Это связано с тем, что колебания магнитного поля способны подстраиваться под ритм сердца и таким образом могут привести к летальному исходу.
  2. Наличие установленных ферромагнитных или электронных имплантатов в среднем ухе.
  3. Большие имплантаты из металла.
  4. Наличие в организме ферромагнитных осколков.
  5. Наличие аппаратов Илизарова.

К относительным противопоказаниям (когда исследование возможно при выполнении определенных условий) относятся:


При выполнении МРТ с контрастом противопоказаниями является анемия, хроническая декомпенсированная почечная недостаточность, беременность, индивидуальная непереносимость.

Заключение

Значение магнитно-резонансной томографии для диагностики трудно переоценить. Это – совершенный, неизвазивный, безболезненный и безвредный способ обнаружения многих болезней. С внедрением магнитно-резонансной томографии улучшилось и лечение пациентов, так как врач знает точный диагноз и особенности всех процессов, протекающих в организме пациента.

Не нужно бояться проведения МРТ. Пациент не ощущает никаких болевых ощущений во время процедуры. Она ничего не имеет общего с ядерным или рентгеновским излучением. Отказываться от проведения такой процедуры также нельзя.

Буквально три-четыре столетия назад докторам приходилось ставить диагноз, не имея ничего точнее рентгенологического исследования. Даже тогда было диковинкой, о которой мало кто что-либо слышал. Сейчас столько точных исследований, которые помогают дать четкое представление о той или иной патологии, ее размерах, форме и опасности. Среди таких диагностических процедур . В чем же ее принцип?

За принцип этой диагностической процедуры взят феномен ЯМР (), при помощи которого можно получить послойное изображение органов и тканей организма.

Ядерно-магнитный резонанс – это физическое явление, которое заключается в особенных свойствах ядер атомов. При помощи импульса радиочастотной природы в электромагнитном поле в виде особого сигнала излучается энергия. Компьютер отображает и запечатлевает эту энергию.

ЯМР дает возможность все знать об организме человека из-за насыщенности последнего атомами водорода и магнитных свойств тканей организма. Установить, где находится тот или иной атом водорода, можно благодаря векторному направлению протонных параметров, которые делятся на две расположенные по разные стороны фазы, а также их зависимости от магнитного момента.

Принцип работы МРТ

При помещении ядра атома во внешнее магнитное поле, момент магнитной природы направится в противоположную сторону от магнитного момента поля. Когда на определенный участок организма воздействует с той или иной частотой, некоторые протоны изменяют свое направление, но затем все снова возвращается на круги своя. На этом этапе при помощи специальной системы в компьютере производится сбор данных, полученных с томографа, регистрируются несколько «расслабленных» ядер атома.

Что такое магнитно-резонансная томография?

МРТ — на сегодняшний день единственный метод лучевой диагностики, который может дать наиболее точные данные о состоянии организма человека, метаболизме, строении и физиологических процессах в тканях и органах.

Во время исследования создаются снимки отдельных участков организма. Органы и ткани отображаются в разных проекциях, что дает возможность увидеть их в разрезе. После врачебной оценки таких снимков можно сделать достаточно точные выводы об их состоянии.

Принято считать, что МРТ была основана в 1973 году. Но первые томографы существенно отличались от современных. Качество их изображения было низким, хотя они и были , чем томографы сегодняшнего дня. Прежде чем появились томографы, имеющие вид современных и работающие также качественно и точно, над их усовершенствованием трудились величайшие умы мира.

Современный магнитно-резонансный томограф – это высотехнологичное устройство, работающее благодаря взаимодействию магнитного поля и радиоволн. Прибор выглядит как тоннельная труба с выдвижным столом, на котором и размещают пациента. Работа этого стола устроена так, что может перемещаться в зависимости от томографического магнита.

Пример современного аппарата МРТ

Обследуемый участок окружают радиочастотные датчики, считывающие сигналы и передающие их на компьютер. Полученные данные обрабатываются на компьютере, вследствие чего и получается точное изображение. Эти снимки записывают на пленку либо на диск.

В результате получается не снимок , а точное изображение необходимого участка в нескольких плоскостях. Можно посмотреть мягкие ткани в различных разрезах, при этом костная ткань не отображается, а значит – и мешать не будет.

При помощи этой методики можно визуализировать сосудистое русло, органы, различные ткани тела, нервные волокна, связочный аппарата и мышцы. Можно оценить , измерить температуру любого органа.

МРТ бывает или без него. Контраст делает аппаратуру более чувствительной.

Сам совершенно безболезненен. в свой организм никак не ощущается. Зато ощущается множество различных специфических для данной процедуры звуков: различных сигналов, постукиваний, разных шумов. В некоторых клиниках выдают специальные беруши, чтобы пациента не раздражали эти звуки.

Нужно учесть один немаловажный нюанс. Во время процедуры пациента , который представляет собой тоннелеобразный магнит. Есть люди, которые боятся закрытых пространств. Страх этот может быть различной интенсивности – от небольшого беспокойства до паники. В некоторых лечебных учреждениях есть для таких категорий пациентов. Если же такого томографа нет, то нужно рассказать о своих проблемах доктору, он назначит успокоительное перед исследованием.

Для каких исследований больше всего подходит?

Без магнитно-резонансной томографии не обойтись при диагностике таких состояний:

  • многие недуги воспалительного характера, например, ;
  • нарушения головного и спинного мозга ( , );
  • опухоли, как доброкачественные, так и злокачественные. Этот единственный метод, который предоставляет самые точные данные о метастазах, позволяет видеть даже самые мелкие, которые при других исследованиях незаметны. Помогает выяснить, уменьшаются ли они после проведенной терапии или, наоборот, увеличиваются;
  • (сосудистые нарушения, пороки сердца);
  • травмы органов и ;
  • для определения эффективности проведенного оперативного лечения, химиотерапии и лучей;
  • инфекционные процессы в суставах и костях.

Преимущества и недостатки МРТ

У каждой методики есть свои положительные стороны и свои минусы. Среди плюсов этого исследования отмечают:

  • методика не вызывает боли или каких-нибудь неприятных ощущений, кроме звуков, которые издает аппарат при работе;
  • нет никакого вредного радиоактивного излучения, которое присутствует, к примеру, при рентгенологических методах;
  • после процедуры получаются изображения высокого качества, контрастные вещества не причиняют таких побочных эффектов, как при рентгеновском исследовании;
  • не нужна никакая ;
  • исследование является самым информативным и точным среди других, известных ныне.

Исследование дает возможность получить точные и достоверные данные о строении, размерах, форме тканей и органов. Иногда МРТ является единственной возможностью выявить серьезный недуг в начальной стадии, к сожалению, эффективность процедуры недостаточно высока при диагностике костной ткани и нарушениях функции суставов. Но светила медицины смогли и здесь найти выход: если (компьютерной томографии), можно получить вполне достоверные и информативные данные.

Как у каждой методики, у МРТ есть свои противопоказания. Они могут быть относительными и абсолютными. К абсолютным противопоказаниям относят:

  • если у пациента есть вживленный кардиостимулятор;
  • электромагнитные имплантанты в среднем ухе;
  • различные имплантанты металлического или ферромагнитного происхождения.

К относительным противопоказаниям относят:

  • заболевания сердца, печени и почек в стадии декомпенсации;
  • почечная недостаточность;
  • клаустрофобия, беспокойство в ;
  • в первом триместре.

Насколько эффективно пройдет та или иная процедура зависит от многих обстоятельств. Не стоит при малейших подозрениях на наличие той или иной патологии незамедлительно бежать на МРТ. Не смотря на всю точность этого метода, могут быть некоторые нюансы, которые способен выявить только специалист. Например, проводить исследование с контрастом или без него, или делать МРТ параллельно с КТ, или другим исследованием, лабораторными анализами.

Интернет, безусловно, очень полезная и нужная вещь, как, впрочем, и советы знакомых. Но все это не может заменить объективного врачебного исследования и опроса. Только специалист может правильно подойти к вопросу . Поэтому перед тем как идти на эту процедуру нужно зайти к своему терапевту и взять направление, где будет указан предположительный диагноз и какой именно орган или участок нужно исследовать.

После исследования, с полученными данными также лучше пойти к специалисту. Возможно, он решит назначить еще какие-то дополнительные исследования, чтобы прояснить ситуацию и назначить, если нужно, лечение.

Магнито-резонансные явления, их применение в медицине.

1. Расщепление энергетических уровней в магнитном поле. Эффект Зеемана.

2. Резонансные методы исследования вещества.

3. Магнитный резонанс.

4. Электронный парамагнитный резонанс

5. Ядерный магнитный резонанс

6. Метод ЭПР в биологии и медицине

1. Так как макроскопические свойства магнетиков обусловлены их строением, рассмотрим магнитные характеристики электронов, ядер, атомов и молекул, а также поведение этих частиц в магнитном поле.

Сила тока, соответствующая движению электрона, который вращается с частотой , равна

Где e-заряд электрона

Так как , то

Так как магнитный момент контура с током P=IS, то

(3)

Момент импульса электрона (1-й постулат Бора)

Отношение магнитного момента частицы к ее моменту импульса называют магнито-механическим

(4)

Магнито-механическое отношение выражают через множитель Ланде g:

(5)

Электрон обладает также и собственным моментом импульса, который называется спином. Спину соответствует магнитный момент. Спиновое иагнито-механическое соотношение вдвое больше орбитального:

(6)

Соотношения (5) и (6) показывают, что между магнитным и механическим моментом существует вполне определенная «жесткая» связь, так как e и m e –величины постоянные.

Рассмотрим атом, помещенный в магнитное поле. Его энергия определяется по формуле

(7)

Где E 0 -энергия атома в отсутствии магнитного поля

Магнетон Бора, g-множитель Ланде,

В-индукция магнитного поля,

m j -магнитное квантовое число.

Так как m j может принимать (2j+1) значений от +j до –j, то из (7) следует, что каждый энергетический уровень при помещении атома в магнитное поле расщепляется на 2j+1 подуровней. Это показано на рис. для j=1/2.

Расстояние между соседними подуровнями равно

Расщепление энергетических уровней приводит к расщеплению спектральных линий атомов, помещенных в магнитное поле. Это явление называют эффектом Зеемана.

Запишем (7) для двух подуровней Е 1 и Е 2 , образованных при наложении магнитного поля:

, (9)

Е 01 и Е 02 -энергии атома при отсутствии магнитного поля

Используя условие частот , (9) можно записать

Где -частота спектральной линии при отсутствии магнитного поля, -расщепление спектральной линии в магнитном поле.

Согласно правилам отбора для магнитного квантового числа Это соответствует трем возможным частотам:

Т.е. в магнитном поле спектральная линия расщепляется на триплет.

Примечание: в современной квантовой механике состояние движения электрона в атоме характеризуется 4 квантовыми числами.

Главное квантовое число n=1,… -определяет уровни энергии электрона

Орбитальное квантовое число l=0.1…n-1-характеризует момент импульса электрона L e относительно ядра:

Магнитное квантовое число m j =0. всего 2l+1 значений. Оно определяет проекции орбитального момента импульса на произвольное направление z:

Основное квантовое число m s принимает значения +1/2 и -1/2 и характеризует значение проекции спина:

2. Резонансные методы исследования вещества , обладая высокой информативностью и точностью, позволяют исследовать химический состав, симметрию, структуру, энергетический спектр вещества, электрические, спин-орбитальные, магнитные, сверхтонкие взаимодействия.

Слово «резонанс» в широком смысле означает возрастание отклика колебательной системы на периодическое внешнее воздействие при сближении частоты последнего с одной из частот собственных колебаний системы.

Несмотря на различную природу колебательных систем, которые способны резонировать, общая картина резонанса сохраняется: вблизи резонанса возрастают амплитуда колебаний и энергия, передаваемая колебательной системой извне.

Наиболее удобным и распространенным видом периодического внешнего воздействия является э/м излучение.

При квантовом описании колебательная система характеризуется набором разрешенных значений энергии (энергетическим спектром). Этот спектр для систем связанных частиц может носить дискретный характер. Переменное э/м поле частоты можно рассматривать как совокупность фотонов с энергией . При совпадении энергии фотона с разностью энергий каких-либо двух уровней наступает резонанс, т.е. резко возрастает число поглощаемых системой фотонов, вызывающих квантовые переходы с нижнего уровня E i на верхний E k .

Магнитный резонанс

Если облучать вещество переменным э/м полем, то при некоторой частоте будет происходить резонансное поглощение энергии э/м поля, которое можно измерить экспериментально. На практике удобнее частоту переменного поля (задаваемого генератором) зафиксировать, а менять величину постоянного магнитного поя Н. Тогда резонанс наступает при определенном значении поля Н, которое и измеряется. Это явление называется магнитным резонансом. Зная магнитный момент электрона, можно вычислить частоту электронного резонанса. В зависимости от типа частиц, составляющих резонирующую систему, различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

4. Электронный парамагнитный резонанс (ЭПР) открыт в 1944 г. Е.К.Завойским при исследовании поглощения э/м энергии парамагнитными солями металлов. Он заметил, что монокристалл CuCl 2 , помещенный в постоянное магнитное поле 40Гаусс (4мТл), начинает поглощать микроволновое излучение с частотой около 133 МГц.

Специально вводимые в диамагнитные кристаллы примесные парамагнитные ионы оказались прекрасными зондами для изучения методом ЭПР локальной структуры и симметрии, природы химических связей примесного иона с кристаллическим окружением, электронно-колебательных взаимодействий и т.д.

Устройство радиоспектрометра ЭПР во многом напоминает устройство спектрофотометра для измерения оптического поглощения в видимой и ультрафиолетовой частях спектра.

Излучение, прошедшее через измеряемый образец, в радиоспектрометре и в спетрофотометре попадает на детектор, затем сигнал детектора усиливается и регистрируется на самописце компьютера.

5. Ядерный магнитный резонанс (ЯМР) состоит в резонансном поглощении э/м энергии, обусловленном магнетизмом ядер. Частота э/м поля, вызывающего переходы между соседними уровнями, определяется условием частот Бора. При этом стало возможным детектирование сигналов от ядер, интенсивность сигналов ЯМР которых во много раз меньше интенсивности водородных сигналов.



Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.

6. ЭПР в медицине и биологии .

Современные ЭПР-спектрометры позволяют изучать парамагнитные молекулы непосредственно в процессе функционирования биологических систем на разных уровнях их структурно-функциональной организации, таких, как молекулы биополимеров, макромолекулярные комплексы и субклеточные структуры, клетки, отдельные органы животных и растений, а также целые организмы.

Широкие возможности метода ЭПР в медицинской науке и практике продемонстрированы исследованиями, регистрирующими свободные радикалы в различных клеточных суспензиях: мышечной ткани, гипофизе, щитовидной железе, надпочечниках, эпителиальных клетках хрусталика глаза. Методом ЭПР было исследовано влияние некоторых токсичных веществ на человека.

Особый интерес для медицинской микробиологии могут представлять данные о том, что на содержание свободных радикалов в тканях, клетках и биомакромолекулах существенное влияние оказывают малые количества структурно связанной воды и кислород. Метод ЭПР использовался для контроля за сохранением таких биологических материалов, как кровь, вакцины, сыворотки, кровезаменители, пищевые продукты. Ряд тяжелых заболеваний, таких как холера, сахарный диабет и др., сопровождаются существенным обезвоживанием организма.

Особое направление в применении ЭПР - спектроскопии для биомедицинских исследований представляет так называемый спин-иммунологический метод. Его с успехом используют для определения малых количеств наркотических веществ в биологических жидкостях (моче, крови, слюне). В отличие от радио-иммунологического сип-иммунологический метод не требует специальной защиты для обеспечения безопасности, как это принято при работе с изотопами.

В ряде работ были показаны возможности метода ЭПР для диагностики ишемической болезни сердца. С использованием метода ЭПР можно диагностировать инсулинозависимый сахарный диабет по степени его тяжести.

С помощью метода ЭПР проводятся биодозиметрические обследования населения, пострадавшего при радиоактивном загрязнении окружающей среды.

ЯМР или по-английски NMR imaging– это сокращение от словосочетания «ядерный магнитный резонанс». Такой способ исследования вошел в медицинскую практику в 80-х годах прошлого века. Он отличается от рентгеновской томографии. Излучение, используемое в ЯМР, включает радиоволновой диапазон с длиной волны от 1 до 300 м. По аналогии с КТ ядерно-магнитная томография использует автоматическое управление компьютерным сканированием с обработкой послойного изображения структуры внутренних органов.

В чем суть ЯМРТ


В основе ЯМР используются сильные магнитные поля, а также радиоволны, которые позволяют сформировать изображение тела человека из отдельных изображений (сканов). Такая методика необходима для экстренной помощи пациентам с травмами и повреждением мозга, а также для плановой проверки. ЯМРТ называется избирательное поглощение электромагнитных волн веществом (телом человека), которое находится в магнитном поле. Это становится возможным при наличии ядер с ненулевым магнитным моментом. Сначала происходит поглощение радиоволн, затем происходит испускание радиоволн ядрами и они переходят на низкие энергетические уровни. Оба процесса можно зафиксировать при изучении и поглощении ядер. При ЯМР создается неоднородное магнитное поле. Нужно лишь настроить антенну-передатчик и приемник ЯМР-томографа на строго определенный участок тканей или органов и снимать показания с точек, меняя частоту приема волны.

При обработке информации от просканированных точек получаются картинки всех органов и систем в различных плоскостях, в срезе, формируется трехмерное изображение тканей и органов с высоким разрешением. Технология магнитно – ядерной томографии очень сложная, в ее основу положен принцип резонансного поглощения электромагнитных волн атомами. Человек помещается в аппарат с сильным магнитным полем. Молекулы там разворачиваются по направлению магнитного поля. Затем проводится сканирование электроволной, изменение молекул сначала фиксируется на особой матрице, а затем передается в компьютер и проводится обработка всех данных.

Области применения ЯМРТ

ЯМР томография имеет достаточно широкий спектр применения, поэтому его гораздо чаще используют в качестве альтернативы компьютерной томографии. Список заболеваний, которые можно обнаружить при помощи ЯМР очень объемный.

  • Головной мозг.

Чаще всего такое исследование применяется для сканирования головного мозга при травмах, опухолях, деменции, эпилепсии, проблемах с сосудами головного мозга.

  • Сердечно-сосудистая система.

При диагностике сердца и сосудов ЯМР дополняет такие методы, как ангиография и КТ.
ЯМРТ позволяет выявить кардиомиопатию, врожденный порок сердца, сосудистые изменения, ишемию миокарда, дистрофию и опухоли в области сердца, сосудов.

  • Опорно-двигательная система.

Широко применяется ЯМР томография и при диагностике проблем с опорно-двигательным аппаратом. При таком методе диагностики очень хорошо дифференцируются связки, сухожилия и костные структуры.

  • Внутренние органы.

При исследовании ЖКТ и печени с помощью ядерно-магнитно-резонансной томографии можно получить полноценную информацию о селезенке, почках, печени, поджелудочной железе. Если дополнительно ввести контрастное вещество, то появляется возможность отследить функциональную способность этих органов и их сосудистую систему. А дополнительные компьютерные программы позволяют сформировать образы кишечника, пищевода, желчных путей, бронхов.

Ядерная магнитно-резонансная томография и МРТ: есть ли разница

Иногда можно запутаться в названиях МРТ и ЯМР. Если ли отличие между этими двумя процедурами? Можно однозначно ответить, что нет.
Первоначально, на момент своего открытия магнитно-резонансной томографии в ее названии имелось еще одно слово «ядерная», которое со временем исчезло, осталась только аббревиатура МРТ.


Ядерная магнитно-резонансная томография представляет собой подобие рентгеновского аппарата, однако, принцип действия и возможности у нее несколько другие. МРТ помогает получить визуальную картинку головного и спинного мозга, других органов с мягкими тканями. С помощью томографии есть возможность измерить скорость кровотока, течения ликвора и спинномозговой жидкости. Также возможно рассмотреть, как активируется тот или иной участок коры головного мозга в зависимости от деятельности человека. Врач при проведении исследования видит объемное изображение, которое позволяет ему ориентироваться в оценке состояния человека.

Существует несколько способов исследования: ангиография, перфузия, диффузия, спектроскопия. Ядерная магнитно-резонансная томография является одной из самых лучших методик исследования, так как она позволяет получить трехмерное изображение состояния органов и тканей, а значит, диагноз будет установлен более точно и лечение будет выбрано правильное. ЯМР исследование внутренних органов человека представляет собой именно образы, а не реальные ткани. Образы появляются на фоточувствительной пленке, когда поглощаются рентгеновские лучи при получении рентгеновского снимка.

Основные плюсы ЯМР-томографии

Преимущества томографии ЯМР по сравнению с другими методами исследования многогранны и значительны.

Минусы ЯМР-томографии

Но конечно и такой метод не лишен своих недостатков.

  • Большая энергозатрата. Работа камеры требует большого количества электроэнергии и дорогих технологий для нормальной сверхпроводимости. Но магниты с большой мощностью не оказывают отрицательного влияния на здоровье человека.
  • Длительность процесса. Ядерная магнитно-резонансная томография является менее чувствительным методом по сравнению с рентгеном. Поэтому требуется большее время для просвечивания. К тому же искажение картинки может происходить из-за дыхательных движений, что искажает данные при проведении исследований легких и сердца.
  • При наличии такого заболевания, как клаустрофобия, является противопоказанием для исследования при помощи ЯМРТ. Также нельзя проводит диагностику при помощи ЯМР-томографии, если имеются крупные металлические имплантаты, кардиостимуляторы, искусственные водители ритма. При беременности диагностику проводят только в исключительных случаях.

Каждый крошечный объект человеческого тела может быть исследован при помощи ЯМР-томографии. Только в некоторых случаях следует включать распределение концентрации химических элементов в организме. Для того чтобы измерения становились более чувствительными, следует накапливать и суммировать довольно большое количество сигналов. В таком случае получается четкое изображение высокого качества, которое адекватно передает реальность. С этим связана и длительность пребывания человека в камере для проведения ЯМР-томографии. Придется неподвижно пролежать довольно долго.

В завершение можно сказать, что ядерная магнитно-резонансная томография является довольно безопасным и абсолютно безболезненным методом диагностики, который позволяет полностью избежать воздействия рентгеновских лучей. Компьютерные программы позволяют обрабатывать получившиеся сканы с формированием виртуальных изображений. Границы ЯМР поистине безграничны.

Уже сейчас такой способ диагностики является стимулом для ее стремительного развития и широкого применения в медицине. Метод отличается своей малой вредностью для здоровья человека, но при этом позволяет тщательно исследовать строение органов, как здорового человека, так и при имеющихся заболеваниях.