Главная · Простудные заболевания · Как человек воспринимает звуки. Аномальный слух и слух животных

Как человек воспринимает звуки. Аномальный слух и слух животных

Мы часто оцениваем качество звучания. При выборе микрофона, программы для обработки звука или формата записи звукового файла один из самых важных вопросов - насколько хорошо будет это звучать. Но существуют различия между характеристиками звука, которые можно измерить и теми, которые можно услышать.

Тон, тембр, октава.

Мозг воспринимает звуки определённых частот. Это связано с особенностями механизма внутреннего уха . Рецепторы, расположенные на основной мембране внутреннего уха превращают звуковые колебания в электрические потенциалы, возбуждающие волокна слухового нерва. Волокна слухового нерва обладают частотной избирательностью, обусловленной возбуждением клеток кортиева органа, находящихся в разных местах основной мембраны: высокие частоты воспринимаются вблизи овального окна, низкие – у вершины спирали.

С физической характеристикой звука, частотой, тесно связана ощущаемая нами высота тона. Частота измеряется как количество полных циклов синусоидальной волны за одну секунду (герц, Гц). Это определение частоты основано на том, что у синусоидальной волны форма колебаний волн в точности сохраняется. В реальной жизни очень немногие звуки обладают таким свойством. Однако любой звук можно представить набором синусоидальных колебаний. Такой набор мы обычно и называем тоном. То есть, тон – это сигнал определенной высоты, имеющий дискретный спектр (музыкальные звуки, гласные звуки речи), в котором выделяется частота синусоидальной волны, имеющая в этом наборе максимальную амплитуду. Сигнал, обладающий широким непрерывным спектром, все частотные составляющие которого имеют одинаковую среднюю интенсивность, называют белым шумом.

Постепенное увеличение частоты звуковых колебаний воспринимается как постепенное изменение тона от самого низкого (басового) до наиболее высокого.

Степень точности, с которой человек определяет высоту звука на слух, зависит от остроты и тренировки его слуха. Ухо человека хорошо различает два близких по высоте тона. Например, в области частот примерно 2000 Гц человек может различать два тона, которые отличаются друг от друга по частоте на 3-6 Гц или даже меньше.

Спектр частот музыкального инструмента или голоса содержит последовательность равномерно расположенных пиков - гармоник. Они соответствуют частотам, кратным некоторой базовой частоте, самой интенсивной из составляющих звук синусоидальных волн.

Особый звук (тембр) музыкального инструмента (голоса) связан с относительной амплитудой различных гармоник, а воспринимаемая человеком высота тона наиболее точно передает базовая частота. Тембр, являясь субъективным отображением воспринимаемого звука, не имеет количественной оценки и характеризуется только качественно.

В «чистом» тоне присутствует только одна частота. Обычно же воспринимаемый звук состоит из частоты основного тона и нескольких ""примесных" частот, называемых обертонами. Обертоны кратны частоте основного тона и меньше его по амплитуде. От распределения интенсивности по обертонам зависит тембр звука. Более сложным оказывается спектр сочетания музыкальных звуков, называемый аккордом. В таком спектре присутствуют несколько основных частот вместе с сопутствующими обертонами.

Если частота одного звука ровно вдвое превосходит частоту другого, звуковая волна «укладывается» одна в другую. Частотное расстояние между такими звуками называется октавой. Диапазон частот, воспринимаемых человеком, 16-20 000 Гц, охватывает приблизительно десять-одиннадцать октав.

Амплитуда звуковых колебаний и громкость.

Слышимую часть диапазона звуков разделяют на низкочастотные звуки – до 500 Гц, среднечастотные – 500-10000 Гц и высокочастотные – свыше 10000 герц. Наиболее чувствительно ухо к сравнительно узкому диапазону среднечастотных звуков от 1000 до 4000 Гц. То есть, звуки одинаковой силы в среднечастотном диапазоне могут восприниматься как громкие, а в низкочастотном или высокочастотном - как тихие или быть вовсе не слышны. Такая особенность восприятия звука связана с тем, что звуковая информация, необходимая для существования человека – речь или звуки природы – передаётся, в основном, в среднечастотном диапазоне. Таким образом, громкость – это не физический параметр, а интенсивность слухового ощущения, субъективная характеристика звука, связанная с особенностями нашего восприятия.

Слуховой анализатор воспринимает повышение амплитуды звуковой волны за счёт увеличения амплитуды вибрации основной мембраны внутреннего уха и стимуляции всё большего числа волосковых клеток с передачей электрических импульсов с большей частотой и по большему числу нервных волокон.

Наше ухо может различать интенсивность звука в диапазоне от самого слабого шепота до самого громкого шума, что примерно соответствует увеличению амплитуды движения основной мембраны в 1 млн. раз. Однако ухо интерпретирует это громадное различие в амплитуде звука приблизительно как 10000-кратное изменение. То есть, шкала интенсивности сильно «сжата» механизмом восприятия звука слухового анализатора. Это позволяет человеку интерпретировать различия в интенсивности звука в чрезвычайно широком диапазоне.

Интенсивность звука измеряется в децибелах (дБ) (1 бел равен десятикратному увеличению амплитуды). Эту же систему применяют для определения изменения громкости.

Для сравнения можно привести примерный уровень интенсивности разных звуков: едва слышимый звук (порог слышимости) 0 дБ; шёпот около уха 25-30 дБ; речь средней громкости 60-70 дБ; очень громкая речь (крик) 90 дБ; на концертах рок и поп музыки в центре зала 105-110 дБ; рядом с взлетающим авиалайнером 120 дБ.

Величина приращения громкости воспринимаемого звука имеет порог различения. Число градаций громкости, различаемое на средних частотах, не превышает 250, на низких и высоких частотах оно резко уменьшается и в среднем составляет около 150.

Психоакустика - область науки, граничащая между физикой и психологией, изучает данные о слуховом ощущении человека при действии на ухо физического раздражения - звука. Накоплен большой объем данных о реакциях человека на слуховые раздражения. Без этих данных трудно получить правильное представление о работе систем передачи сигналов звуковой частоты. Рассмотрим наиболее важные особенности восприятия звука человеком.
Человек ощущает изменения звукового давления, происходящие с частотой 20-20 000 Гц. Звуки с частотой ниже 40 Гц сравнительно редко встречаются в музыке и не существуют в разговорной речи. На очень высоких частотах музыкальное восприятие исчезает и возникает некое неопределенное звуковое ощущение, зависящее от индивидуальности слушателя, его возраста. С возрастом чувствительность слуха у человека уменьшается и прежде всего в области верхних частот звукового диапазона.
Но было бы неправильно делать на этом основании вывод, что для пожилых людей неважна передача звуковоспроизводящей установкой широкой полосы частот. Эксперименты показали, что люди, даже едва воспринимающие сигналы выше 12 кГц, очень легко распознают в музыкальной передаче недостаточность верхних частот.

Частотные характеристики слуховых ощущений

Область слышимых человеком звуков в диапазоне 20-20000 Гц ограничивается по интенсивности порогами: снизу - слышимости и сверху - болевых ощущений.
Порог слышимости оценивается минимальным давлением, точнее, минимальным приращением давления относительно границы чувствителен к частотам 1000-5000 Гц - здесь порог слышимости самой низкий (звуковое давление около 2- 10 Па). В сторону низших и высших звуковых частот чувствительность слуха резко падает.
Порог болевых ощущений определяет верхнюю границу восприятия звуковой энергии и соответствует примерно интенсивности звука 10 Вт/м или 130 дБ (для опорного сигнала с частотой 1000 Гц).
При увеличении звукового давления увеличивается и интенсивность звука, причем слуховое ощущение нарастает скачками, называемыми порогом различения интенсивности. Число этих скачков на средних частотах примерно 250, на низких и высоких частотах оно уменьшается и в среднем по частотному диапазону составляет около 150.

Поскольку диапазон изменения интенсивностей 130 дБ, то элементарный скачок ощущений в среднем по диапазону амплитуд равен 0,8 дБ, что соответствует изменению интенсивности звука в 1,2 раза. При низких уровнях слуха эти скачки достигают 2-3 дБ, при высоких уровнях они уменьшаются до 0,5 дБ (в 1,1 раза). Увеличение мощности усилительного тракта меньше чем в 1,44 раза практически не фиксируется ухом человека. При более низком звуковом давлении, развиваемом громкоговорителем, даже двукратное увеличение мощности выходного каскада может не дать ощутимого результата.

Субъективные характеристики звука

Качество звукопередачи оценивается на основе слухового восприятия. Поэтому правильно определить технические требования к тракту звукопередачи или отдельным его звеньям можно, только изучив закономерности, связывающие субъективно воспринимаемое ощущение звука и объективными характеристиками звука являются высота, громкость и тембр.
Понятие высоты звука подразумевает субъективную оценку восприятия звука по частотному диапазону. Звук принято характеризовать не частотой, а высотой тона.
Тон - это сигнал определенной высоты, имеющий дискретный спектр (музыкальные звуки, гласные звуки речи). Сигнал, обладающий широким непрерывным спектром, все частотные составляющие которого имеют одинаковую среднюю мощность, называется белым шумом.

Постепенное увеличение частоты звуковых колебаний от 20 до 20 000 Гц воспринимается как постепенное изменение тона от самого низкого (басового) до наиболее высокого.
Степень точности, с которой человек определяет высоту звука на слух, зависит от остроты, музыкальности и тренировки его слуха. Следует отметить, что высота звука в какой-то степени зависит от интенсивности звука (при больших уровнях звуки большей интенсивности кажутся ниже, чем слабые..
Ухо человека хорошо различает два близких по высоте тона. Например, в области частот примерно 2000 Гц человек может различать два тона, которые отличаются друг от друга по частоте на 3-6 Гц.
Субъективный масштаб восприятия звука по частоте близок к логарифмическому закону. Поэтому увеличение частоты колебаний вдвое (независимо or начальной частоты) всегда воспринимается как одинаковое изменение высоты тона. Интервал высоты, соответствующий изменению частоты в 2 раза, называется октавой. Диапазон частот, воспринимаемых человеком, 20-20 000 Гц, он охватывает приблизительно десять октав.
Октава - достаточно большой интервал изменения высоты тона; человек различает значительно меньшие интервалы. Так, в десяти октавах, воспринимаемых ухом, можно различить более тысячи градаций высоты тона. В музыке используются меньшие интервалы, называемые полутонами и соответствующие изменению частоты приблизительно в 1,054 раза.
Октаву делят на полуоктавы и треть октавы. Для последних стандартизован следующий ряд частот: 1; 1,25; 1,6; 2; 2,5; 3; 3,15; 4; 5; 6,3: 8; 10, являющихся границами третьоктав. Если эти частоты расположить на равных расстояниях по оси частот, то получится логарифмический масштаб. Исходя из этого все частотные характеристики устройств передачи звука строят в логарифмическом масштабе.
Громкость передачи зависит не только от интенсивности звука, но и от спектрального состава, условий восприятия и длительности воздействия. Так, два звучащих тона средней и низкой частоты, имеющие одинаковую интенсивность (или одинаковое звуковое давление), воспринимаются человеком не как одинаково громкие. Поэтому введено понятие уровня громкости в фонах для обозначения звуков одинаковой громкости. За уровень громкости звука в фонах принимают уровень звукового давления в децибелах такой же громкости чистого тона частотой 1000 Гц, т.е для частоты 1000 Гц уровни громкости в фонах и децибелах совпадают. На других частотах при одном и том же звуковом давлении звуки могут казаться более громкими или более тихими.
Опыт работы звукорежиссеров по записи и монтажу музыкальных произведений показывает, что для лучшего обнаружения дефектов звучания, которые могут возникнуть в процессе работы, уровень громкости, при контрольном прослушивании следует поддерживать высоким, примерно соответствующим уровню громкости в зале.
При длительном воздействии интенсивного звука чувствительность слуха постепенно снижается, и тем больше, чем выше громкость звука. Обнаруживаемое снижение чувствительности связано с реакцией слуха на перегрузку, т.е. с естественной его адаптацией, После некоторого перерыва в прослушивании чувствительность слуха восстанавливается. К этому следует добавить, что слуховой аппарат при восприятии сигналов высокого уровня привносит свои, так называемые субъективные, искажения (что свидетельствует о нелинейности слуха). Так, при уровне сигнала 100 дБ первая и вторая субъективные гармоники достигают уровня 85 и 70 дБ.
Значительный уровень громкости и длительность его воздействия вызывают необратимые явления в слуховом органе. Отмечено, что у молодежи за последние годы резко возросли пороги слышимости. Причиной этого явилось увлечение поп-музыкой, отличающейся высокими уровнями громкости звучания.
Уровень громкости измеряют с помощью электроакустического прибора - шумомера. Измеряемый звук сначала преобразуется микрофоном в электрические колебания. После усиления специальным усилителем напряжения этих колебаний измеряют стрелочным прибором, отрегулированным в децибелах. Чтобы показания прибора как можно более точно соответствовали субъективному восприятию громкости, прибор снабжен специальными фильтрами, изменяющими его чувствительность к восприятию звука разных частот в соответствии с характеристикой чувствительности слуха.
Важной характеристикой звука является тембр. Способность слуха различать его позволяет воспринимать сигналы с большим разнообразием оттенков. Звучание каждого из инструментов и голосов благодаря характерным для них оттенкам становится многокрасочным и хорошо узнаваемым.
Тембр, являясь субъективным отображением сложности воспринимаемого звучания, не имеет количественной оценки и характеризуется терминами качественного порядка (красивый, мягкий, сочный и др.). При передаче сигнала по электроакустическому тракту возникающие искажения в первую очередь влияют на тембр воспроизводимого звука. Условием правильной передачи тембра музыкальных звуков является неискаженная передача спектра сигнала. Спектром сигнала называют совокупность синусоидальных составляющих сложного звука.
Простейшим спектром обладает так называемый чистый тон, в нем присутствует только одна частота. Более интересным оказывается звук музыкального инструмента: его спектр состоит из частоты основного тона и нескольких ""примесных" частот, называемых обертонами (высшими тонами). Обертоны кратны частоте основного тона и обычно меньше его по амплитуде.
От распределения интенсивности по обертонам зависит тембр звука. Звуки разных музыкальных инструментов различаются по тембру.
Более сложным оказывается спектр сочетания музыкальных звуков, называемый аккордом. В таком спектре присутствуют несколько основных частот вместе ссоответствуюшими обертонами
Различия в тембре onpeделяются в основном низко-средне частотными составляющими сигнала, следовательно, и большое разнообразие тембров связано с сигналами, лежащими в нижней части частотного диапазона. Сигналы же, относяшиеся к верхней его части, по мере повышения все больше теряют свою окраску тембра, что обусловлено постепенным уходом их гармонических составляющих за пределы слышимых частот. Это можно объяснить тем, что в образовании тембра низких звуков активно участвуют до 20 и более гармоник, средних 8 - 10, высоких 2 - 3, так как остальные либо слабы, либо выпадают из области слышимых частот. Поэтому высокие звуки, как правило, по тембру беднее.
Практически у всех естественных источников звука, в том числе и у источников музыкальных звуков, наблюдается специфическая зависимость тембра от уровня громкости. К такой зависимости приспособлен и слух - для него является естественным определение интенсивности источника по окраске звука. Громкие звуки обычно являются и более резкими.

Музыкальные источники звука

Большое влияние на качество звучания электроакустических систем оказывает ряд факторов, характеризующих первичные источники звуков.
Акустические параметры музыкальных источников зависят от состава исполнителей (оркестр, ансамбль, группа, солиста и типа музыки: симфоническая, народная, эстрадная и пр.).

Зарождение и формирование звука на каждом музыкальном инструменте имеет свою специфику, связанную с акустическими особенностями звукообразования в том или ином музыкальном инструменте.
Важным элементом музыкального звука является атака. Это - специфический переходный процесс, в течение которого устанавливаются стабильные характеристики звука: громкость, тембр, высота. Любой музыкальный звук проходит три стадии -начало, середину и конец, причем и начальная, и конечная стадии имеют некоторую продолжительность. Начальная стадия называется атакой. Длится она по-разному: у щипковых, ударных и некоторых духовых инструментов 0-20 мс, у фагота 20-60 мс. Атака - это не просто нарастание громкости звука от нуля до некоторого установившегося значения, она может сопровождаться таким же изменением высоты звука и его тембра. Причем характеристики атаки инструмента неодинаковы в разных участках его диапазона при разной манере игры: скрипка по богатству возможных выразительных способов атаки - наиболее совершенный инструмент.
Одна из характеристик любого музыквльного инструмента - это частотный диапазон звучания. Кроме основных частот каждый инструмент характеризуется дополнительными высококачественными составляющими - обертонами (или, как принято в электроакустике, - высшими гармониками), определяющими его специфический тембр.
Известно, что звуковая энергия неравномерно распределяется по всему спектру звуковых частот, излучаемых источником.
Большинство инструментов характеризуется усилением основных частот, а также отдельных обертонов в определенных (одной или нескольких) относительно узких полосах частот (формантах), различных для каждого инструмента. Резонансные частоты (в герцах) формантной области составляют: для трубы 100-200, валторны 200-400, тромбона 300-900, трубы 800-1750, саксофона 350-900, гобоя 800-1500, фагота 300-900, кларнета 250-600.
Другое характерное свойство музыкальных инструментов - сила их звука, обусловливается большей или меньшей амплитудой (размахом) их звучащего тела или воздушного столба (большей амплитуде соответствует более сильное звучание и наоборот). Значение пиковых акустических мощностей (в ваттах) составляет: для большого оркестра 70, большого барабана 25, литавр 20, малого барабана 12, тромбона 6, фортепиано 0,4, трубы и саксофона 0,3, трубы 0,2, контрабаса 0.(6, малой флейты 0,08, кларнета, валторны и треугольника 0,05.
Отношение мощности звука, извлекаемого из инструмента при исполнении "фортиссимо", к мощности звука при исполнении "пианиссимо" принято называть динамическим диапазоном звучания музыкальных инструментов.
Динамический диапазон музыкального источника звука зависит от вида исполнительского коллектива и характера исполнения.
Рассмотрим динамический диапазон отдельных источников звука. Под динамическим диапазоном отдельных музыкальных инструментов и ансамблей (различные по составу оркестры и хоры), а также голосов понимают отношение максимальных звуковых давлений, создаваемых данным источником, к минимальным, выраженное в децибелах.
На практике при определении динамического диапазона источника звука обычно оперируют только уровнями звукового давления, вычисляя или измеряя соответствующую их разность. Например, если максимальный уровень звучания оркестра составляет 90, а минимальный 50 дБ, то говорят, что динамический диапазон равен 90 - 50= = 40 дБ. При этом 90 и 50 дБ - это уровни звукового давления относительно нулевого акустического уровня.
Динамический диапазон для данного источника звука - величина непостоянная. Она зависит от характера исполняемого произведения и от акустических условий помещения, в котором происходит исполнение. Реверберация расширяет динамический диапазон, который обычно достигает максимального значения в помещениях, имеющих большой объем и минимальное звукопоглощение. Почти у всех инструментов и человеческих голосов динамический диапазон неравномерен по регистрам звучания. Например, уровень громкости самого низкого звука на "форте" у вокалиста равен уровню самого высокого звука на "пиано".

Динамический диапазон той или иной музыкальной программы выражается таким же образом, как и для отдельных источников звука, но максимальное звуковое давление отмечается при динамическом ff (фортиссимо) оттенке, а минимальное при рр (пианиссимо).

Наибольшей громкости, обозначаемой в нотах fff (форте-, фортиссимо), соответствует акустический уровень звукового давления примерно 110 дБ, а наименьшей громкости, обозначаемой в нотах ррр (пиано-пианиссимо), примерно 40 дБ.
Следует отметить, что динамические оттенки исполнения в музыке относительны и их связь с соответствующими уровнями звукового давления до некоторой степени условна. Динамический диапазон той или иной музыкальной программы зависит от характера сочинения. Так, динамический диапазон классических произведений Гайдна, Моцарта, Вивальди редко превышает 30-35 дБ. Динамический диапазон эстрадной музыки обычно не превышает 40 дБ, а танцевальной и джазовой - всего около 20 дБ. Большинство произведений для оркестра русских народных инструментов также имеют небольшой динамический диапазон (25-30 дБ). Это справедливо и для духового оркестра. Однако максимальный уровень звучания духового оркестра в помещении может достигать достаточно большого уровня (до 110 дБ).

Эффект маскировки

Субъективная оценка громкости зависит от условий, в которых звук воспринимается слушателем. В реальных условиях акустический сигнал не существует в абсолютной тишине. Одновременно с ним воздействуют на слух посторонние шумы, затрудняющие звуковое восприятие, маскируюшие в определенной мере основной сигнал. Эффект маскировки чистого синусоидального тона посторонним шумом оценивается величиной, указываюшей. на сколько децибел повышается порог слышимости маскируемого сигнала над порогом его восприятия в тишине.
Опыты по определению степени маскировки одного звукового сигнала другим показывают, что тон любой частоты маскируется более низкими тонами значительно эффективнее, чем более высокими. Например, если два камертона (1200 и 440 Гц) излучают звуки с одинаковой интенсивностью, то мы перестаем слышать первый тон, он замаскирован вторым (погасив вибрацию второго камертона, мы снова услышим первый).
Если одновременно существуют два сложных звуковых сигнала, состоящих из определенных спектров звуковых частот, то возникает эффект взаимной маскировки. При этом если основная энергия обоих сигналов лежит в одной и той же области диапазона звуковых частот, то эффект маскировки будет наиболее сильным, Так, при передаче оркестрового произведения из-за маскировки аккомпанементом партия солиста может стать плохо разборчивой, невнятной.
Достижение четкости или, как принято говорить, "прозрачности" звучания при звукопередаче оркестров или эстрадных ансамблей становится весьма трудным, если инструмент или отдельные группы инструментов оркестра играют в одном или близких регистрах одновременно.
Режиссер, производя запись оркестра, обязательно учитывает особенности маскировки. На репетициях он с помощью дирижера устанавливает баланс между силой звучания инструментов одной группы, а также между группами всего оркестра. Ясность основных мелодических линий и отдельных музыкальных партий достигается в этих случаях близким расположением микрофонов к исполнителям, умышленным выделением звукорежиссером наиболее важных в данном месте произведения инструментов и другими специальными приемами звукорежиссуры.
Явлению маскировки противостоит психофизиологическоя способность органов слуха выделять из обшей массы звуков один или несколько, несущих наиболее важную информацию. Например, при звучании оркестра дирижер замечает малейшие неточности в исполнении партии на каком-либо инструменте.
Маскировка может существенно влиять на качество передачи сигнала. Четкое восприятие принимаемого звука возможно в том случае, если его интенсивность существенно превышает уровень составляющих помех, находящихся в той же полосе, что и принимаемый звук. При равномерной помехе превышение сигнала должно быть 10- 15 дБ. Эта особенность слухового восприятия находит практическое применение, например, при оценке электроакустических характеристик носителей. Так, если отношение сигнал-шум аналоговой грампластинки 60 дБ, то динамический диапазон записанной программы может быть не более 45- 48 дБ.

Временные характеристики слухового восприятия

Слуховой аппарат, как и любая другая колебательная система, инерционен. При исчезновении звука слуховое ощущение исчезает не сразу, а постепенно, уменьшаясь до нуля. Время, в течение которого ошущение по уровню громкости уменьшается на 8- 10 фон, называется постоянной времени слуха. Эта постоянная зависит от ряда обстоятельств, а также от параметров воспринимаемого звука. Если к слушателю приходят два коротких звуковых импульса, одинаковых пи частотному составу и уровню, но один из них запаздывает, то они будут восприниматься слитно при запаздывании, не превышающем 50 мс. Пои больших интервалах запаздывания оба импульса воспринимаются раздельно, возникает эхо.
Эта особенность слуха учитывается при конструировании некоторых приборов обработки сигналов, например электронных линий задержки, ревербератов и др.
Следует отметить, что благодаря особому свойству слуха ощушение громкости кратковременного звукового импульса зависит не только от его уровня, но и от продолжительности воздействия импульса на ухо. Так, кратковременный звук, длящийся всего 10-12 мс, воспринимается ухом тише, чем звук такой же но уровню, но воздействующий на слух в течение, например 150-400 мс. Поэтому при прослушивании передачи громкость является результатом усреднения энергии звуковой волны в течение некоторого интервала. Кроме того, слух человека обладает инерцией, в частности, при восприятии нелинейных искажений он не ощущает таковых, если продолжительность звукового импульса меньше 10-20 мс. Именно поэтому в индикаторах уровня звукозаписывающей бытовой радиоэлектронной аппаратуры осуществляется усреднение мгновенных значений сигнала за промежуток, выбираемый в соответствии с временными характеристиками органов слуха.

Пространственное представление о звуке

Одной из важных способностей человека является возможность определять направление источника звука. Эта способность называется бинауральным эффектом и объясняется тем, что человек имеет два уха. Данные экспериментов показывают, откуда приходит звук: один для высокочастотных тонов, другой для низкочастотных.

До уха, обращенного к источнику, звук проходит более короткий по времени путь, чем до второго уха. Вследствие этого давление звуковых волн в ушных каналах различается по фазе и амплитуде. Амплитудные различия значительны только на высоких частотах, когда длина звуковой волны становится сравнимой с размерами головы. Когда разница в амплитудах превышает пороговое значение, равное 1 дБ, то кажется, что источник звука находится на той стороне, где амплитуда больше. Угол отклонения источника звука от средней линии (линии симметрии) приблизительно пропорционален логарифму отношения амплитуд.
Для определения направления источника звука с частотами ниже 1500-2000 Гц существенны фазовые различия. Человеку кажется, что звук приходит с той стороны, с которой волна, опережаюшая по фазе, достигает уха. Угол отклонения звука от средней линии пропорционален разности времени прихода звуковых волн к обоим ушам. Тренированный человек может заметить разность фаз при разннице во времени 100 мс.
Способность определять направление звука в вертикальной плоскости развита значительно слабее (примерно в 10 раз). Эту особенность физиологии связывают с ориентацией органов слуха в горизонтальной плоскости.
Специфическая особенность пространственного восприятия звука человеком проявляется в том, что органы слуха способны ощушать суммарную, интегральную локализацию, создаваемую с помошью искусственных средств воздействия. Например, в помещении по фронту на расстоянии 2-3 м друг от друга установлены две АС. На таком же расстоянии от оси соединяющей системы строго по центру находится слушатель. В помешении через АС излучаются два одинаковых по фазе, частоте и интенсивности звука. В результате идентичности звуков, проходящих в орган слуха, человек не может их разделить, его ощущения дают представления о едином, кажущемся (виртуальном) источнике звука, который находится строго по центру на оси симметрии.
Если теперь уменьшить громкость одной АС, то кажущийся источник переместится в сторону более громко работающего громкоговорителя. Иллюзию перемещения источника звука можно получить не только изменением уровня сигнала, но и искусственной задержкой одного звука относительно другого; в этом случае кажущийся источник сместится в сторону АС, излучающей сигнал с опережением.
Для иллюстрации интегральной локализации приведем пример. Расстояние между АС 2м, расстояние от фронтальной линии до слушателя 2 м; для того чтобы источник как бы сместился на 40 см влево или вправо, необходимо подать два сигнала с разностью по уровню интенсивности в 5 дБ или с временным запаздыванием в 0,3 мс. При разности уровней в 10 дБ или задержке по времени 0,6 мс источник "переместится" на 70 см от центра.
Таким образом, если изменять создаваемое АС звуковое давление, то возникает иллюзия перемещения источника звука. Это явление называется суммарной локализацией. Для создания суммарной локализации применяется двухканальная стереофоническая система звукопередачи.
В первичном помешении устанавливаются два микрофона, каждый из которых работает на свой канал. Во вторичном - два громкоговорителя. Микрофоны располагаются на определенном расстоянии друг от друга по линии, параллельной размещению излучателя звука. При перемещении излучателя звука на микрофон будет действовать разное звуковое давление и время прихода звуковой волны будет различно из-за неодинакового расстояния между излучателем звуха и микрофонами. Эта разница и создает во вторичном помешении эффект суммарной локализации, в результате чего кажущийся источник локализуется в определенной точке пространства, находящейся между двумя громкоговорителями.
Следует сказать о биноуральной системе звукопередачи. При использовании этой системы, называемой системой "искусственной головы", в первичном помешении размещают два отдельных микрофона, располагая их на расстоянии друг от друга, равном расстоянию между ушами человека. Каждый из микрофонов имеет независимый канал звукопередачи, на выходе которого во вторичном помещении включены телефоны для левого и правого уха. При идентичности каналов звукопередачи такая система точно передает бинауральный эффект, создаваемый около ушей "искусственной головы" в первичном помещении. Наличие головных телефонов и необходимость пользования ими в течение длительного времени является недостатком.
Орган слуха определяет расстояние до источника звука по ряду косвенных признаков и с некоторыми погрешностями. В зависимости от того, мало или велико расстояние до источника сигнала, субъективная его оценка меняется под воздействием различных факторов. Было установлено, что если определяемые расстояния невелики (до 3 м), то их субъективная оценка почти линейно связана с изменением громкости перемещающегося по глубине источника звука. Дополнительным фактором для сложного сигнала является его тембр, который становится все более "тяжелым"" по мере приближения источника к слушателю. Это связано со все большим усилением обертонов низкого по сравнению с обертонами высокого регистра, вызванным происходящим при этом повышением уровня громкости.
Для средних расстояний 3-10 м. удаление источника от слушателя будет сопровождаться пропорциональным уменьшением громкости, причем это изменение будет одинаково относиться к основной частоте и к гармоническим составляюшим. В результате происходит относительное усиление высокочастотной части спектра и тембр становится более ярким.
С ростом расстояния потери энергии в воздухе будут расти пропорционально квадрату частоты. Увеличенная потеря обертонов высокого регистра приведет к снижению тембральной яркости. Таким образом, субъективная оценка расстояний связана с изменением его громкости и тембра.
В условиях закрытого помещения сигналы первых отражений, запаздывающие относительно прямого на 20-40 мс, воспринимаются органом слуха как приходящие с различных направлений. Вместе с этим все большее их запаздывание создает впечатление о значительном удалении точек, от которых происходят эти отражения. Таким образом, по времени запаздывания можно судить об относительной удаленности вторичных источников или, что то же, о размерах помещения.

Некоторые особенности субъективного восприятия стереофонических передач.

Стереофоническая система звукопередачи имеет ряд существенных особенностей по сравнению с обычной монофонической.
Качество, отличающее стереофоническое звучание, объемность, т.е. естественную акустическую перспективу, можно оценить с помощью некоторых дополнительных показателей, не имеющих смысла при монофонической технике передачи звука. К таким дополнительным показателям следует отнести: угол слышимости, т.е. угол, под которым слушатель воспринимает звуковую стереофоническую картину; стереофоническую разрешающую способность, т.е. определяемую субъективно локализацию отдельных элементов звукового образа в определенных точках пространства в пределах угла слышимости; акустическую атмосферу, т.е. эффект возникновения у слушателя ощущения присутствия в первичном помещении, где происходит передаваемое звуковое событие.

О роли акустики помещения

Красочность звучания достигается не только с помощью аппаратуры воспроизведения звука. Даже при достаточно хорошей аппаратуре качество звучания может оказаться низким, если помещение, предназначенное для прослушивания, не обладает определенными свойствами. Известно, что в закрытом помешении возникает явление нослезвучания, называемое реверберацией. Воздействуя на органы слуха, реверберация (в зависимости от ее длительности) может улучшать или ухудшать качество звучания.

Человек, находящийся в помещении, воспринимает не только прямые звуковые волны, создаваемые непосредственно источником звука, но и волны, отраженные потолком и стенами помещения. Отраженные волны слышны еше некоторое время после прекращения действия источника звука.
Иногда считают, что отраженные сигналы играют только отрицательную роль, создавая помехи восприятию основного сигнала. Однако такое представление неправильно. Определенная часть энергии начальных отраженных эхосигналов, достигая ушей человека с малыми задержками, усиливает основной сигнал и обогашает его звучание. Напротив, более поздние отраженные эхосигналы. время задержки которых превышает некоторое критическое значение, образуют звуковой фон, затрудняющий восприятие основного сигнала.
Помещение прослушивания не должно иметь большое время реверберации. Жилые комнаты, как правило, имеют малое воемя реверберации в силу ограниченности своих размеров и наличия звукопоглощающих поверхностей, мягкой мебели, ковров, занавесок и т. п.
Различные по характеру и свойствам преграды характеризуются коэффициентом поглощения звука, который представляет собой отношение поглощенной энергии к полной энергии падающей звуковой волны.

Для повышения звукопоглощающих свойств ковра (и снижения шумов в жилом помещении) ковер желательно вешать не вплотную к стене, а с зазором 30-50 мм).


О разделе

Этот раздел содержит статьи, посвященные феноменам или версиям, которые так или иначе могут быть интересны или полезны исследователям необъясненного.
Статьи разделены по категориям:
Информационные. Содержат полезную для исследователей информацию из различных областей знаний.
Аналитические. Включают аналитику накопленной информации о версиях или феноменах, а также описания результатов проведенных экспериментов.
Технические. Аккумулируют информацию о технических решениях, которые могут найти применение в сфере изучения необъясненных фактов.
Методики. Содержат описания методик, применяемых участниками группы при расследовании фактов и исследовании феноменов.
Медиа. Содержат информацию об отражении феноменов в индустрии развлечений: фильмах, мультфильмах, играх и т.п.
Известные заблуждения. Разоблачения известных необъясненных фактов, собранные в том числе из сторонних источников.

Тип статьи:

Информационные

Особенности восприятия человека. Слух

Звук – это колебания, т.е. периодическое механическое возмущение в упругих средах – газообразных, жидких и твердых. Такое возмущение, представляющее собой некоторое физическое изменение в среде (например, изменение плотности или давления, смещение частиц), распространяется в ней в виде звуковой волны. Звук может быть неслышимым, если его частота лежит за пределами чувствительности человеческого уха, или он распространяется в такой среде, как твердое тело, которая не может иметь прямого контакта с ухом, или же его энергия быстро рассеивается в среде. Таким образом, обычный для нас процесс восприятия звука – лишь одна сторона акустики.

Звуковые волны

Звуковая волна

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение - звуковым давлением.

Рассмотрим длинную трубу, наполненную воздухом. С левого конца в нее вставлен плотно прилегающий к стенкам поршень. Если поршень резко двинуть вправо и остановить, то воздух, находящийся в непосредственной близости от него, на мгновение сожмется. Затем сжатый воздух расширится, толкнув воздух, прилегающий к нему справа, и область сжатия, первоначально возникшая вблизи поршня, будет перемещаться по трубе с постоянной скоростью. Эта волна сжатия и есть звуковая волна в газе.
То есть резкое смещение частиц упругой среды в одном месте, увеличит давление в этом месте. Благодаря упругим связям частиц, давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разряжения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

Звуковая волна в газе характеризуется избыточным давлением, избыточной плотностью, смещением частиц и их скоростью. Для звуковых волн эти отклонения от равновесных значений всегда малы. Так, избыточное давление, связанное с волной, намного меньше статического давления газа. В противном случае мы имеем дело с другим явлением – ударной волной. В звуковой волне, соответствующей обычной речи, избыточное давление составляет лишь около одной миллионной атмосферного давления.

Важно то обстоятельство, что вещество не уносится звуковой волной. Волна представляет собой лишь проходящее по воздуху временное возмущение, по прохождении которого воздух возвращается в равновесное состояние.
Волновое движение, конечно, не является характерным только для звука: в форме волн распространяются свет и радиосигналы, и каждому знакомы волны на поверхности воды.

Таким образом, звук, в широком смысле - упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле - субъективное восприятие этих колебаний специальными органами чувств животных или человека.
Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16-20 Гц до 15-20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, - ультразвуком, от 1 ГГц - гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка).

Различают продольные и поперечные звуковые волны в зависимости от соотношения направления распространения волны и направления механических колебаний частиц среды распространения.
В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

Воздух не везде однороден для звука. Известно, что воздух постоянно находится в движении. Скорость его движения в различных слоях не одинакова. В слоях, близких к земле, воздух соприкасается с её поверхностью, зданиями, лесами и поэтому скорость его здесь меньше, чем вверху. Благодаря этому и звуковая волна идёт не одинаково быстро вверху и внизу. Если движение воздуха, т. е. ветер - попутчик звуку, то в верхних слоях воздуха ветер будет сильнее подгонять звуковую волну, чем в нижних. При встречном ветре звук вверху распространяется медленнее, чем внизу. Такое различие в скоростях сказывается на форме звуковой волны. В результате искажения волны звук распространяется не прямолинейно. При попутном ветре линия распространения звуковой волны изгибается вниз, при встречном - вверх.

Ещё одна причина неравномерного распространения звука в воздухе. Это - различная температура отдельных его слоёв.

Неодинаково нагретые слои воздуха, подобно ветру, изменяют направление звука. Днём звуковая волна изгибается вверх, потому что скорость звука в нижних более нагретых слоях больше, чем в верхних слоях. Вечером, когда земля, а с ней и близлежащие слои воздуха, быстро остывают, верхние слои становятся теплее нижних, скорость звука в них больше, и линия распространения звуковых волн изгибается вниз. Поэтому по вечерам на ровном месте бывает лучше слышно.

Наблюдая за облаками, часто можно заметить, как на разных высотах они движутся не только с различной скоростью, но иногда и в разных направлениях. Значит, ветер на различной высоте от земли может иметь неодинаковые скорость и направление. Форма звуковой волны в таких слоях будет также изменяться от слоя к слою. Пусть, например, звук идёт против ветра. В этом случае линия распространения звука должна изогнуться и направиться вверх. Но если на её пути встретится слой медленно движущегося воздуха, она вновь изменит своё направление и может снова вернуться на землю. Вот тогда-то на пространстве от места, где волна поднимается в высоту, до места, в котором она возвращается на землю, и возникает «зона молчания».

Органы восприятия звука

Слух - способность биологических организмов воспринимать звуки органами слуха; специальная функция слухового аппарата, возбуждаемая звуковыми колебаниями окружающей среды, например, воздуха или воды. Одно из биологических пяти чувств, называемое также акустическим восприятием.

Ухо человека воспринимает звуковые волны длиной примерно от 20 м до 1,6 см, что соответствует 16 - 20 000 Гц (колебаний в секунду) при передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, зву¬ковые волны в диапазоне 300-4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном; более высокие частоты называются ультразвуком, а более низкие - инфразвуком.
Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста, пола, подверженности слуховым болезням, тренированности и усталости слуха. Отдельные личности способны воспринимать звук до 22 кГц, а возможно - и выше.
Человек может различать несколько звуков одновременно благодаря тому, что в ушной улитке одновременно может быть несколько стоячих волн.

Ухо - сложный вестибулярно-слуховой орган, который выполняет две функции: воспринимает звуковые импульсы и отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами.

Орган слуха и равновесия представлен тремя отделами: наружным, средним и внутренним ухом, каждый из которых выполняет свои конкретные функции.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина - сложной формы упругий хрящ, покрытый кожей, его нижняя часть, называемая мочкой,- кожная складка, которая состоит из кожи и жировой ткани.
Ушная раковина у живых организмов работает как приемник звуковых волн, которые затем передаются во внутреннюю часть слухового аппарата. Значение ушной раковины у человека намного меньше, чем у животных, поэтому у человека она практически неподвижна. Но вот многие звери, поводя ушами, способны гораздо точнее, чем человек, определить нахождение источника звука.

Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации звука. Таким образом мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при использовании наушников или слуховых аппаратов.
Функция ушной раковины - улавливать звуки; ее продолжением является хрящ наружного слухового прохода, длина которого в среднем составляет 25-30 мм. Хрящевая часть слухового прохода переходит в костную, а весь наружный слуховой проход выстлан кожей, содержащей сальные, а также серные железы, представляющие собой видоизмененные потовые. Этот проход заканчивается слепо: от среднего уха он отделен барабанной перепонкой. Уловленные ушной раковиной звуковые волны ударяются в барабанную перепонку и вызывают ее колебания.

В свою очередь, колебания барабанной перепонки передаются в среднее ухо.

Среднее ухо
Основной частью среднего уха является барабанная полость - небольшое пространство объемом около 1см³, находящееся в височной кости. Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко - они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их.

Слуховые косточки - как самые маленькие фрагменты скелета человека, представляют цепочку, передающую колебания. Рукоятка молоточка тесно срослась с барабанной перепонкой, головка молоточка соединена с наковальней, а та, в свою очередь, своим длинным отростком - со стремечком. Основание стремечка закрывает окно преддверия, соединяясь таким образом с внутренним ухом.
Полость среднего уха связана с носоглоткой посредством евстахиевой трубы, через которую выравнивается среднее давление воздуха внутри и снаружи от барабанной перепонки. При изменении внешнего давления иногда «закладывает» уши, что обычно решается тем, что рефлекторно вызывается зевота. Опыт показывает, что ещё более эффективно заложенность ушей решается глотательными движениями или если в этот момент дуть в зажатый нос.

Внутреннее ухо
Из трех отделов органа слуха и равновесия наиболее сложным является внутреннее ухо, которое из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов, но непосредственное отношение к слуху имеет только улитка, заполненная лимфатическими жидкостями. Внутри улитки находится перепончатый канал, также заполненный жидкостью, на нижней стенке которого расположен рецепторный аппарат слухового анализатора, покрытый волосковыми клетками. Волосковые клетки улавливают колебания жидкости, заполняющей канал. Каждая волосковая клетка настроена на определенную звуковую частоту, причем клетки, настроенные на низкие частоты, располагаются в верхней части улитки, а высокие частоты улавливаются клетками нижней части улитки. Когда волосковые клетки от возраста или по другим причинам гибнут, человек теряет способность воспринимать звуки соответствующих частот.

Пределы восприятия

Человеческое ухо номинально слышит звуки в диапазоне от 16 до 20 000 Гц. Верхний предел имеет тенденцию снижаться с возрастом. Большинство взрослых людей не могут слышать звук частотой выше 16 кГц. Ухо само по себе не реагирует на частоты ниже 20 Гц, но они могут ощущаться через органы осязания.

Диапазон громкости воспринимаемых звуков огромен. Но барабанная перепонка в ухе чувствительна только к изменению давления. Уровень давления звука принято измерять в децибелах (дБ). Нижний порог слышимости определён как 0 дБ (20 микропаскаль), а определение верхнего предела слышимости относится скорее к порогу дискомфорта и далее - к нарушение слуха, контузия и т. д. Этот предел зависит от того, как долго по времени мы слушаем звук. Ухо способно переносить кратковременное повышение громкости до 120 дБ без последствий, но долговременное восприятие звуков громкостью более 80 дБ может вызвать потерю слуха.

Более тщательные исследования нижней границы слуха показали, что минимальный порог, при котором звук остаётся слышен, зависит от частоты. Этот график получил название абсолютный порог слышимости. В среднем, он имеет участок наибольшей чувствительности в диапазоне от 1 кГц до 5 кГц, хотя с возрастом чувствительность понижается в диапазоне выше 2 кГц.
Существует также способ восприятия звука без участия барабанной перепонки - так называемый микроволновый слуховой эффект, когда модулированное излучение в микроволновом диапазоне (от 1 до 300 ГГц) воздействует на ткани вокруг улитки, заставляя человека воспринимать различные звуки.
Иногда человек может слышать звуки в низкочастотной области, хотя в реальности звуков такой частоты не было. Так происходит из-за того, что колебания базилярной мембраны в ухе не являются линейными и в ней могут возникать колебания с разностной частотой между двумя более высокочастотными.

Синестезия

Один из самых необычных психоневрологических феноменов, при котором не совпадают род раздражителя и тип ощущений, которые человек испытывает. Синестетическое восприятие выражается в том, что помимо обычных качеств могут возникать дополнительные, более простые ощущения или стойкие «элементарные» впечатления - например, цвета, запаха, звуков, вкусов, качеств фактурной поверхности, прозрачности, объемности и формы, расположения в пространстве и других качеств, не получаемых при помощи органов чувств, а существующих только в виде реакций. Такие дополнительные качества могут либо возникать как изолированные чувственные впечатления, либо даже проявляться физически.

Выделяют, например, слуховую синестезию. Это способность некоторых людей «слышать» звуки при наблюдении за движущимися предметами или за вспышками, даже если они не сопровождаются реальными звуковыми явлениями.
Следует учитывать, что синестезия, скорее психоневрологическая особенность человека и не является психическим расстройством. Такое восприятие окружающего мира может почувствовать обычный человек путем употребления некоторых наркотических веществ.

Общей теории синестезии (научно доказанного, универсального представления о ней) пока нет. На денный момент существует множество гипотез и проводится масса исследований в данной области. Уже появились оригинальные классификации и сопоставления, выяснились определенные строгие закономерности. Например, мы ученые уже выяснили, что у синестетов есть особый характер внимания - как бы «досознательный» - к тем явлениям, которые вызывают у них синестезию. У синестетов - немного иная анатомия мозга и кардинально иная его активация на синестетические «стимулы». А исследователи из Оксфордского университета (Великобритания) поставили серию экспериментов в ходе которых выяснили, что причиной синестезии могут быть сверхвозбудимые нейроны. Единственное, что можно сказать точно, что такое восприятие получается на уровне работы мозга, а не на уровне первичного восприятия информации.

Вывод

Волны давления, проходя через внешнее ухо, барабанную перепонку и косточки среднего уха, достигают заполненного жидкостью внутреннего уха, имеющего форму улитки. Жидкость, колеблясь, ударяется о мембрану, покрытую крохотными волосками, ресничками. Синусоидальные составляющие сложного звука вызывают колебания различных участков мембраны. Колеблющиеся вместе с мембраной реснички возбуждают связанные с ними нервные волокна; в них возникают серии импульсов, в которых «закодированы» частота и амплитуда каждой составляющей сложной волны; эти данные электрохимическим способом передаются мозгу.

Из всего спектра звуков прежде всего выделяют слышимый диапазон: от 20 до 20000 герц, инфразвуки (до 20 герц) и ультразвуки – от 20000 герц и выше. Инфразвуки и ультразвуки человек не слышит, но это не значит, что они не оказывают на него воздействия. Известно, что инфразвуки, особенно ниже 10 герц, способны влиять на психику человека, вызывать депрессивные состояния. Ультразвуки могут вызывать астено-вегетативные синдромы и др.
Слышимую часть диапазона звуков разделяют на низкочастотные звуки – до 500 герц, среднечастотные – 500-10000 герц и высокочастотные – свыше 10000 герц.

Такое подразделение очень важно, так как ухо человека неодинаково чувствительно к разным звукам. Наиболее чувствительно ухо к сравнительно узкому диапазону среднечастотных звуков от 1000 до 5000 герц. К более низко- и высокочастотным звукам чувствительность резко падает. Это приводит к тому, что человек способен услышать в среднечастотном диапазоне звуки с энергией около 0 децибел и не слышать низкочастотные звуки в 20-40-60 децибел. То есть, звуки с одной и той же энергией в среднечастотном диапазоне могут восприниматься как громкие, а в низкочастотном как тихие или быть вовсе не слышны.

Такая особенность звука сформирована природой не случайно. Звуки, необходимые для его существования: речь, звуки природы, – находятся в основном в среднечастотном диапазоне.
Восприятие звуков значительно нарушается, если одновременно звучат другие звуки, шумы близкие по частоте или составу гармоник. Значит, с одной стороны, ухо человека плохо воспринимает низкочастотные звуки, а, с другой, если в помещении посторонние шумы, то восприятие таких звуков может еще более нарушаться и извращаться.

Частоты

Чaстота - физическая величина, характеристика периодического процесса, равна количеству повторений или возникновения событий (процессов) в единицу времени.

Как Мы знаем, человеческое ухо слышит частоты от 16 Гц до 20 000 кГц. Но это очень усреднённо.

Звук возникает по разным причинам. Звук - это волнообразное давление воздуха. Если бы не было воздуха, мы бы не слышали никакого звука. В космосе нет звука.
Мы слышим звук потому, наши уши чувствительны к изменению давления воздуха - звуковым волнам. Наиболее простой звуковой волной является короткий звуковой сигнал - вот такой:

Звуковые волны, проникая в слуховой канал, приводят в колебание барабанную перепонку. Через цепь косточек среднего уха колебательное движение перепонки передаётся жидкости улитки. Волнообразное движение этой жидкости, в свою очередь, передаётся основной мембране. Движение последней влечёт за собой раздражение окончаний слухового нерва. Таков главный путь звука от его источника до нашего сознания. ТЫЦ

Когда вы хлопаете в ладоши, воздух между ладонями выталкивается и создается звуковая волна. Повышенное давление заставляет молекулы воздуха распространяться во все стороны со скоростью звука, который равен 340 м/с. Когда волна достигает уха, она заставляет вибрировать барабанную перепонку, с которой сигнал передается в мозг и вы слышите хлопок.
Хлопок - это короткое одиночное колебание, которое быстро затухает. График звуковых колебаний типичного хлопка выглядит так:

Другой типичный пример простой звуковой волны - периодическое колебание. К примеру, когда звонит колокол, воздух сотрясается от периодических колебаний стенок колокола.

Так с какой же частоты начинает слышать обычное человеческое ухо? Частоту в 1 Гц оно не услышит, а лишь может увидеть на примере колебательной системы. Человеческое ухо именно слышит начиная с частот 16 Гц. То есть когда колебания воздуха воспринимает наше ухо как некий звук.

Сколько звуков слышит человек?

Не все люди с нормальным слухом одинаково слышат. Одни способны различать близкие по высоте и громкости звуки и улавливать в музыке или шуме отдельные тона. Другие же этого сделать не могут. Для человека с тонким слухом существует больше звуков, чем для человека с неразвитым слухом.

Но насколько вообще должна отличаться частота двух звуков, чтобы их можно было слышать как два разных тона? Можно ли, например, отличить друг от друга тона, если разница в частотах равна одному колебанию в секунду? Оказывается, что для некоторых тонов это возможно, а для других нет. Так, тон с частотой 435 можно отличить по высоте от тонов с частотами 434 и 436. Но если брать более высокие тона, то отличие сказывается уже при большей разности частот. Тона с числом колебаний 1000 и 1001 ухо воспринимает как одинаковые и улавливает разницу в звучании только между частотами 1000 и 1003. Для более высоких тонов эта разность в частотах ещё больше. Например, для частот около 3000 она равна 9 колебаниям.

Точно так же не одинакова наша способность отличать звуки, близкие по громкости. При частоте 32 можно расслышать только 3 звука разной громкости; при частоте 125 - уже 94 звука различной громкости, при 1000 колебаний - 374, при 8000 - снова меньше и, наконец, при частоте 16 000 мы слышим только 16 звуков. Всего же звуков, различных по высоте и громкости, наше ухо может уловить более полумиллиона! Это только полмиллиона простых звуков. Прибавьте к этому бесчисленные сочетания из двух и более тонов - созвучия, и вы получите впечатление о многообразии того звукового мира, в котором мы живём и в котором наше ухо так свободно ориентируется. Вот почему ухо считается, наряду с глазом, самым чувствительным органом чувства.

По этому для удобства представления о звуке мы используем не обычную шкалу с делениями в 1 кГц

А логарифмическую. С расширенным представлением частот от 0 Гц до 1000 Гц. Спектр частот, таким образом, можно представить в виде вот такой диаграммы от 16 до 20000 Гц.

Но не все люди, даже с нормальным слухом, одинаково чувствительны к звукам различной частоты. Так, дети обычно без напряжения воспринимают звуки с частотой до 22 тысяч. У большинства взрослых чувствительность уха к высоким звукам уже понижена до 16–18 тысяч колебаний в секунду. Чувствительность же уха у стариков ограничена звуками с частотой в 10–12 тысяч. Они часто совершенно не слышат комариного пения, стрекотания кузнечика, сверчка и даже чириканья воробья. Таким образом от идеального звука (рис. выше) по мере старения человека он уже звуки слышит в более суженом ракурсе

Приведу пример диапазона частот музыкальных инструментов

Теперь применительно к Нашей тематике. Динамику, как колебательной системе, в ввиду ряда его особенностей, не удаётся воспроизвести весь спектр частот с постоянными линейными характеристиками. В идеале это был бы широкополосный динамик, воспроизводящий спектр частот от 16 Гц до 20 кГц с одним уровнем громкости. По этому в автозвуке применяют несколько типов динамиков для воспроизведения конкретных частот.

Выглядит это пока условно вот так (для трёхполосной системы + сабвуфер).

Сабвуфер от 16 Гц до 60 Гц
Мидбас от 60 Гц до 600 Гц
Мидрендж от 600 Гц до 3000 Гц
Твитер от 3000 Гц до 20000 Гц

Для нашей ориентации в окружающем мире слух играет такую же роль, как и зрение. Ухо позволяет нам общаться друг с другом при помощи звуков оно имеет специальную чувствительность к звуковым частотам речи. С помощью уха человек улавливает различные звуковые колебания воздуха. Вибрации, которые идут от предмета (источник звука), передаются через воздух играющий роль передатчика звука, улавливаются ухом. Человеческое ухо воспринимает колебания воздуха с частотой от 16 до 20 000 Гц. Вибрации с большей частотой относятся к ультразвуковым, но человеческое ухо их не воспринимает. Способность различать высокие тона с возрастом уменьшается. Способность улавливать звук двумя ушами даёт возможность определять, где он находится. В ухе колебания воздуха преобразуются в электрические импульсы, которые воспринимаются мозгом как звук.

В ухе расположен и орган восприятия движения и положения тела в пространстве - вестибулярный аппарат . Вестибулярная система играет большую роль в пространственной ориентации человека, анализирует и передаёт информацию об ускорениях и замедлениях прямолинейного и вращательного движения, а также при изменении положения головы в пространстве.

Строение уха

Исходя из внешнего строения ухо делится на три части. Первые две части уха, наружное (внешнее) и среднее, проводят звук. Третья часть - внутреннее ухо - содержит слуховые клетки, механизмы для восприятия всех трёх особенностей звука: высоты, силы и тембра.

Наружное ухо - выступающая часть наружного уха называется ушной раковиной , её основу составляет полужёсткая опорная ткань - хрящ. Передняя поверхность ушной раковины имеет сложное строение и непостоянную форму. Она состоит из хряща и фиброзной ткани, за исключением нижней части - дольки (ушной мочки) образованной жировой клетчаткой. В основании ушной раковины имеется передняя, верхняя и задняя ушные мышцы, движения которой ограничены.

Кроме акустической (звукоулавливающей) функции, ушная раковина выполняет защитную роль, предохраняя слуховой проход в барабанную перепонку от вредного воздействия окружающей среды (попадания воды, пыли, сильных воздушных потоков). Как форма, так и величина ушных раковин индивидуальны. Длина ушной раковины у мужчин 50–82 мм и ширина 32–52 мм, у женщин размеры несколько меньше. На маленькой площади ушной раковины представлена вся чувствительность тела и внутренних органов. Поэтому можно использовать её для получения биологически важной информации о состоянии любого органа. Ушная раковина концентрирует звуковые колебания и направляет их в наружное слуховое отверстие.

Наружный слуховой проход служит для проведения звуковых колебаний воздуха от ушной раковины к барабанной перепонке. Наружный слуховой проход имеет длину от 2 до 5 см. его наружная треть образована хрящевой тканью, а внутренние 2/3 - костной. Наружный слуховой проход дугообразно изогнут в верхнее-заднем направлении, и легко выпрямляется при оттягивании ушной раковины вверх и назад. В коже слухового прохода находятся особые железы, выделяющие секрет желтоватого цвета (ушная сера), функция которой: защита кожи от бактериальной инфекции и инородных частиц (попадание насекомых).

Наружный слуховой проход отделяется от среднего уха барабанной перепонкой, всегда втянутой внутрь. Это тонкая соединительно-тканная пластинка, покрытая снаружи многослойным эпителием, а изнутри - слизистой оболочкой. Наружный слуховой проход служит для проведения звуковых колебаний к барабанной перепонке, которая отделяет наружное ухо от барабанной полости (среднего уха).

Среднее ухо , или барабанная полость, представляет собой небольшую заполненную воздухом камеру, которая расположена в пирамиде височной кости и отделена от наружного слухового прохода барабанной перепонкой. Эта полость имеет костные и перепончатую (барабанная перепонка) стенки.

Барабанная перепонка - это малоподвижная мембрана толщиной 0,1 мкм, сплетённая из волокон, которые идут в различных направлениях и неравномерно натянуты в разных участках. Благодаря такому строению барабанная перепонка не имеет собственного периода колебаний, что приводило бы к усилению звуковых сигналов, совпадающих с частотой собственных колебаний. Она начинает колебаться при действии звуковых колебаний, проходящих через наружный слуховой проход. Через отверстие на задней стенке барабанная перепонка сообщается с сосцевидной пещерой.

Отверстие слуховой (евстахиевой) трубы расположено в передней стенке барабанной полости и ведёт в носовую часть глотки. Благодаря этому атмосферный воздух может попадать в барабанную полость. В норме отверстие евстахиевой трубы закрыто. Оно открывается во время глотательных движений или зевания, способствуя выравниванию давления воздуха на барабанную перепонку со стороны полости среднего уха и наружного слухового отверстия, тем самым она предохраняется от разрывов, приводящих к нарушению слуха.

В барабанной полости лежат слуховые косточки . Они имеют очень маленькие размеры и соединяются в цепочку, которая простирается от барабанной перепонки до внутренней стенки барабанной полости.

Самая наружная косточка - молоточек - своей рукояткой соединена с барабанной перепонкой. Головка молоточка соединяется с наковальней, которая подвижно сочленяется с головкой стремени .

Слуховые косточки получили такие названия из-за своей формы. Косточки покрыты слизистой оболочкой. Две мышцы регулируют движение косточек. Соединение косточек такое, что способствует усилению давления звуковых волн на мембрану овального окна в 22 раза, что даёт слабым звуковым волнам приводить в движение жидкость в улитке .

Внутреннее ухо заключено в височной кости и представляет собой систему полостей и каналов, расположенных в костном веществе каменистой части височной кости. В совокупности они формируют костный лабиринт, внутри которого находится перепончатый лабиринт. Костный лабиринт представляет собой костные полости различной формы и состоит из преддверия, трёх полукружных каналов и улитки. Перепончатый лабиринт состоит из сложной системы тончайших перепончатых образований, находящихся в костном лабиринте.

Все полости внутреннего уха заполнены жидкостью. Внутри перепончатого лабиринта - эндолимфа, а жидкость, омывающая перепончатый лабиринт снаружи - перелимфа и по составу схожа со спинно-мозговой жидкостью. Эндолимфа отличается от перелимфы (в ней больше ионов калия и меньше ионов натрия) - несёт положительный заряд по отношению к перелимфе.

Предверие - центральная часть костного лабиринта, которая сообщается со всеми его частями. Сзади от преддверия расположены три костных полукружных канала: верхний, задний и латеральный. Латеральный полукружный канал лежит горизонтально, два других - под прямым углом к нему. Каждый канал имеет расширенную часть - ампулу. Внутри его содержится перепончатая ампула, заполненная эндолимфой. При движении эндолимфы во время изменения положения головы в пространстве раздражаются нервные окончания. По волокнам нерва возбуждение передаётся в головной мозг.

Улитка представляет собой спиральную трубку, образующую два с половиной оборота вокруг конусовидного костного стержня. Она является центральной частью органа слуха. Внутри костного канала улитки располагается перепончатый лабиринт, или улитковый проток, к которому подходят окончания улитковой части восьмого черепного нерва Колебания перилимфы передаются эндолимфе улиткового протока и активизирует нервные окончания слуховой части восьмого черепного нерва.

Преддверно-улитковый нерв состоит из двух частей. Преддверная часть проводит нервные импульсы от преддверия и полукружных каналов к вестибулярным ядрам моста и продолговатого мозга и далее - к мозжечку. Улитковая часть передаёт информацию по волокнам, следующим от спирального (кортиева) органа к слуховым ядрам ствола и далее - через ряд переключений в подкорковых центрах - к коре верхнего отдела височной доли полушария большого мозга.

Механизм восприятия звуковых колебаний

Звуки возникают благодаря колебаниям воздуха и усиливаются в ушной раковиной. Затем звуковая волна проводится по наружному слуховому проходу к барабанной перепонке, вызывая её колебания. Вибрация барабанной перепонки передаётся на цепь слуховых косточек: молоточек, наковальню и стремя. Основание стремени при помощи эластичной связки фиксировано к окну преддверия, благодаря чему колебания передаются на перилимфу. В свою очередь, через перепончатую стенку улиткового протока эти колебания переходят на эндолимфу, перемещение которой вызывает раздражение рецепторных клеток спирального органа. Возникающий при этом нервный импульс следует по волокнам улитковой части преддверно-улиткового нерва в головной мозг.

Перевод воспринимаемых органом слуха звуков как приятных и неприятных ощущений осуществляется в головном мозге. Нерегулярные звуковые волны формируют ощущения шума, а регулярные, ритмичные волны воспринимаются как музыкальные тоны. Звуки распространяются со скоростью 343 км/с при температуре воздуха 15–16ºС.